
UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

EXPERT SYSTEMS

DESIGNING ONTOLOGY WITH SWRL RULES

IN PROTÉGÉ

Tetiana Buzykina

Zagreb, January 2019

2

Table of Contents

Introduction .. 3

Theoretical Part .. 4

Practical Part .. 6

Building the ontology in Protégé 5.5 .. 6

Reasoning .. 11

SWRL rules ... 15

Conclusion .. 16

Literature .. 17

3

Introduction

The main reason for my choice of the project topic is that despite the fact that ontologies

have potential of further integration in various fields of Information Technologies and

Artificial Intelligence in particular, their development still remains the topic of

discussions in very narrow circles of IT specialists, so this is my contribution to

popularizing ontologies. Beside of that, I already have some experience working with

them during course “Knowledge management and ontology engineering” at Faculty of

Information Technology at Taras Shevchenko National University of Kyiv.

Since the main purpose of creating ontology is to explain the connections between all the

entities in a certain domain or even general knowledge, their scale may vary from

primitive hierarchy with only 2-3 classes up to hundreds of thousands of entities. The

domain of the built ontology is the course system at the Faculty of Electrical Engineering

and Computing (FER) in particular, however I would assume that this may also be

applicable to other faculties at University of Zagreb and to course structures at

universities in other European countries in general with some minor changes in class

relations.

4

Theoretical Part

In order to fully comprehend the place and importance of ontologies in IT, one should get

to know about the Semantic Web.

In short, the Semantic Web provides a common framework that allows data to be shared

and reused across application, enterprise, and community boundaries. It is a collaborative

effort led by W3C with participation from a large number of researchers and industrial

partners[1]. It is based on the Resource Description Framework (RDF), which is widely

used for ontologies development.

Ontology as a component of Semantic WEB structure:

Image 1 – Semantic Web structure[2]

What is ontology?

“…I use the term ontology to mean a specification of a conceptualization. That is, an

ontology is a description (like a formal specification of a program) of the concepts and

relationships that can exist for an agent or a community of agents. This definition is

consistent with the usage of ontology as set-of-concept-definitions, but more general.

And it is certainly a different sense of the word than its use in philosophy”, - Tom

Gruber, 1992 [3]
.

https://www.google.com.ua/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiiobPB3-7fAhVGEVAKHWPlCXgQjRx6BAgBEAU&url=https://www.w3.org/RDF/Metalog/docs/sw-easy&psig=AOvVaw1hdNsWdjK_f7oR4Mmd6_WH&ust=1547605933254385

5

Conceptualization means an abstract simplified view of some selected part of the world,

containing the objects, concepts, and other entities that are presumed of interest for some

particular purpose and the relationships between them [4].

Simply designing ontology model includes the following stages:

- Decomposition (distinguishing the entities in the model)

- Identification (Creating individual entities)

- Classification (creating classes matching groups of entities, including the entities

into the classes)

- Properties description (defining ways to express the information about

characteristics and relations between entities)

- Values, connections (assigning values to entities, creating connections)[5].

However, besides ontology model itself one should also take into consideration its

implementation in chosen environment and also reasoning in order to be certain that there

is no contradiction in ontology.

6

Practical Part

Building the ontology in Protégé 5.5

Designing the ontology model suggests that one has sufficient knowledge about the

domain, hence the designer should do the research beforehand. My main source was

UNIZG students network “Intranet”, where all the important information about the

courses and the teaching staff can be easily found.

Image 2 – students network “Intranet”

The next stage is to build the one in the preferred environment. I have chosen Protégé

(software developed by Stanford University) because it has relatively easy and user-

friendly interface and offers variety of tools implemented, such as more than 3 different

reasoners, SWRLQuery and SWRL rules editor, SPARQL editor etc.

7

Image 3 – classes hierarchy

As it is shown on the image above, according to my ontology there are three main

disjoint classes: “Person”, “Education FER” and “General Instances”, this means that a

certain instance cannot belong to more than 1 of these classes at the same time. In terms

of the ontology people involved in educational process can be either students or teaching

staff. Since the ontology is created for Croatian university, I have assumed that students

can be either from Croatia and speak only Croatian or both Croatian and English

languages (that is represented by min 1 cardinality for object property

“speaksLanguage”) or International (such as Erasmus students) and speak English

language respectively. In order to avoid extra dependencies in the class hierarchy, I have

put aside any language other than English and Croatian since I know that there are no

courses taught in more than these two languages. Teaching staff can be either permanent

or external. It is pretty obvious that a course should be necessarily taught by minimum 1

professor from permanent teaching staff.

8

Class “General Instances” contain entities that cannot be changed and neither depend nor

interact with classes from “Person” or “Education FER”. In the given ontology it has a

subclass called “Language” since language can only be used but does not interact with

any other class actively.

Class “Education FER” is the biggest and the most important one since it describes the

course structure – the main point of this ontology.

Image 4 – object properties for interaction between the classes

Now let us look at the usage of the properties above. Since we know that each course has

a certain number of students enrolled, is taught by minimum 1 professor from permanent

teaching staff and is of certain type such as “Bridge course”, “Skills Course” and etc. we

can describe the mentioned dependencies using given object properties.

9

Image 5 – “Course” relations with other classes from the ontology described with object properties

10

Image 6 – description of class “Literature”

Image 7 – example of inverse object property “isEnrolledIn”

11

In fact, the intersection of all the ranges above will result the class “Course” and since in

this ontology isEnrolledIn used only for “Student” domain class, the end triplet will be

“Student” “isEnrolledIn” min 1 “Course”.

Reasoning

In order to check if ontology is built correctly (which means that at least classes, their

instances, object and data properties do not contradict each other), we are able to use

Reasoner. Protégé 5.5 offers an impressive variety of reasoners such as ELK, FaCT++,

HermiT, Ontop, Pellet and more. The default reasoner is HermiT, but I have tried others

as well.

I believe that the main advantage of using reasoner is that you are able to track down all

the imperfections of the built ontology in tab “Class Hierarchy” – “Inferred”.

Image 8 – Asserted Class hierarchy

12

Image 9 – Inferred class hierarchy, reasoner logical conclusions

If an instance generates contradictions in ontology it is printed with red color.

Additionally, with reasoner turned on we are able to see “hidden” object properties that

occur as the result of certain dependencies between classes or rules (for example SWRL

rules). Thus, on Images 10 – 13 we are able to see that HermiT reasoner has assigned 2

implicit object properties “hasEnrolled” and “isTaughtBy” to the individual of class

“Course” since they are inverse to “isEnrolledIn” and “teaches” object properties

respectively. Additionally, despite the absence of any compiler for SWRL editor, the

reasoner also checks if the ontology complies with SWRL rules and if so, also adds

object properties and ontology axioms.

13

Image 10 – object properties for the individual of class “International Student”

Image 11 – object properties for the individual of class “Assistant Professor”

14

Image 12 – object properties for the individual of class “Course”, HermiT reasoner turned off

Image 13 – object properties for the individual of class “Course”, HermiT reasoner turned on

15

SWRL rules

The rules help set certain restrictions or make logical conclusions and computations in

ontologies. However, one of the biggest disadvantages is that modern edition of SWRL

does not have disjunction operator. Additionally, due to specificity of the chosen domain

there is no such opportunity to perform calculations. Furthermore, the SWRL editor in

Protégé 5.5 does not have user-friendly graphic interface from the previous versions of

Protégé, which makes creating rules quite troublesome. On top of that, the majority of

possible rules can be implemented via graphic entities editor which offers cardinality

operators min, max, exactly, only, some, also conjunction operator and, disjunction

operator or.

Image 14 – SWRL rules editor tab in Protégé 5.5

16

Conclusion

To sum up, this ontology could be published online with some minor changes. However,

it took more than one week to come up with the class hierarchy for the given domain.

Furthermore, I have encountered numerous difficulties while working with object and

data properties. In order to make the ontology consistent I was exploring Stanford

University’s “pizza ontology” that can be downloaded straight to Protégé and is a great

example of complex ontology.

Image 15 – Debugging the ontology

Additionally, it may take time just to find proper documentation for designing ontology

(aside from programmers forums such as StackOverflow or official Stanford University

guide which is not adapted for the latest version of Protégé), which means that sadly it is

still not popular enough among IT specialists.

17

Literature

1. http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

2. https://en.wikipedia.org/wiki/Conceptualization_(information_science)

3. https://www.w3.org/RDF/Metalog/docs/sw-easy

4. https://www.w3.org/2001/sw/

5. Sergey Gorshkov – «Introduction to ontology modelling», 2016.

http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
https://en.wikipedia.org/wiki/Conceptualization_(information_science)
https://www.w3.org/RDF/Metalog/docs/sw-easy
https://www.w3.org/2001/sw/

