UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

EXPERT SYSTEMS
DESIGNING ONTOLOGY WITH SWRL RULES
IN PROTEGE

Tetiana Buzykina

Zagreb, January 2019

Table of Contents

Lo [N Tox 4 o o USROS 3
TREOTELICAI PANTcoiiiiietice bbbt e et st benreas 4
o T o= LI PSSR 6
Building the ontology inN Prot€gé 5.5........ooiiiiiice e 6
T 0] 1 T PP 11
SWWRL TUIES ...ttt ettt s et sreebeaneesaeaneenre e 15
(@0] o] [115] o] o TSR 16
YT L0 =PRSS PU R 17

Introduction

The main reason for my choice of the project topic is that despite the fact that ontologies
have potential of further integration in various fields of Information Technologies and
Acrtificial Intelligence in particular, their development still remains the topic of
discussions in very narrow circles of IT specialists, so this is my contribution to
popularizing ontologies. Beside of that, | already have some experience working with
them during course “Knowledge management and ontology engineering” at Faculty of

Information Technology at Taras Shevchenko National University of Kyiv.

Since the main purpose of creating ontology is to explain the connections between all the
entities in a certain domain or even general knowledge, their scale may vary from
primitive hierarchy with only 2-3 classes up to hundreds of thousands of entities. The
domain of the built ontology is the course system at the Faculty of Electrical Engineering
and Computing (FER) in particular, however | would assume that this may also be
applicable to other faculties at University of Zagreb and to course structures at
universities in other European countries in general with some minor changes in class

relations.

Theoretical Part

In order to fully comprehend the place and importance of ontologies in IT, one should get
to know about the Semantic Web.

In short, the Semantic Web provides a common framework that allows data to be shared
and reused across application, enterprise, and community boundaries. It is a collaborative
effort led by W3C with participation from a large number of researchers and industrial
partnerst, It is based on the Resource Description Framework (RDF), which is widely

used for ontologies development.

Ontology as a component of Semantic WEB structure:

Trust
Proof
Logic Digital
Ontology vocabulary Signadure
RDF + rdfschema

Image 1 — Semantic Web structure!2

What is ontology?

“...1 use the term ontology to mean a specification of a conceptualization. That is, an
ontology is a description (like a formal specification of a program) of the concepts and
relationships that can exist for an agent or a community of agents. This definition is
consistent with the usage of ontology as set-of-concept-definitions, but more general.
And it is certainly a different sense of the word than its use in philosophy”, - Tom
Gruber, 1992 B!

https://www.google.com.ua/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiiobPB3-7fAhVGEVAKHWPlCXgQjRx6BAgBEAU&url=https://www.w3.org/RDF/Metalog/docs/sw-easy&psig=AOvVaw1hdNsWdjK_f7oR4Mmd6_WH&ust=1547605933254385

Conceptualization means an abstract simplified view of some selected part of the world,
containing the objects, concepts, and other entities that are presumed of interest for some

particular purpose and the relationships between them [,
Simply designing ontology model includes the following stages:

- Decomposition (distinguishing the entities in the model)

- Identification (Creating individual entities)

- Classification (creating classes matching groups of entities, including the entities
into the classes)

- Properties description (defining ways to express the information about
characteristics and relations between entities)

- Values, connections (assigning values to entities, creating connections)X,

However, besides ontology model itself one should also take into consideration its
implementation in chosen environment and also reasoning in order to be certain that there

IS no contradiction in ontology.

Practical Part

Building the ontology in Protégé 5.5

Designing the ontology model suggests that one has sufficient knowledge about the
domain, hence the designer should do the research beforehand. My main source was
UNIZG students network “Intranet”, where all the important information about the

courses and the teaching staff can be easily found.

v Expert Systems

ABOUTUS -

STUDY PROGRAMMES -

RESEARCH - LIFE@FER -

Expert Systems

Course Description

Project oriented course. Fundamentals of automated reasoning and deductive systems
Application of automated reasoning in mathematics, digital systems design (verification
of hardware and software) and problem solving. Rule-based expert systems augmented
with rule weighting, certainty factors, and fuzzy logic. Applications in technical systems
synihesis, diagnestics, and process control. Probabilistic reasoning based on Bayesian
belief networks. Applications of Bayesian networks in diagnostics and prediction
Project work invalves hands-on experience with prevalent expert system shells (e.q.
Otter, CLIPS, FuzzyCLIPS, HuginLite).

General Competencies

The course gives students knowledge and skills for solving medium to hard problems
from diverse expert systems application domains

Learning Outcomes
1. define and describe expert system and its main constituents.
2. distinguish class of problems suitable for solving with expert systems.
3. breakdown the problem and select crucial parts.
4. assemble various parts of knowledge and skills in order to devise the approach to
solution.
3. design and create expert system suitable for solving particular problem.
6. appraise the quality of solution and justify the employed tachniques.

Forms of Teaching

Lectures

The course is organized in two cycles. The first cycle consists of 7 weeks of lectures and
a week of midterm exam. The second cycle consists of 3 weeks of lectures and 3 weeks
of students' projects presentations and discussions.

Exams

Grading is based on midterm exam and the success of implemented project

Other Forms of Group and Self Study

Students must conceptualize, design and realize expert system either individually or in
pairs,

NEWS & INSIGHTS -

Grading System

1D 34371

s& Winter semester
4ECTS

L1 English Level

L1 e-Leaming

30 Lectures
0 Exercises
0 Laboratory exercises
0 Project laboratory

General

90 Excellent
75 Very Goad
60 Good

50 Acceptable

Similar Courses
(Z Knowledge-Based
Application Systems,

University

f California Berkeley

(£ Advanced Al concepts,
Carnegie Mellon
University

Image 2 — students network “Intranet”

The next stage is to build the one in the preferred environment. | have chosen Protégé
(software developed by Stanford University) because it has relatively easy and user-
friendly interface and offers variety of tools implemented, such as more than 3 different
reasoners, SWRLQuery and SWRL rules editor, SPARQL editor etc.

v owl:Thing

v EducationFER

----- Course

¥ ¢ FormOfControl
..... Exam
- Test

----- FormOfSelfstudy

----- FormOfTeaching

StudyMaterials
Literature
Presentation
UsefulLinks

----- TypeOfCourse

Vo GeneralInstances

- Language

Person

Student
CroatianStudent
International

TeachingStaff

ExternalStaff
ExternalAssociate

PermanentStaff
AssistantProfessor

AssociateProfessor
b FullProfessor

Image 3 — classes hierarchy

As it is shown on the image above, according to my ontology there are three main
disjoint classes: “Person”, “Education FER” and “General Instances”, this means that a
certain instance cannot belong to more than 1 of these classes at the same time. In terms
of the ontology people involved in educational process can be either students or teaching
staff. Since the ontology is created for Croatian university, | have assumed that students
can be either from Croatia and speak only Croatian or both Croatian and English
languages (that is represented by min 1 cardinality for object property
“speaksLanguage”) or International (such as Erasmus students) and speak English
language respectively. In order to avoid extra dependencies in the class hierarchy, | have
put aside any language other than English and Croatian since | know that there are no
courses taught in more than these two languages. Teaching staff can be either permanent
or external. It is pretty obvious that a course should be necessarily taught by minimum 1

professor from permanent teaching staff.

Class “General Instances” contain entities that cannot be changed and neither depend nor
interact with classes from “Person” or “Education FER”. In the given ontology it has a
subclass called “Language” since language can only be used but does not interact with

any other class actively.

Class “Education FER” is the biggest and the most important one since it describes the

course structure — the main point of this ontology.

Object property hierarchy:

V-l owl:topObjectProperty
----- s hasEnrolled

----- s hasFormOfControl
----- = hasFormOfTeaching
----- m hasSelfStudy

----- M hasStudyMaterials
----- m isEnrolledIn

----- M isMadeInLanguage
----- M isTaughtBy

----- M isTaughtInLang

----- m isTypeOfCourse

----- m isUsedInCourse

----- m speaksLanguage
----- M teaches

Image 4 — object properties for interaction between the classes

Now let us look at the usage of the properties above. Since we know that each course has
a certain number of students enrolled, is taught by minimum 1 professor from permanent
teaching staff and is of certain type such as “Bridge course”, “Skills Course” and etc. we

can describe the mentioned dependencies using given object properties.

Description: Course ENEmE

Equivalent To

SubClass Of
© (hasEnrolled min 1 Student)
and (hasEnrolled max 45 Student)

) (hasStudyMaterials min 1 Literature)
and (hasStudyMaterials min 1 Presentation)

) (isTaughtBy min 1 PermanentStaff)
and (isTaughtBy min 1 TeachingStaff)

@ EducationFER

@ hasFormOfCeontrol min 1 FormOfControl

) hasFormOfTeaching min 1 FormOfTeaching
@ hasSelfStudy some {{Project})

) isTaughtInLang min 1 Language

) isTypeOfCourse only ({'Bridge Course’ , "Elective Course’ , 'Course for Successful Students’ , 'Required Course’
, 'Skills Course’ , "Specialization Course'})

General class axioms

) AssistantProfessor or AssociateProfessor or FullProfessor SubClassOf teaches min 1 Course
@ CroatianStudent or International SubClassOf isEnrolledIn min 1 Course

SubClass Of (Anonymous Ancestor)

Instances

& CourseID34371
& CourselD72561

Target for Key

Disjoint With

& Student, FormOfTeaching, FormOfControl, Language, StudyMaterials, TeachingStaff, FormOfSelfStudy

Image 5 — “Course” relations with other classes from the ontology described with object properties

| Description: Literature EIEm

SubClass Of
£ StudyMaterials

General class axioms

SubClass Of (Anonymous Ancestor)
) (isMadeInLanguage value CroatianLang) or (isMadeInLanguage value EnglishLang)

) isMadeInLanguage min 1 Language
@ isUsedInCourse min 1 Course

Instances

@ BookID000001
@ BookID0D0D0002
@ BookID000003
@ BookID0D0D00D4
@ BookID000005
@ BookIDD0D000D6
@ BookID0D0D000D7
@ BookID0D0D000D8

Target for Key

Disjoint With

) usefulLinks, Presentation

Image 6 — description of class “Literature”

Description: isEnrolledIn EmEm

Inverse Of

mm hasEnrolled

Domains (intersection)

Ranges (intersection)

" hasFormOfTeaching min 1 FormOfTeaching
' isTaughtInLang min 1 Language

@ hasEnrolled min 1 Student

() hasStudyMaterials min 1 Presentation

) hasFormOfControl some FormOfControl

© (hasStudyMaterials min 1 Literature)
and (hasStudyMaterials min 1 Presentation)

) isTaughtBy min 1 TeachingStaff
@ EducationFER
) hasSelfStudy some FormOfSelfStudy

0 isTypeOfCourse only ({'Bridge Course' , "Elective Course' , 'Course for
Successful Students’ , 'Required Course’ , 'Skills Course’ , 'Specialization
Course'})

@ Course
(" hasStudyMaterials min 1 Literature

Image 7 — example of inverse object property “isEnrolledIn”

10

In fact, the intersection of all the ranges above will result the class “Course” and since in
this ontology isEnrolledIn used only for “Student” domain class, the end triplet will be

“Student” “isEnrolledIn” min 1 “Course’.

Reasoning

In order to check if ontology is built correctly (which means that at least classes, their
instances, object and data properties do not contradict each other), we are able to use
Reasoner. Protégé 5.5 offers an impressive variety of reasoners such as ELK, FaCT++,
HermiT, Ontop, Pellet and more. The default reasoner is HermiT, but | have tried others

as well.

| believe that the main advantage of using reasoner is that you are able to track down all

the imperfections of the built ontology in tab “Class Hierarchy” — “Inferred”.

Classes Object properties Data properties Annotation properties Datatypes Individuals

Asserted ~

v owl:Thing
v EducationFER
Course
v FormOfControl
Exam
Test
FormOfSelfStudy
FormOfTeaching
v StudyMaterials
Literature
Presentation
UsefulLinks
TypeOfCourse
v Generallnstances
Language
v Person
v Student
CroatianStudent
International
v TeachingStaff
v ExternalStaff
ExternalAssociate
v PermanentStaff
AssistantProfessor
AssociateProfessor
FullProfessor

Image 8 — Asserted Class hierarchy

11

Classes Object properties Data properties Annotation properties Datatypes Individuals

Inferred 1

v owl:Thing
¥ EducationFER
Course
v FormOfControl
Exam
Test
FormOfSelfStudy
FormOfTeaching
v StudyMaterials
Literature
Presentation
UsefulLinks
TypeOfCourse
¥ © GeneralInstances
Language
¥ O Person
v Student
CroatianStudent
International

ExternalAssociate = ExternalStaff
ExternalStaff = ExternalAssociate

AssistantProfessor
AssociateProfessor
FullProfessor

Image 9 — Inferred class hierarchy, reasoner logical conclusions

If an instance generates contradictions in ontology it is printed with red color.
Additionally, with reasoner turned on we are able to see “hidden” object properties that
occur as the result of certain dependencies between classes or rules (for example SWRL
rules). Thus, on Images 10 — 13 we are able to see that HermiT reasoner has assigned 2
implicit object properties “hasEnrolled” and “isTaughtBy” to the individual of class
“Course” since they are inverse to “isEnrolledIn” and “teaches” object properties
respectively. Additionally, despite the absence of any compiler for SWRL editor, the
reasoner also checks if the ontology complies with SWRL rules and if so, also adds

object properties and ontology axioms.

12

@@ @ ions: e 6520280

¥ owl:Thing

v @ EducationFER Annotations
¥ @ Course countryOforigin - [type: xsd:string]
¥+ @ FormOfControl Ukraine
-~ o 2 Exam
o Test coursellame [type: xsd:string]
& FormOfSelfStudy
© FormOfTeaching Tetiana Buzykina

b« & StudyMaterials
B & TypeOfCourse
¥« @ GeneralInstances
@ Language
v & Person
¥+ © Student
@ croatianStudent
®
v & TeachingStaff
¥« @ ExternalStaff
@ ExternalAssociate

Description: StudentlD0036520280

Types
¥+ © PermanentStaff . .
@ AssistantProfessor @ CroatianStudent or International
@ AssociateProfessor @ International

@ FullProfessor @ isenrolledIn min 1 Course

© Person

0 speaksLanguage min 1 Language
@ speaksLanguage value EnglishLang
S Student

Same Individual As

Different Individuals

GEl

For: @ International
StudentID0036520280

Property assertions: StudentlD0

Object property assertions
mm speaksLanguage EnglishLang

Data property assertions

MNegative object property assertions

MNegative data property assertions

Image 10 — object properties for the individual of class “International Student”

@ Language
v O Person
v O Student
@ CroatianStudent
© International
v« TeachingStaff
v @ ExternalStaff
@ ExternalAssociate
¥ O PermanentStaff
® @ AssistantProfessor
@ AssociateProfessor
@ FullProfessor

Types

Same Individual As

Different Individuals

Kk
For: @ AssistantProfessor
| _amanovic ...

EIE®EE § Property assertions: Alan_lov

Object property assertions

- ksLanguage CroatianLang

peaksLanguage EnglishLang

Data property assertions

MNegative object property assertions

MNegative data property assertions

Image 11 — object properties for the individual of class “Assistant Professor”

13

Annotations Usage |
BT [Annotations: CourselD34371 |

v owl:Thing A .
v - ® EducationFER Annctations
B Course Irsename [wsd:string]
¥« @ FormOfControl Expert Systems
f S Exam
@ Test

courseSchedule [type: xsd:string]

1.
2.
3.
4.
5.
6.
7.
8.
9

]

S FormOfSelfStudy
o« FormOfTeaching
¥« & StudyMaterials
L © TypeOfCourse
¥+ @ GeneralInstances
@ Language
¥« © Person
¥ & Student

Course organization and administration. Introduction to expert systems. Brief outline of previous projects
Symbol manipulatin with LISP programming language.
Logic and fundamentals of automated reasoning. Structure of deductive systems.
Rule-based automated reasoning systems, Introduction to imperfect knowledge reprezentation.
Representation and processing of imperfect knowledge, Introduction to probablilistic reasoning.
Probabilistic networks - 2,
Probabilistic networks - 3.
M\dte‘rm examd dern knowledoe based
- . Ontologies and madern knowledge based systems

: fr:)ﬂtla;l_sludlem A Analodie nf fvmieal Fonls. BrworSiMaras. Fusreting Himint ite Braténd - 1

nternationa

v & Teachingstaff EME®E | Property assertions: CourselD34371

¥ @ ExternalStaff

! © ExternalAssociate Types Object property assertions
¥« © PermanentStaff
" @ AssistantProfessor O (h yMaterials min 1 Li mmisTypeOfCourse 'Skills Course’
@ AssociateProfessor and (h v fals min 1 ion) == hasFormOfControl Mid-termExam
@ FullProfessor @ Course

mmhasSelfStudy Project

© EducationFER == hasFormOfTeaching Lectures
@ hasEnrolled min 1 Student

@ hasFormOfControl some FormOfControl

mmisTaughtInLang CroatianLang
mm hasEnrelled StudentIDD036520280

& hasFormOfTeaching min 1 FormOfTeaching == hasStudyMaterials BookID000D03
©Oh some FormQ Y == hasStudyMaterials BookID000002
h y ials min 1 Li h Exper
hi y ials min 1 i = hasStudyMaterials BookID000DD1
isTaughtBy min 1 TeachingStaff == hasFormOfControl FinalExam
DIEER isTaughtInLang min 1 Language == hasFormOfTeaching Consultations

-TypeOfCourse only {{'Bridge Course’, 'Elective Course', 'Course for

ﬂ ﬂ . '"Required Course', "Skills Course' , 'Specialization

Course'}) Data property assertions
For: @ Course
Same Individual As Nagative object property assertions

Image 12 — object properties for the individual of class “Course”, HermiT reasoner turned off

© EducationFER

" YCourse courseName [type: xsd:string]
" ® gr::((;rl“(:ontml Expert Systems
@ Test

urseschedule i

pe: xsd:string]

© FormoOfselfstudy

Midterm exam
Ontologies and modern knowledge based systems
N analvsis of funical tonls: Provar@/Mared FuzzuCline Huninl ite Pratéas - 1

A & Student
-+ @ CroatianStudent
@ International
v £ TeachingStaff
~ @ ExternalStaff

- 1. Course organization and administration, Intraduction to expert systems. Brief outline of previous projects,
4 FormOfTea(_:hlng 2, Symbal manipulatin with LISP programming language.
© StudyMaterials 3. Logic and fundamentals of automated reasoning. Structure of deductive systems.
© TypeOfCourse 4, Rule-based automated reasoning systems. Introduction to imperfact knowledge reprezentation.
+ @ GeneralInstances 5. Representation and processing of imperfect knowledge . Introduction to probabililistic reasoning.
@ Language 6. Probabilistic networks - 2,
& Person 7. Probabilistic networlks - 3.
8.
9
1

! @ Externalfssociate Types Object property assertions
A ; & PermanentStaff N R N - =
-) AssistantProfessor @ (h min 1 L) = isTypeOfCourse "Skills Course’
@ AssociateProfessor and (hasst Is min 1 P) ™ hasFormOfControl Mid-termExam
@ FullProfessor @ Course m hasSelfStudy Project
© EducationFER

m hasFormOfTeaching Lectures

) hasEnrolled min 1 Student mmisTaughtInLang CroatianLang

@ hasFormOfControl some FormOfControl = hasEnrolled StudentID0036520280
 hasFormOfTeaching min 1 FormOfTeaching b, Yy i]
@ h. udy some FormOf: v ™ has! v i 2
@h y ials min 1 Li mh Exper

©h ¥ ials min 1 ion . b, Yy i 1
@ isTaughtBy min 1 TeachingStaff == hasFormOfControl FinalExam

MEEE @ isTaughtInLang min 1 Language

== hasFormOfTeaching Consultations
@isTypeOfCourse only ({'Bridge Course’, 'Elective Course', 'Course for = hasEnrolled StudentID5739205672
Students' , 'Req Course' , 'Skills Course' , "Specialization X K

Course’}) mmisTaughtBy Alan Jovic

Same Individual As Data property assertions

Image 13 — object properties for the individual of class “Course”, HermiT reasoner turned on

14

SWRL rules

The rules help set certain restrictions or make logical conclusions and computations in
ontologies. However, one of the biggest disadvantages is that modern edition of SWRL
does not have disjunction operator. Additionally, due to specificity of the chosen domain
there is no such opportunity to perform calculations. Furthermore, the SWRL editor in
Protégé 5.5 does not have user-friendly graphic interface from the previous versions of
Protége, which makes creating rules quite troublesome. On top of that, the majority of
possible rules can be implemented via graphic entities editor which offers cardinality
operators min, max, exactly, only, some, also conjunction operator and, disjunction

operator or.

Active Ontology x| Entities % Individuals by class % DL Query * SWRLTab x Debugger x

Name Rule
v 51 Coursel?cl * PermanentStaff(?n) A isTauahtBv(?c. 7o) » isTauahtInLana(?c. ?) -> speaksLanauage(?p. ?I)
v 52 Student(?x) » speakslanauaae(?x. ?lanal * isEnrolledIn(?x 7c) ~ hasStudVMa:terialsl'?c. 7m) -> isMadelnLanguage(?m. ?lana)

ationg d X plleciing <X d gvivigteria ato lacl ahaulad J

Control | Rules Asserted Axioms Inferred Axioms OWL 2 RL

Using the Drools rule engine.

Press the '"OWL+SWRL->Drools' button to transfer SWRL rules and relevant OWL knowledge to the rule engine.
Press the ‘Run Drools’ button to run the rule engine.
Press the 'Drools->0WL' button to transfer the inferred rule engine knowledge to OWL knowledge.

The SWRLAPI supports an OWL profile called OWL 2 RL and uses an OWL 2 RL-based reasoner to perform reasoning.
See the 'OWL 2 RL' sub-tab for more information on this reasoner.Successful execution of rule engine.

Number of inferred axioms: 538

The process took 682 millisecond(s).

Image 14 — SWRL rules editor tab in Protégé 5.5

15

Conclusion
To sum up, this ontology could be published online with some minor changes. However,

it took more than one week to come up with the class hierarchy for the given domain.
Furthermore, | have encountered numerous difficulties while working with object and
data properties. In order to make the ontology consistent | was exploring Stanford
University’s “pizza ontology” that can be downloaded straight to Protégé and is a great

example of complex ontology.

Individuals by class * DL Query * SWRLTab x Debugger x
TIE®E | Acquired Test Cases: EIIE®E | Input Ontology:

(5] Entailed Test Cases Possibly Faulty Axioms 1-100 of 241 axioms

y and coherency of the ontology MNon-Entailed Test Cases

' ' N Case sensitive | Whole words [Ignore white space " Re

ndior incoherent , queries in the form of axioms Class axioms | ™Object properties . ™Data properties
Exam EquivalentTo {FinalExam , Mid-termExam}
FormOfSelfStudy EquivalentTo {Project}
PermanentStaff EquivalentTo AssistantProfessor or AssociateProf
Person EquivalentTo Student or TeachingStaff

Person EquivalentTo L min 1L

Coherent (& Consistent) Ontology! =
\ rse

_ (;;1 The ontology "untitled-ontology-5 (http://www.semanticweb.org/tania/ontologies/2019/0/untitled-ontology-5)" is coherent and consistent.

Course’ ,
se’}
OK
Non-Entailed Test Cases ¥ Course SubClassOf EducationFER

Course SubClassOf (hasEnrolled min 1 Student) and (hasEnrolled
Course SubClassOf (hasStudyMaterials min 1 Literature) and (hal

Pracantatinn)

Correct Axioms (Background) 0a

Image 15 — Debugging the ontology

Additionally, it may take time just to find proper documentation for designing ontology
(aside from programmers forums such as StackOverflow or official Stanford University
guide which is not adapted for the latest version of Protége), which means that sadly it is

still not popular enough among IT specialists.

16

Literature
1. http://www-ksl.stanford.edu/kst/what-is-an-ontology.htmi
2. https://en.wikipedia.org/wiki/Conceptualization_(information_science)
3. https://www.w3.org/RDF/Metalog/docs/sw-easy
4. https://www.w3.0rg/2001/sw/
5. Sergey Gorshkov — «Introduction to ontology modelling», 2016.

17

http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
https://en.wikipedia.org/wiki/Conceptualization_(information_science)
https://www.w3.org/RDF/Metalog/docs/sw-easy
https://www.w3.org/2001/sw/

