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Abstract: When is a problem easy or difficult for a genetic algorithm? This work focuses on unitation functions
as tests for the efficiency of a genetic algorithm in reaching an optimal solution. We research the effectiveness of
the Negative Slope Coefficient Measure (NSC measure) in finding difficult problems and present flaws of such a
measure. In summary, we present a new measure for defining the hardness of a problem, the new NSC, based on the
Fitness Landscape; experimentally we demonstrate the efficacy of the method and compare it with the performance
measure achieved by real runs. Finally we propose new steps for development of the method.
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1 Introduction

Genetic algorithms (GA) are successfully applied to a
variety of problems. However, they have also shown
disappointing results. Considering the wide-spread
use of genetic algorithms it is necessary to know in
which cases they will be successful, and in which
they will not find an optimal solution, that is, which
problems are difficult for them to solve and which are
not. Based on the works of Bethke (1980), Goldberg
(1987) has introduced the term deception in order to
help understand the situations that will create a prob-
lem to the genetic algorithm when performing opti-
misation tasks. Today there are a number of explana-
tions that describe problems that are difficult for a GA.
One important concept is the Fitness Landscape. The
Fitness Landscape presents a powerful metaphor for
global optimisation. It presents a visualisation of the
link between the genotype or phenotype in the given
population and their respective probability of repro-
duction.

Because it is impossible to define a fitness land-
scape in practice because the solution space is simply
too large, over recent years and in many different ways
researchers have been looking for ways of defining in-
teresting characteristics of a fitness landscape. Among
others, one should certainly mention as a measure of
the ruggedness of a fitness landscape the works of
Weinberger, Jones and Forrest, and Vanneschi. Wein-
berger introduced the autocorrelation function and the
correlation length for random walks. Jones and For-
rest proposed the fitness distance correlation (FDC) -
the correlation of the fitness of an individual and its
distance from the global optimum. FDC presents a

very reliable measure of problematic difficulty for a
GA. However, it has several flaws. Among others,
the need to know the optimal solution upfront is sig-
nificant. Vanneschi et al. first introduced the Nega-
tive Slope Coefficient measure (NSC measure), which
could be considered as an extension of Altenberg’s
evolvability measure [21]. Vanneschi also introduced
the Fitness-Proportionate Negative Slope Coefficient
measure as a supplement to his NSC method. A big
advantage of these methods is that they are predictive,
that is, it is not necessary to know an optimal solution
prior to an experiment itself [20].

In section 2, there is background information nec-
essary for understanding this work, section three de-
fines the parameters used in experiments and sets up
performance measure for the comparison measure-
ment. Section 3 contains experiments conducted on
unitation functions and the results achieved for the
NSC measure; Section 4 repeats the experiments, but
this time for the new measure, and finally Section 5
draws a conclusion and future guidelines.

2 Background
This section addresses the information necessary for a
complete understanding of the article. Here the terms,
Fitness Landscape, Fitness Clouds, Unitation Func-
tions that are used in the work, Metropolis-Hastings
Sampling and the NSC, are explained.

2.1 Fitness Landscape
The fitness landscape can be defined as a search space
(S), a metric and scalar fitness function defined on the
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elements of S. If we assume that the goal is to maxi-
mize fitness, we may assume that the best global so-
lutions are the ’peaks’ in the search space. We can
also define local optima in the following way: first we
assume a non-negative-real valued, scalar fitness func-
tion f(s) over a binary string s of the length l, where

f(s)ε< ≥ 0 . (1)

Generally, let us presume that ’f’ has to be max-
imized. The local optimum in the discrete S search
space is a point or an area, whose fitness function
value is larger than of the all of its closest neighbours.
A Region is considered to be a Neutral Network hav-
ing the same fitness. In other words, a set of points in
proximity of the nearest-neighbour points of equal fit-
ness are considered as a single optimum. For a move
operator in search space we use bit mutation. Un-
der the term ’nearest neighbour’ we consider a mea-
sure that shows the distance between points s1 and s2
where s1 and s2 represent two binary strings. In this
work, the Hamming distance was used (i.e. the num-
ber of bit positions by which two binary strings differ)
[7].

2.2 Fitness Clouds
Let γ = (γ1, γ2, ..., γn) represent the entire search
space of a GA problem and V (γ) be a set of all the
neighbours of the γεΓ individual, which we obtained
by the application of a standard bit-flip mutation. The
choice of neighbours is a result of a tournament selec-
tion method with k=10 being the selection parameter.
An individual with the highest fitness value is picked
up as a neighbour. We can define the following set of
points at the bi-dimensional plane:

P = {(f (γ) , f (ν)) , ∀γεΓ, ∀νεV (γ)} . (2)

The P diagram is a scatterplot fitness of the values
of all the individuals that belong to the search space
versus their neighbours’ fitness. A fitness cloud im-
plicitly gives an insight into a genotype against the
phenotype mapping [19].

Metropolis-Hastings Sampling Generally, the
search space is too big to consider all the individuals.
Therefore we use samples, and since all the points are
not equally important, we want to sample the space
by using a distribution that puts more weight on indi-
viduals with a higher fitness value. In order to achieve
that, we use Metropolis-Hastings sampling, which
is an extension of the Metropolis sampling towards
non-symmetric stationary probability distributions
[19].

2.3 Negative Slope Coefficient
The Negative Slope Coefficient is an algebraic mea-
sure for problem difficulty. It can be calculated in
the following way: the fitness cloud C is divided into
a certain number of segments C1, ..., Cm which are
such that

(
fa, f

′
a

)
εCj and

(
fb, f

′
b

)
εCk, where j ¡ k

implies that fa < fb. An average fitness is calculated
as:

fi =
1
Ci

∑
(f,f ′)εCi

f . (3)

and
f

′
i =

1
Ci

∑
(f,f ′)εCi

f
′
. (4)

The points
(
fi, f

′
i

)
can be viewed as polyline peaks,

which successfully represent a ’skeleton’ of the fitness
cloud. For each of these segments a slope can be de-
fined,

Si =
(
f

′
i+1 − f

′
i

)
/ (fi+1 − fi) . (5)

Eventually, an NSC is defined as:

nsc =
m−1∑
i=1

min (0, Si) . (6)

If NSC = 0 then the problem is easy, and if the
NSC < 0 then the problem is difficult and the NSC
value shows to which extent it is difficult [15].

2.4 Unitation and Functions of Unitation
In this work we use Onemax, Onemix and Trap unita-
tion functions [10] [16].

Definition 1 Let s be a bit string of the length l. The
unitation u (s) of s is a function defined as:

u (s) = u (si...sl) = s1 + ...+ sn =
l∑

i=1

si . (7)

In other words, unitation represents the number of
units in the bit string.

2.4.1 Onemax Function.

Onemax functions are generalizations of the unitation
u(s), of a bit string s:

f (s) = du (s) . (8)

where d in a general case is 1.
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2.4.2 Trap Function.

Deb and Goldberg have defined the trap function as
follows:

f (s) =

{
a
z (z − u (s)) if u (s) ≤ z
b
l−z (u (s)− z) otherwise .

(9)

Where ’a’ represents a local optimum, ’b’ is a
global optimum and ’z’ is a slope-change location. It
can be demonstrated that if the following relation is
valid, then the trap function is completely deceptive.

a

b
= r ≥

2− 1
l−z

2− 1
z

. (10)

2.4.3 Onemix Function.

This function is a mixture of the Onemax problem and
a Zeromax problem. Like these functions, it is a func-
tion of unitation, u, which represents a number of 1’s
in a string. Our new function becomes an Onemax
function when the unitation values are higher than l/2.
If the unitation values are lower, it is Onemax when
u is odd; otherwise it is a scaled version of Zeromax.
Onemix is formally defined as:

f (s) =

{
(1 + a)

(
l
2 − u (s)

)
+ l

2 if g (s)
u (s) otherwise .

(11)
where g(s) is equal to 1 when u(s) is even and

u(s)<1/2. Value ’a’ represents a constant that is higher
than 0 [16].

3 Experimental Parameters
Binary strings of length l = 10 were used in the experi-
ments, by Metropolis-Hastings sampling 100 individ-
uals that constituted the first generation were picked
up and a standard bit-flip mutation was used with
a p m mutation coefficient for obtaining neighbours.
For each individual, 10 neighbours were generated by
the mutation operator and the one with the highest
value of fitness was picked.

In the Onemax function example, all the experi-
ments prove that the NSC works properly, which indi-
cates that the Onemax is an easy problem to solve for
a GA, which is in accordance with the performance
measure.

In order to present flaws of the NSC as a problem
difficulty measure we will conduct a number of exper-
iments with different parameters for the Trap Func-
tion. The parameters for the Trap function are; lo-
cal optimum ’a’ equals 10, global optimum ’b’ equals

11 and slope-change location ’k’ equals 9. The pa-
rameter predefined (marked predef. in table) value
set at yes marks that in this starting population each
possible fitness value appears at least once. The pa-
rameters are chosen to be, as much as possible, in ac-
cordance with the previous research mentioned in the
work [20]. The division into segments in the first 4
experiments is made by setting the segment width to
the constant value d, where d = 1, and in the other 5
experiments we used size driven bisection where 10
is the minimal number of points that may belong to a
segment and 10% presents the minimal difference be-
tween the leftmost and the rightmost points contained
in a segment. All results in tables represents the low-
est values of NSC we calculated. Mean value is in
more than half of experiments of value 0. Our exper-
iments show that the NSC is a good measure for the
Trap function only when the mutation coefficient is
relatively high, what can be seen in experiments 3, 4
and 5. Also, we see that NSC depends on members
of first population (as displayed in experiment 3, ta-
ble 2.). For the Onemix function, the NSC correctly
presumes that the problem is difficult, but it shows in-
correctly that the Onemix problem is more difficult
than the Trap problem, which does not correspond to
the results achieved by the performance measure [20].
The parameters used in the experiments and the NSC
results obtained are presented in tables below.

Table 1: NSC experimental results for Onemax func-
tion.

onemax function pop size p m NSC
experiment 1 11 0.05 0
experiment 2 11 0.10 0
experiment 3 100 0.05 0
experiment 4 100 0.10 0

Table 2: NSC experimental for Trap function results
for small population size and predefined individual
values.

trap function pop size p m predef. NSC
experiment 1 11 0.05 yes 0
experiment 2 11 0.05 no 0
experiment 3 100 0.10 yes -2
experiment 4 100 0.10 no 0
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Table 3: NSC experimental results for Trap function.

trap function pop size p m NSC
experiment 1 100 0.05 0
experiment 2 100 0.10 0
experiment 3 100 0.20 -0.79
experiment 4 100 0.30 -1.29
experiment 5 100 0.40 -0.025

Table 4: NSC experimental results for Onemix func-
tion.

onemix function pop size p m NSC
experiment 1 11 0.05 0
experiment 2 11 0.10 -2
experiment 3 100 0.05 -4.335
experiment 4 100 0.10 -3.667
experiment 5 100 0.20 -0.596
experiment 6 100 0.30 -0.079
experiment 7 100 0.40 0

4 The New Negative Slope Coeffi-
cient Measure

In order to show in an experiment whether a function
is difficult for a GA or not, we propose a modification
of the Negative Slope Coefficient, which we call new
NSC. This measure is based on the relation between
the number of units with value 1 on the x-line of the
diagram and the fitness value for the individuals at the
y-line of the diagram.

The experiments are based on the assumption that
the maximum fitness value should be obtained. If
there are no changes in the direction of the line and
if the slope coefficient is positive, then the problem
is easy: however if the slope coefficient is negative,
then the problem is difficult. If there are changes to
the slope segments of the line, then we calculate the
slope for each of these segments. Each segment of the
line S1,...,Sm is defined minimally by two points with
V1(x1, y1) and V2(x2, y2) coordinates. Then the slope
of each segment Si is defined by the formula:

a =
y2 − y1

x2 − x1
. (12)

Values x1 and x2 represent two neighbour values
of unitation and values y1 and y2 two values of fitness
or fitness offsprings.

The total slope for the fitness cloud with the num-
ber of units at the x-line and the individual fitness on

the y-line is:

If =
m∑
i=1

ai . (13)

and for the fitness cloud with the number of units
at the x-line and the neighbour fitness at the y-line:

I
′
f =

m∑
i=1

ai . (14)

A neighbour is chosen in the same way as in
NSC measure where it represents an offspring with
the maximum fitness value within 10 iterations. Fi-
nally, the new NSC amounts:

nsc =

∣∣∣∣∣IfI ′
f

∣∣∣∣∣ . (15)

The bigger the result is, the problem is harder for
GA to solve. The pseudo-code for the new NSC mea-
sure is:

function new_nsc (array_unitation){
f[]=fo[]= compute(array_unitation);
i1= segments(array_unitation,f[]);
i2= segments(array_unitation,fo[]);
nsc=abs(i1/i2);
}
function segments(x,y){
foreach value of x,y{
array_x=slope change value(x);
array_y=slope change value(y);
}
for i=2 to upper_bound(x){
y=array_y(i)-array_y(i-1);
x=array_x(i)-array_x(i-1);
sum+=y/x;
}return sum;
}

Now we repeat the same experiments for the new NSC
measures. When new measure can not be calculated
exactly, then words ’easy’ and ’difficult’ represent in-
dication of problem hardness. In tables and figures
below are represented results that we obtained. Other
figures are not displayed in this paper due to the lack
of space.
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Figure 1: (a) graph unitation/fitness for Trap func-
tion experiment 2, (b) graph unitation/fitness neigh-
bour for Trap function experiment 2, (c) graph unita-
tion/fitness for Trap function experiment 4, (d) graph
unitation/fitness neighbour for Trap function experi-
ment 4.

Figure 2: (a) graph unitation/fitness for Onemix func-
tion experiment 1, (b) graph unitation/fitness neigh-
bour for Onemix function experiment 1, (c) graph uni-
tation/fitness for Onemix function experiment 2, (d)
graph unitation/fitness neighbour for Onemix function
experiment 2.

Table 5: Experimental results for new NSC measure
for Onemax function.

onemax function pop size p m new NSC
experiment 1 100 0.05 easy
experiment 2 100 0.10 easy
experiment 3 100 0.20 easy
experiment 4 100 0.30 easy

Table 6: Experimental results for new NSC measure
for Trap function.

trap function pop size p m new NSC
experiment 1 100 0.05 difficult
experiment 2 100 0.10 5.55
experiment 3 100 0.20 5.45
experiment 4 100 0.30 2.26

Table 7: Experimental results for new NSC measure
for Onemix function.

onemax function pop size p m new NSC
experiment 1 100 0.05 1.81
experiment 2 100 0.10 2.80
experiment 3 100 0.20 2.39
experiment 4 100 0.30 1.73

5 Conclusions and Future Work
Experiments on original NSC have shown that it is re-
liable difficulty measure only in accordance with rela-
tively high mutation factor and individuals in first gen-
eration. Also, size driven bisection lacks formality for
now, so its parameters must be selected in arbitrary
way. Experiments on new NSC have shown that it also
depends on individuals in first generation and on mu-
tation rate. In other side the new measure is, in worst
case, a reliable indicator of problem difficulty and in
best case rather precise measure of problem hardness
(difficult or easy). One more advantage of the new
NSC is that there is no need to separate the points in
segments via arbitrary segment size or size driven bi-
section (or any other way). We believe that the new
NSC has some interesting features, but like original
NSC it will always be dependant of mutation rates and
individuals in first generation. Further experiments,
on larger number of problem functions should be con-
ducted to reach the final decision is it possible in such
a way precisely calculate difficulty of a problem. First
step must be to find completely reliable indicator of
problem difficulty on larger number of different func-
tions.
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