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Abstract. Prediction of time series data. 
Comparison between chaotic and web driven 
business transactions. Technology of artificial 
neural networks, genetic algorithms and Quacol 
algebra. Takens equation for sampling, width 
and prediction horizon. Prediction technique: 
functional or stochastic model. Fit composition 
of prediction functions. Predicting data from 
chaotic behavior in a ferroresonant circuit. 
Prediction of web driven trading process. 
Prediction error: sampling interval, correlation, 
time horizon. Modeling prediction error in 
Quacol algebra using triangle inequality. 
Discussion of practical results.  
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1. Introduction 
 

Prediction is usually treated through Bayes 
formula. Although probability of an outcome 
relies on past data it is bravely hypothesized that 
the continuation of the past can be predicted by 
modeling. In most crucial cases where prediction 
is pragmatically sought this condition is not 
fulfilled. Two schools of prediction philosophy 
are usually followed: using stochastic or 
functional patterns of previous data behavior. 
There are odds in favor of each one of them. We 
will make a model of the data behavior using 
different techniques and thus empirically try to 
predict future data. 

This work consists of: comparison of linear 
and nonlinear models, case of chaotic data 
prediction, comparison between deterministic 
chaos and business transactions, introduction of 
prediction technologies: artificial neural 
networks, genetic algorithms and circular 
qualitative correlation algebra (Quacol algebra). 
Prediction by a fit composition of analytical 
functions. Practical results of prediction of data 
from a chaotic ferroresonant circuit and from a 
web driven trading process. Analyses of the 
prediction error from the standpoint of sampling 
interval, correlation and prediction time horizon. 

Modeling prediction error in Quacol algebra 
using triangle inequality. 
        
2. Prediction modeling technologies 
 
2.1 Linear and nonlinear models 
 

The most simple prediction model is a linear 
model. Here the future kx  component of the 
signal is given with the expression 
 

 kik

i

ik wxx += −�
1

α   (1), 

 
where: 

ikx − -  signal component determined in the i-th 
previous prediction interval 

kw - unknown white noise component at the 
prediction instant 

iα  - coefficients of the time series expansion of 
previous time instants. 
 This model is still in use for various technical 
estimations and prediction purposes such as 
given in Smith J.A. US Patent 5,606,505 and 
Wojsznis W.K. US Patent 5,568,378. Different 
approach is presented by Frederic D. Fox and 
coauthors who considered a prediction method 
using regression analysis and artificial neural 
network [1]. Using long term data the system 
predicts weather from three days to 15 months in 
advance with typical accuracy of weekly weather 
forecasts around 70%. Using correlation of 
previous weather data and POS store transactions 
data the system advises retailer on the 
managerial actions to be taken. In such a way 
hidden patterns of weather behavior have been 
pre-selected by the ANN.  

In order to generate patterns in advance the 
method has been proposed by John Koza [2] 
whereby a composition of problem solving 
entities has been generated and combined in a 
genetic algorithm version of the problem 
solution. Such a combination of function can be 



used for training of the prediction possibilities 
which was not developed by the above 
mentioned author. Still genetic algorithms can be 
used for constructing models fit for prediction. 

Models of chaotic processes are the most 
difficult for prediction. Takens has proposed the 
equation for sampling width, prediction horizon, 
and functional for a chaotic process, but without 
stating neither the horizon accuracy nor the 
functional nature [3]. Perlovsky on the other side 
advocates functional approach to modeling 
unknown processes in the nature and human 
activities [4].  
 
2.2 Quacol (qualitative correlation) 

algebra predictor 
 
2.2.1 Qualitative explicit model 
 

Qualitative data can be obtained from 
quantitative data by a simple ranking procedure. 
The positive ranking assignment is applied to set 
of variable data such as measurement data 
obtained in successive time intervals, i.e. 
measurement vector 1v = (3.69, 7.15, 4.37, 15.73, 
0.18) is transformed into its corresponding n-
point graph 1V  = (4, 2, 3, 5, 1), 2v  to 2V etc. 
Any desirable function that is investigated can be 
defined as goal function, 1g  = (10.06, 27.97, 
15.28, 37.66, 0.12), and it is transformed into the 
corresponding goal n-point graph 1G  = (2, 4, 3, 
5, 1). Their rank correlation equals to  
 

 
)1(

6
1 2

2

, −
∆

−= �
nnGVρ   (2), 

 
where �∆2 equals the sum of correspondent 

squares of rank differences for the n-point graph. 
Thus for the illustrated series 56.0,1

=GVρ  .  

The manipulation with greater number of 
variables and their inverses results in a variable 
with the highest rank correlation coefficient. 
Difference in ranks between this variable and 
goal function is used to give another artificial 
goal variable to enter as the algebraic counterpart 
of the missing rank difference, i.e. there is a rank 
difference between goal function and model 
variable that equals to  
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where the subscript “improper” designates rank 
difference function, i.e. the value that has not 
been yet properly ranked. After shifting (3) by 
adding a positive constant vector such as 2 the 
corresponding quantitative function 

)2,2,2,4,0(2 =g can be obtained. Mixing 2g  
values with a positively defined strictly 
increasing additive „background noise” 

)05.0,04.0,03.0,02.0,01.0(=nV and after 
ranking one obtains difference goal function 

)4,3,2,5,1(2 =nG . 
After that the following relation holds [5]: 
 

))((( 211 nGRscorrespondkvRscorrespondG +
     (4), 
 
where the scorrespond operator searches the 
most appropriate variable according to its ranks 
to the corresponding 1G or nG2 goal function 
ranks, R(.) is the rank operator. Let us assume 
that the variable 2V maximally corresponds to the 

nG2  goal function according to relation (1). 
Then there follows: 
 
 )( 211 kvvRscorrespondG +  (5). 
 

The algebraic relation in (5) contains the 
constant k  for which can be proven that the 
relation in parenthesis can have the maximum 
rank correspondence being a convex function on 
(2), thus 
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The implicit value for k has to be calculated for 
each combination of variables in the whole 
variable data set. 
 
2.2.2 Quacol algebra 
 

Two principles of the Quacol modeling 
algebra, such as given for example in equation 
(5), have to be defined:  
First is the principle which states that any n-point 
graph should not have any equal ranks, e.g. 

)5,5.3,5.3,2,1(kV is not allowed.  
The second is the principle of continuity of the n-
point graph for specific algebraic operations of 
multiplication and division. 



Definition 1. The rank value of two values in 
any n-point graph or goal function are not 
allowed to be equal. Single valuedness of the 
ranks in any variable is a practical demand that 
avoids unnecessary calculation of the complex 
correlation formula for equal ranks. The possible 
equal data in any variable are solved by the 
addition of a very small amount of noise to each 
data in each variable, and theoretically to each 
varable pair algebra as well. 

Definition 2. Any algebraic operation 
between any two variables can not influence on 
the rank continuity of any variable. This is a 
fundamental demand that changes the 
multiplication and division operation in Quacol 
algebra where the operations are defined 
according to Table 1. The proof of result from 
Table 1 is fairly simple: it stems from a theorem 
in Quacol algebra that states: 
 

 
Table 1. Multiplication and division operations in Quacol algebra 
 
Result of multiplication 
(v1*v2) and division (v1/v2) 
operation  

v1 data sign positive v1 data sign negative 

v2 data sign positive Positive Negative 
v2 data sign negative Negative Negative 
 
Theorem 1.  Any n-point graph G  is invariant to 
the linear scaling operation with vector c, 

0, >∈ ii cRc  
 
 GGopc ≡    (7), 
 
where { }/,*,,−+=op . For example, taking a 

variable )1,4,3,2();1,5,4,5.2( 33 == Vv  and 

subtracting a constant vector [ ]2,2,2,2=c  one 

obtains )1,3,2,5.0(3 −=− cv ; 

)()( 33 vRvcR =+−  according to Theorem 1.  
 
2.2.3 Quacol predictor 
 
Let us define as the prediction goal function any 
desirable goal function kg of the depth n, where 
k is the total number of variables of a system, 
including the goal function, i.e. 
{ } 1,,1,, −= kivg ik � . Goal model can then be 
expressed as:  
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where { }mop  is a sequence of m algebraic 
operations performed on model in square 
brackets; { }invord

imv ,
,  is the first variable in the m-th 

model, with index i, 1,,1 −= ki � , that may or 

may not have inverted values; { }invord
jmv ,

, is the 

second variable in the m-th model, with index j, 
1,,1 −= kj � ; mop  is the algebraic operation 

between i-th and j-th variable and mk  is the 
weight of the second variable. All of the 
operations are performed on the variables that 
have been normalized to a common mean value 
for that model, denoted by )(mmean .  

An example of the model is: 
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By using a prediction vector 1+nx  we can predict 

a future value of kg  when 1+nx  is added as a last 

component to each 1,,1, −= kivi � ; thus 

1,)(
+

=
nk xgk Mgpredictor . 

Number of iterations following the procedure 
described under expression (8) is sometimes 
limited due to numeric instability of the 
procedure [6].  
 
3. Practical investigations 
 
Predictor limits were tested under following 
constraints:  
i) There was only one system variable and that 
one has to be predicted from past values. This is 
illustrated for the voltage signal of the 
ferroresonant circuit.  
ii) The time horizon was tested for small variable 
set 4=k , the case of trading variable prediction 
iii) The prediction precision was tested for short 
and long prediction interval d  for trading 
variables, 4=k .  



3.1 Predicting chaotic behavior of the 
ferroresonant circuit 

 
Synthetic functions have been used such as 

21 * −− kk vv or 1−kv or similar analytical forms. 

Prediction data for ranks of the ferroresonant 
circuit are given in Table 2. Mean prediction 
error of the linear model was around 277% and 
prediction error of the Quacol synthesized 
predictor was around 108%. The actual voltage 
levels were between -0,1969V and 0,3464V.

 
Table 2. Prediction ranks and rank ranges for the ferroresonant circuit in chaotic behavior [7] 
 
 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 
Goal 
rank 

1 2 5 7 8 9 10 11 12 13 14 16 17 18 15 6 4 3 

Quacol 
model 
rank 

2 1 5 8 6 9 10 11 12 13 14 16 17 18 15 7 3 4 

Linear 
model 
rank 

3 2 1 16 6 9 12 7 10 11 13 14 15 17 18 5 1 4 

Quacol 
model 
rank 
range 

1-3 1-3 4-6 6-9 5-9 8-
10 

9-
11 

10-
12 

11-
13 

12-
14 

13-
15 

15-
17 

16-
18 

17-
>17 

14-
16 

5-8 2-5 3-5 

  
The worst case for linear predictor was 
predicting 2.5929V instead of 0.00825V and the 
worst case of the Quacol predictor was 
predicting the value between 0.024V and -
0.0176V instead of 0.01892V.  
 
3.2 Determining the prediction horizon for 

small number of trading variables 
 

 
Four trading variables were observed: closing, 
opening, high and low values. The intervals of 
scanning were one hour and the time duration 
was 24 hours. The 25-th value was predicted 
with different accuracy, Table 3, for ten different 
trading situations (last three or four digits were 
given). Synthetic analytical variables were not 
used.

Table 3. Trading forecasting for ten cases for „opening“ variable 
 
Case 1 2 3 4 5 6 7 8 9 10 
Predicted 
value 

<2105 285-
325 

585-
605 

>945 225 >205 385-
415 

605-
615 

885-
905 

385-
415 

Prediction 
class 

B A A B C A C A A B 

Actual 
value 

1995 325 595 985 235 225 375 605 895 435 

 
Prediction class is formed according to rank 
correlation coefficient span: A>0.99, B (0.97-
0.99) and C (0.95-0.97).  When the horizon was 
extended to two-hour periods the correlations 
have decreased to the values between 0.70 and 
0.80 (prediction class F) or smaller thus 
decreasing the accuracy of the prediction for 
more than three ranks. 
 
3.3 Determining prediction accuracy for 

small number of prediction variables 
and different variable lengths 

 
Two cases have been studied: accuracy of 

n=25 data series and n=80 data series. Data on 
shorter model showed overall accuracy around  

 
20%. Prediction for an 80 data series model are 
given in Table 4. Synthetic analytical variables 
were not used. 
 
4. Prediction error modeling 
 

Goal 1G and goal difference functions G2n are 
linear independent variables, meaning that they 
are principally collected from mutually inverse 
variables and calculated in geometric way toward 
goal function fulfillment.  

Definition 3. An error in prediction 
)(mError  using Quacol algebra is consistent if 

for each model member of the n-point graph ( 1v ) 
and for every successor variable n'-point graph 



( 1
12
−= vv ) obtained from its difference toward 

the goal function g, the estimated error of 
reaching the goal from n-point graph is no 

greater than the error of obtaining the goal from 
getting to n' plus the estimated error of reaching  
the goal from n':

 
Table 4. 80 days prediction data for small number of prediction variables (Croatian stock 

market) 
 
Variable Prediction Real value Variable 

span 
Relative 
error 

Correlation 
coefficient 

Prediction 
class 

High 912 913 880-929 -2% 0.78 F 
Low 901-910 901 870-920 +18% 0.79 F 
Opening 902-920 910 872-925 -15% 

+19% 
0,76 F 

Closing 919-925 910 880-924 20%/34% 0,72 F 
 

)()()( 21 vErrorvErrormError +≤     (9). 
 
Thus simply calculating the model from variable 
and its inverse gives   
 

==+ − )74.5,79.15,60.4,29.7,96.3()( 1
11 RvvR

        )3,5,2,4,1(=   (10), 
 
showing a better correlation of the goal and 
model (10) with 7.0=ρ as compared with 

previously obtained 56.0=ρ  for 1v only. 
 
5. Discussion 
 
Prediction accuracy and correlation of models 
are highly connected. This stems from ideal 
prediction case where the model behavior of the 
goal function has been completely discovered 
( 1=ρ ). Prediction error is then defined with the 
interval closest to the rank of the expected value. 
Ideally for 100 equidistant values of the goal 
function and completely discovered goal 
function the accuracy is +/- 1% . Realistical 
expectations are far less favorable. Neither there 
are long enough data series that are without large 
chaotic behavior nor there is any linearity in the 
goal data distribution. Still predictions of smaller 
data series (>25 data series) can be expected with 
about 10% accuracy which can be favorable for 
many practical applications. 
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