
Dealings with Problem Hardness in Genetic Algorithms

STJEPAN PICEK
Ring Datacom d.o.o.

Trg J. J. Strossmayera 5, 10000 Zagreb
CROATIA

stjepan@ring.hr

MARIN GOLUB
Faculty of Electrical Engineering and Computing

Unska 3, 10000 Zagreb
CROATIA

marin.golub@fer.hr

Abstract: Genetic algorithms (GA) have been successfully applied to various problems, both artificial as well as
real-world problems. When working with GAs it is important to know those those kinds of situations when they
will not find the optimal solution. In other words, to recognize problems that are difficult for a GA to solve. There
are various reasons why GAs will not converge to optimal solutions. By combining one or more of these reasons
a problem can become a GA-hard problem. Today, there are numerous methods for solving GA-hard problems;
every measure has its specific advantages and drawbacks. In this work the effectiveness of one of these measures
is evaluated, namely the Negative Slope Coefficient (NSC) measure. A different measure is proposed, called the
New Negative Slope Coefficient (NNSC) measure, which aims to address certain drawbacks of the original method.
Possible guidelines for further development of this, and comparable methods are proposed.

Key–Words: Genetic Algorithm, Unitation, Fitness Landscape, Negative Slope Coefficient, Hardness, Difficulty,
Deception

1 Introduction

Genetic algorithms (GA) are successfully applied to
a variety of problems, which include scheduling prob-
lems [4], control optimization [23] and forecasting ap-
plications [11]. Besides these successes, they have
also demonstrated poor results. Considering the wide-
spread use of genetic algorithms it is necessary to
know in which cases they will be successful, and in
which they will not find an optimal solution. In other
words, to find out which problems are difficult for
them to solve. Based on the works of Bethke (1980)
and Goldberg (1987), the term ’deception’ has been
introduced in order to understand the situations when
a GA might fail. These deceptive functions create a
problem for the genetic algorithm when performing
optimization tasks. Currently a number of reasons are
known that address the problems that are difficult for
a GA to solve. One important concept is the Fitness
Landscape. The Fitness Landscape presents a power-
ful metaphor for global optimization. It presents a vi-
sualization of the link between the genotype or pheno-
type in the given population and their respective prob-
ability of reproduction.

It is impossible to define a practical fitness land-
scape because the solution space is simply too large.
Instead researchers have been looking for ways of
defining interesting characteristics of a fitness land-
scape. Among others, a measure of the ruggedness
of a fitness landscape is worth mentioning, as is re-

flected in the work of Weinberger, Jones and Forrest,
and Vanneschi. Weinberger introduced the autocor-
relation function and the correlation length for ran-
dom walks. Jones and Forrest proposed the fitness
distance correlation (FDC) - the correlation of the fit-
ness of an individual and its distance from the global
optimum. FDC presents a very reliable measure of
problematic difficulty for a GA. However, it has sev-
eral shortcomings. Among others, it is important to
know the optimal solution upfront. Vanneschi et al.
first introduced the Negative Slope Coefficient mea-
sure (NSC measure), which could be considered as
an extension of Altenberg’s evolvability measure [28].
Vanneschi also introduced the Fitness-Proportionate
Negative Slope Coefficient measure as a supplement
to his NSC method. An advantage of these methods
is that they are predictive, that is, it is not necessary to
know an optimal solution prior to an experiment itself
[27].

In section 2, the basic concepts about deception
and problem hardness in GAs are defined, in sec-
tion 3 the necessary background information is pre-
sented that is needed to understand this work, sec-
tion 4 defines the parameters used in the experiments,
the performance measure for the comparison, experi-
ments conducted on unitation functions and the results
achieved for the NSC measure; section 5 repeats the
experiments, but this time for the New NSC measure,
and finally, section 6 draws a conclusion and future
recommendations.

WSEAS TRANSACTIONS on COMPUTERS Stjepan Picek, Marin Golub

ISSN: 1109-2750 747 Issue 5, Volume 8, May 2009



2 Deceptivity and Problem Hardness
2.1 Deception and Deceptivity
To be able to understand concept of deception, some
definitions about genetic algorithms in general are
needed. Whitley stated

A primary hyperplane competition of
order-N involves the complete set of pri-
mary competitors, where the primary com-
petitors in a hyperplane competition of
order-N are set of 2N hyperplanes having
schemata with N bit values in the same lo-
cations [29].

Besides this,

Deception implies that the global win-
ner of some hyperplane competition of
order-N has a bit pattern that is different
from the bit pattern of the ”‘global winner”’
for some ”‘relevant”’ lower order competi-
tion [29].

Deceptive functions are a family of fitness land-
scapes developed to challenge the building block hy-
pothesis. The building block hypothesis is a direct re-
sult of schema theorem and it states that GAs work by
combining low-order building blocks to form higher-
order ones. Deceptive functions are an example of
functions where lower-order building blocks do not
form higher-order building blocks [16][30]. The term
of deceptivity is quite general because most of the
problems have some degree of deception. Therefore,
it is important to try to distinguish possible decep-
tive situations. A deceptive problem is any problem
of order-N that involves deception in one or more
relevant lower order hyperplane competitions. The
problem is fully deceptive when all the relevant lower
order hyperplane competitions lead toward a decep-
tive attractor. It can be shown that for a fully decep-
tive problem, the deceptive attractor is the comple-
ment of a ”‘global winner”’ of the hyperplane com-
petition at order-N. A consistently deceptive problem
of order-N occurs when none of relevant hyperplane
competitions lead to ”‘global winner”’ but all of the
relevant hyperplane competitions do not necessarily
lead toward the deceptive attractor (except in order-1
hyperplane competition). Deceptive functions there-
fore represent consistently deceptive problems where
the number of bits used to encode the solution space
match the order of deception. A problem is partially
deceptive in some order-k if and only if all hyper-
planes competition of order-(k-1) are deceptive [29].
It is not always easy to see the connection between
deceptiveness and problem hardness because there are

nondeceptive problems that are hard for a GA to solve.
On the other side, there are deceptive problems that
are easy for GA to solve. However, some deceptive
problems are known to be consistently difficult for GA
to solve. When deception is coupled with some other
problem (like epistasis or bad linkage) then the overall
problem will be hard for a GA to solve.

2.2 GA-Hard Problems and Complexity
When trying to define GA-hard problem, an obvious
definition could be that those are the problems that
have the ability to seriously mislead the GA search.
Yet, a more strict definition of a GA-hard problem has
never been formally defined. Reasons are, amongst
others, that most of the researchers tend to find prob-
lem characteristics that cause a GA to fail to converge,
but few attempt to consistently distinguish between a
problem and a problem instance [22]. Using the tech-
niques from complexity theory it is possible to define
a GA-hard problem more formally [21][22]. First, a
definition of a PO and NPO complexity classes will
be given.

Definition 1 The class PO is the class of optimization
problems that can be solved in polynomial time with a
Deterministic Turing Machine (DTM) [21].

Definition 2 The class NPO is the class of optimiza-
tion problems that can be solved in polynomial time
with a nondeterministic Turing Machine (NTM) [21].

For a given complexity class, the formal way to define
the hard problem is to show that every problem in the
class reduces to the hard problem. In other words, a
reduction R is a mapping from problem A onto prob-
lem B in such a way that one can optimize any prob-
lem instance x of A by optimizing B(R(x)). Before
giving the definition of a GA-hard problem it is nec-
essary to describe a method for evaluating a problem
for GA. The goal for a representation is to minimize
the number of bits in a chromosome that still uniquely
identifies a solution to the problem.

Definition 3 For a problem P, and Dn the set of in-
stances of P of size n, let MCL(P,n) be the least l for
which there is an encoding e:S1→ Dn with a domain
dependant evaluation function g, where g and e are in
FP (the class of functions computable in polynomial
time) [21].

A more formal definition of a GA-hard problem is:

Definition 4 A problem H is hard for class C if, for
any problem A ∈ C, and any instance x of A, optimiz-
ing R(A(x)) optimizes x [21].

WSEAS TRANSACTIONS on COMPUTERS Stjepan Picek, Marin Golub

ISSN: 1109-2750 748 Issue 5, Volume 8, May 2009



For those problems that do not fit the classical defi-
nition of hardness and yet are inherently less efficient
than if solved using a method other than a GA a defi-
nition of a GA-semi-hard problem could be given.

Definition 5 An optimization problem P is called
Semi-hard if there is a DTM M that solves it in poly-
nomial time and MCL(P,n) ∈ O(n) [21].

3 Background
This section addresses the information necessary for a
complete understanding of the article. Here the terms,
Fitness Landscape, Fitness Clouds, Unitation Func-
tions that are used in the work, Metropolis-Hastings
Sampling and the Negative Slope Coefficient mea-
sure, are explained.

3.1 Fitness Landscape
The fitness landscape can be defined as a search space
(S), a metric and scalar fitness function defined on the
elements of S. If it assumed that the goal is to max-
imize fitness, then the best global solutions are the
’peaks’ in the search space. The local optima can also
be defined as follows: assume a non-negative-real val-
ued, scalar fitness function f(s) over a binary string s
of the length l, where

f(s)ε< ≥ 0 . (1)

Suppose that, generally speaking, ’f’ has to be
maximized. The local optimum in the discrete S
search space is a point or an area, whose fitness func-
tion value is larger than all of its closest neighbours.
A region is considered to be a neutral network if the
linked points all have the same fitness. In other words,
a set of points in proximity of the nearest-neighbour
points of equal fitness are considered as a single opti-
mum. For a move operator in search space, bit muta-
tion is used. The ’nearest neighbour’ is a measure that
shows the distance between points s1 and s2, where
s1 and s2 represent two binary strings. The Hamming
distance has used to determine the distance (i.e. the
number of bit positions in which two binary strings
differ) [8].

3.2 Fitness Clouds
Let γ = (γ1, γ2, ..., γn) represent the entire search
space of a GA problem and V (γ) be a set of all the
neighbours of the γεΓ individual, which is obtained
by the application of a standard bit-flip mutation. The
choice of neighbors is a result of a tournament selec-
tion method with k=10 being the selection parameter.
An individual with the highest fitness value is picked

up as a neighbor. The following set of points at the
bi-dimensional plane is defined:

P = {(f (γ) , f (ν)) ,∀γεΓ,∀νεV (γ)} . (2)

The P diagram is a scatterplot fitness of the values
of all the individuals that belong to the search space
versus their neighbors’ fitness. A fitness cloud im-
plicitly gives an insight into a genotype against the
phenotype mapping [26].

Metropolis-Hastings Sampling Generally, the
search space is too big in order to consider all the
individuals. Therefore samples are taken, and since
all the points are not equally important, that space
is sampled by using a distribution that puts more
weight on individuals with a higher fitness value. In
order to achieve this, Metropolis-Hastings sampling
is used, which is an extension of the Metropolis sam-
pling towards non-symmetric stationary probability
distributions [26].

3.3 Negative Slope Coefficient
The Negative Slope Coefficient is an algebraic mea-
sure for difficulty of the problem. It can be calculated
in the following way: the fitness cloud C is divided
into a certain number of segments C1, ..., Cm which
are such that

(
fa, f

′
a

)
εCj and

(
fb, f

′
b

)
εCk, where j ¡

k implies that fa < fb. An average fitness is calcu-
lated as:

fi =
1
Ci

∑
(f,f ′)εCi

f . (3)

and

f
′
i =

1
Ci

∑
(f,f ′)εCi

f
′
. (4)

The points
(
fi, f

′
i

)
can be viewed as polyline peaks,

which successfully represent a ’skeleton’ of the fitness
cloud. For each of these segments a slope can be de-
fined,

Si =
(
f

′
i+1 − f

′
i

)
/ (fi+1 − fi) . (5)

With this, an NSC is defined as:

nsc =
m−1∑
i=1

min (0, Si) . (6)

If NSC = 0 then the problem is easy, and if the
NSC < 0 then the problem is difficult and the NSC
value shows to which extent it is difficult [19].

WSEAS TRANSACTIONS on COMPUTERS Stjepan Picek, Marin Golub

ISSN: 1109-2750 749 Issue 5, Volume 8, May 2009



3.4 Unitation and Functions of Unitation
The Onemax, Onemix and Trap unitation functions
are used [12] [20].

Definition 6 Let s be a bit string of the length l. The
unitation u (s) of s is a function defined as:

u (s) = u (si...sl) = s1 + ...+ sn =
l∑

i=1

si . (7)

In other words, unitation represents the number of
units in the bit string.

3.4.1 Onemax Function.

Onemax functions are generalizations of the unitation
u(s), of a bit string s:

f (s) = du (s) . (8)

where d in a general case is 1.

3.4.2 Trap Function.

Deb and Goldberg have defined the trap function as
follows:

f (s) =

{
a
z (z − u (s)) if u (s) ≤ z
b
l−z (u (s)− z) otherwise .

(9)

Where ’a’ represents a local optimum, ’b’ is a
global optimum and ’z’ is a slope-change location.
The trap function is completely deceptive if the fol-
lowing relationship is valid:

a

b
= r ≥

2− 1
l−z

2− 1
z

. (10)

This function is fully deceptive because a lo-
cal optimum has an attractive basin that covers more
space, and an isolated single spike representing global
optimum which is the complement of the local opti-
mum. Figure 1 shows a completely deceptive prob-
lem.

3.4.3 Onemix Function.

This function is a mixture of the Onemax problem and
a Zeromax problem. Like these functions, it is a func-
tion of unitation u, which represents a number of 1’s
in a string. The new function becomes an Onemax
function when the unitation values are higher than l/2.
If the unitation values are lower, it becomes Onemax

Figure 1: An example of Trap function.

when u is odd; otherwise it is a scaled version of Ze-
romax. Onemix is formally defined as:

f (s) =

{
(1 + a)

(
l
2 − u (s)

)
+ l

2 if g (s)
u (s) otherwise .

(11)
where g(s) is equal to 1 when u(s) is even and

u(s)<1/2. Value ’a’ represents a constant that is higher
than 0 [20].

Figure 2 shows partialy deceptive problem.

Figure 2: An example of Onemix function.

4 Experiments on Negative Slope
Coefficient measure

Binary strings of length l = 10 were used in the exper-
iments, by Metropolis-Hastings sampling of 100 in-
dividuals that constituted the first generation. These
were selected and a standard bit-flip mutation was
used with a p m mutation coefficient for obtaining
neighbors. For each individual, 10 neighbors were
generated by the mutation operator and the one with
the highest value of fitness was picked.

WSEAS TRANSACTIONS on COMPUTERS Stjepan Picek, Marin Golub

ISSN: 1109-2750 750 Issue 5, Volume 8, May 2009



In the Onemax function example, all the exper-
iments prove that the NSC work properly, which in-
dicates that the Onemax is an easy problem to solve
for a GA. This is in accordance with the performance
measure. Values used for performance measure are
displayed in the table below [19]. The performance
measure indicates the fraction of runs in which the
global optimum was found by generation 100.

Table 1: Performance Measure for Test Functions.

Onemax Trap Onemix
l=10, p m=0.1 1 0.4 1

l=10, p m=0.01 1 0.11 0.65
l=10, p m=0.001 1 0.1 0.1
l=100, p m=0.1 1 0 0
l=100, p m=0.1 1 0 0
l=100, p m=0.1 1 0 0

In order to present shortcomings of the NSC as
a problem difficulty measure, a number of experi-
ments with different parameters for the Trap Function
were conducted. The following parameters for the
Trap function were used; local optimum ’a’ equals 10,
global optimum ’b’ equals 11 and slope-change loca-
tion ’k’ equals 9. The parameter predefined (marked
predef. in the table) value set at yes marks that in this
starting population each possible fitness value appears
at least once. The parameters are similar to previous
research [27], wherever this is possible. The division
into segments in the first 4 experiments is made by set-
ting the segment width to the constant value d, where
d = 1, and in the other 5 experiments size driven bi-
section is used where 10 is the minimal number of
points that may belong to a segment and 10% presents
the minimal difference between the leftmost and the
rightmost points contained in a segment. All results
in tables represents the lowest values of NSC we cal-
culated. Mean value is in more than half of experi-
ments of value 0. The experiments show that the NSC
is a good measure for the Trap function only when
the mutation coefficient is relatively high, which can
be seen in experiments 3, 4 and 5. Also, NSC ap-
pears to depend on members of first population (as
displayed in experiment 3, table 3.). For the Onemix
function, the NSC correctly presumes that the prob-
lem is difficult, but it incorrectly demonstrates that the
Onemix problem is more difficult than the Trap prob-
lem, which does not correspond to the results achieved
by the performance measure. The results obtained in
the experiments are presented in tables below.

Table 2: NSC experimental results for Onemax func-
tion.

onemax function pop size p m NSC
experiment 1 11 0.05 0
experiment 2 11 0.10 0
experiment 3 100 0.05 0
experiment 4 100 0.10 0

Table 3: NSC experimental for Trap function results
for small population size and predefined individual
values.

trap function pop size p m predef. NSC
experiment 1 11 0.05 yes 0
experiment 2 11 0.05 no 0
experiment 3 100 0.10 yes -2
experiment 4 100 0.10 no 0

Table 4: NSC experimental results for Trap function.

trap function pop size p m NSC
experiment 1 100 0.05 0
experiment 2 100 0.10 0
experiment 3 100 0.20 -0.79
experiment 4 100 0.30 -1.29
experiment 5 100 0.40 -0.025

Table 5: NSC experimental results for Onemix func-
tion.

onemix function pop size p m NSC
experiment 1 11 0.05 0
experiment 2 11 0.10 -2
experiment 3 100 0.05 -4.335
experiment 4 100 0.10 -3.667
experiment 5 100 0.20 -0.596
experiment 6 100 0.30 -0.079
experiment 7 100 0.40 0

WSEAS TRANSACTIONS on COMPUTERS Stjepan Picek, Marin Golub

ISSN: 1109-2750 751 Issue 5, Volume 8, May 2009



5 The New Negative Slope Coeffi-
cient Measure

In order to demonstrate whether a function is diffi-
cult for a GA or not, we propose a modification of
the Negative Slope Coefficient, which is called new
NSC. This measure is based on the relation between
the number of units with value 1 on the x-line of the
diagram and the fitness value for the individuals at the
y-line of the diagram.

The experiments are based on the assumption that
the maximum fitness value should be obtained. If
there are no changes in the direction of the line and
if the slope coefficient is positive, then the problem
is easy: however if the slope coefficient is negative,
then the problem is difficult. If there are changes to
the slope segments of the line, then we calculate the
slope for each of these segments. Each segment of the
line S1,...,Sm is defined minimally by two points with
V1(x1, y1) and V2(x2, y2) coordinates. Then the slope
of each segment Si is defined by the formula:

a =
y2 − y1

x2 − x1
. (12)

Values x1 and x2 represent two neighbor values
of unitation and values y1 and y2 two values of fitness
or fitness offspring.

The total slope for the fitness cloud with the num-
ber of units at the x-line and the individual fitness on
the y-line is:

If =
m∑
i=1

ai . (13)

and for the fitness cloud with the number of units
at the x-line and the neighbor fitness at the y-line:

I
′
f =

m∑
i=1

ai . (14)

A neighbor is chosen in the same way as in NSC
measure where it represents an offspring with the
maximum fitness value within 10 iterations. Finally,
the new NSC amounts:

nsc =

∣∣∣∣∣IfI ′
f

∣∣∣∣∣ . (15)

The higher the result, the harder the problem is
for a GA to solve. The pseudo-code for the new NSC
measure is:

function get_new_nsc (array_unitation)
{
f[]= compute(array_unitation);
fo[]= compute(array_unitation);

i1= segments(array_unitation,f[]);
i2= segments(array_unitation,fo[]);
new_nsc=abs(i1/i2);
}
function segments(x,y)
{
foreach value of x,y
{
array_x=slope change value(x);
array_y=slope change value(y);
}
for i=2 to upper_bound(x)
{
y=array_y(i)-array_y(i-1);
x=array_x(i)-array_x(i-1);
sum=sum + y/x;
}
return sum;
}

Now the same experiments for the new NSC mea-
sures are repeated. When the new measure can not
be calculated exactly, then words ’easy’ and ’difficult’
represent an indication of the problem hardness. The
tables and figures below represent the obtained results.

Table 6: Experimental results for the new NSC mea-
sure for Onemax function.

onemax function pop size p m new NSC
experiment 1 100 0.05 easy
experiment 2 100 0.10 easy
experiment 3 100 0.20 easy
experiment 4 100 0.30 easy

The figures that represent experiments on One-
max problems demonstrate that after mutation, the
search space of possible solutions has become smaller,
e.g. more individuals are closer to the global opti-
mum.

Table 7: Experimental results for the new NSC mea-
sure for Trap function.

trap function pop size p m new NSC
experiment 1 100 0.05 difficult
experiment 2 100 0.10 5.55
experiment 3 100 0.20 5.45
experiment 4 100 0.30 2.26

WSEAS TRANSACTIONS on COMPUTERS Stjepan Picek, Marin Golub

ISSN: 1109-2750 752 Issue 5, Volume 8, May 2009



Figure 3: (a) graph unitation/fitness for Onemax function experiment 1, (b) graph unitation/fitness neighbour for
Onemax function experiment 2.

Figure 4: (a) graph unitation/fitness for Trap function experiment 2, (b) graph unitation/fitness neighbour for
Trap function experiment 2, (c) graph unitation/fitness for Trap function experiment 4, (d) graph unitation/fitness
neighbour for Trap function experiment 4.

WSEAS TRANSACTIONS on COMPUTERS Stjepan Picek, Marin Golub

ISSN: 1109-2750 753 Issue 5, Volume 8, May 2009



Figure 5: (a) graph unitation/fitness for Onemix function experiment 1, (b) graph unitation/fitness neighbour for
Onemix function experiment 1, (c) graph unitation/fitness for Onemix function experiment 2, (d) graph unita-
tion/fitness neighbour for Onemix function experiment 2.

Table 8: Experimental results for the new NSC mea-
sure for Onemix function.

onemix function pop size p m new NSC
experiment 1 100 0.05 1.81
experiment 2 100 0.10 2.80
experiment 3 100 0.20 2.39
experiment 4 100 0.30 1.73

6 Conclusions and Future Work

Experiments on the original NSC have shown that it is
a reliable difficulty measure only with relatively high
mutation factors and that it is dependent on individu-
als of the first generation. Also, there is currently no
formal underpinning for size driven bisection, so its
parameters can only be selected in an arbitrary way.
Experiments on the new NSC have shown that it also
depends on individuals in first generation and on mu-
tation rate. The new measure is, in the worst case,
a reliable indicator of problem difficulty and at best
a rather precise measure of problem hardness (diffi-
cult or easy). Another advantage of the new NSC is

that there is no need to separate the points in seg-
ments via arbitrary segment size, size driven bisec-
tion or in any other way. The new NSC has some
interesting features, but like the original NSC it will
always be dependent of mutation rates and individu-
als of the first generation. Interesting results may be
obtained by combining these two measures. Further
experiments, on larger number of problem functions
should be conducted in order to decide conclusively if
it is possible to precisely calculate the difficulty of a
problem. The first step must be to find completely re-
liable indicators of problem difficulty on larger num-
ber of different functions. It may also prove worth-
while to consider the problem difficulty from the level
of bandit problems and other, more abstract levels of
optimization. Deceptiveness seems to depict a rela-
tionship between optimization and problem instance,
which may be more general than GAs alone.

References:

[1] Y. Borenstein, R. Poli: Information Landscapes
and Problem Hardness. Genetic And Evolution-
ary Computation Conference, Proceedings of the
2005 conference on Genetic and evolutionary

WSEAS TRANSACTIONS on COMPUTERS Stjepan Picek, Marin Golub

ISSN: 1109-2750 754 Issue 5, Volume 8, May 2009



computation, Washington DC, 2005, pp. 1425–
1431

[2] K. Deb, D. E. Goldberg: Analyzing deception
in trap functions. In: D. Whitley, (ed) Founda-
tions of Genetic Algorithms 2, Morgan Kauf-
mann, San Franscisco, 1993, pp. 93-108

[3] S. Forrest, M. Mitchell: What makes a problem
hard for a genetic algorithm? some anomalous
results and their explanation. Machine Learning,
vol. 13, Springer, 1993, pp. 285–319

[4] T. Frankola, M. Golub, D. Jakobovi: Evolu-
tionary Algorithms for the Resource Constrained
Scheduling Problem, Proceedings of the 30th In-
ternational Conference on Information Technol-
ogy Interfaces, ITI 2008, Cavtat, Croatia, 2008,
pp. 715–722.

[5] M. Golub: Genetski algoritam: dio I, in Croat-
ian. Faculty of Electrical Engineering and Com-
puting, University of Zagreb, 2004

[6] R. L. Haupt, S. E. Haupt: Practical Genetic Al-
gorithms. John Wiley & Sons, 2004

[7] J. Horn, D. E. Goldberg: Genetic Algorithm Dif-
ficulty and the Modality of Fitness Landscapes.
In: L. D. Whitley, and M. D. Vose, (eds), Pro-
ceedings of the Third Workshop on Foundations
of Genetic Algorithms, Morgan Kaufmann, San
Francisco, California, 1995, pp. 243–270

[8] T. Jones: Evolutionary algorithms, Fitness
Landscapes and Search. Ph. D. thesis, The Uni-
versity of New Mexico, Albuquerque, New
Mexico, 1995

[9] T. Jones, S. Forrest: Fitness distance correlation
as a measure of problem difficulty for genetic al-
gorithms. In: L. J. Eshelman, (ed) Proceedings
of the Sixth International Conference on Genetic
Algorithms, Morgan Kaufmann, San Franscisco,
1995, pp. 184–192

[10] M. Madras: Lectures on Monte Carlo Methods.
American Mathematical Society, Providence,
Rhode Island, 2002

[11] P. Makvandi, J. Jassbi, S. Khanmohammadi:
Application of Genetic Algorithm and Neural
Network in Forecasting with Good Data. Pro-
ceedings of the 6th WSEAS Int. Conf. on Neural
Networks, Lisbon, Portugal, 2005, pp. 56–61

[12] O. J. Mengshoel, D. E. Goldberg, D. C. Wilkins:
Deceptive and Other Functions of Unitation as
Bayesian Networks. Symposium on Genetic Al-
gorithms, Madison, Wisconsin, 1998

[13] B. L. Miller, D. E. Goldberg: Genetic Algo-
rithms, Tournament Selection and the Efects of
Noise. Technical Report, University of Illinois at
Urbana-Champaign, 1995

[14] M. Mitchell: An Introduction to Genetic Algo-
rithms. The MIT Press, Cambridge, 1999

[15] M. Mitchell, S. Forrest, J. Holland: The royal
road for genetic algorithms: fitness landscapes
and ga performance. In: F. J. Varela, P. Bourgine
(eds) Toward a Practice of Autonomous Sys-
tems, Proceedings of the First European Con-
ference on Artificial Life, The MIT Press, Cam-
bridge, Massachusetts, 1992, pp. 245–254.

[16] S. Picek: Decepcijski problemi, in Croatian.
Faculty of Electrical Engineering and Comput-
ing, University of Zagreb, 2008

[17] S. Picek, M. Golub: The New Negative Slope
Coefficient Measure, Proceedings of the 10th
WSEAS International Conference on Evolution-
ary Computing, EC’09, 2009, Prag, Czech Re-
public, pp. 96–101

[18] K. P. Pieters: Effective Adaptive Plans. A Hy-
pothetical Search Process. Advances in Systems,
Computing Sciences and Software Engineering,
Proceedings of SCSS05, Springer Netherlands,
2006, pp. 277–282

[19] R. Poli, L. Vanneschi: Fitness-Proportional Neg-
ative Slope Coefficient as a Hardness Measure
for Genetic Algorithms. Genetic And Evolution-
ary Computation Conference, Proceedings of the
9th annual conference on Genetic and evolu-
tionary computation, London, England, 2007,
pp. 1345–1342

[20] R. Poli, A. H. Wright, N. F. McPhee, W.B. Lang-
don: Emergent Behaviour, Population-based
Search and Low-pass Filtering. In: 2006 IEEE
World Congress on Computational Intelligence,
2006 IEEE Congress on Evolutionary Computa-
tion, Vancouver, Canada, 2006, pp. 395–402

[21] B. Rylander, J. Foster: Computational com-
plexity and genetic algorithms. WSEAS Inter-
national Conference on Evolutionary Computa-
tion, Tenerife Playa, Canary Islands, Spain 2001,
pp. 6181–6185

[22] B. Rylander, J. Foster: Genetic Algorithms, and
Hardness. WSEAS International Conference on
Evolutionary Computation, Tenerife Playa, Ca-
nary Islands, Spain 2001, pp. 6431–6436

[23] M. Seyedkazemi: Designing Optimal PID con-
troller with Genetic Algorithm In view of con-
troller location in the plant. Proceedings of the
7th WSEAS International Conference on Signal
Processing, Robotics and Automation, ISPRA
’08, University of Cambridge, 2008, pp. 160–
164

[24] M. Tomassini, L. Vanneschi, P. Collard, M. Cler-
gue: A study of fitness distance correlation as a

WSEAS TRANSACTIONS on COMPUTERS Stjepan Picek, Marin Golub

ISSN: 1109-2750 755 Issue 5, Volume 8, May 2009



difficulty measure in genetic programming. Evo-
lutionary Computation,13 (2), MIT Press, Cam-
bridge, 2005, pp. 213–239

[25] L. Vanneschi: Theory and Practice for Efficient
Genetic Programming. Ph. D. thesis, Faculty of
Science, University of Lausanne, Switzerland,
2004

[26] L. Vanneschi, M. Clergue, P. Collard,
M. Tomassini, S. Vrel: Fitness clouds and
problem hardness in genetic programming. In:
K. D. et al.(ed) Proceedings of the Genetic
and Evolutionary Computation Conference,
GECCO’04, LNCS vol. 3103, Springer, Berlin,
Heidelberg, New York, 2004, pp. 690–701

[27] L. Vanneschi, M. Tomassini, P. Collard, S. Vrel:
Negative slope coefficient. A measure to char-
acterize genetic programming. In: P. Collet,
M. Tomassini, M. Ebner, S. Gustafson, A. Ekrt
(eds) Proceedings of the 9th European Confer-
ence on Genetic Programming, vol. 3905 of Lec-
ture Notes in Computer Science, Springer, Bu-
dapest, Hungary, 2006 pp. 178–189

[28] T. Weise: Global Optimization Algorithms -
Theory and Application, 2008

[29] L. D. Whitley: Fundamental Principles of De-
ception in Genetic Search. In: G. Rawlins,
(ed) Foundations of Genetic Algorithms, Mor-
gan Kaufmann, 1991, pp. 221–241

[30] S. Yang: Adaptive Group Mutation for Tackling
Deception in Genetic Search. Digest of the Pro-
ceedings of the WSEAS Conferences, 2003

WSEAS TRANSACTIONS on COMPUTERS Stjepan Picek, Marin Golub

ISSN: 1109-2750 756 Issue 5, Volume 8, May 2009




