

SCHEDULING MULTIPROCESSOR TASKS WITH GENETIC ALGORITHMS

MARIN GOLUB
Department of Electronics, Microelectronics, Computer

and Intelligent Systems
Faculty of Electrical Engineering and Computing

University of Zagreb
Unska 3,HR-10000 Zagreb, Croatia

Phone:(+385-1) 6129 967 E-mail: marin.golub@fer.hr,

SUAD KASAPOVIC
Department of Telecommunications

Faculty of Electrical Engineering and Computing
University of Zagreb

Unska 3,HR-10000 Zagreb, Croatia
Phone:(+387-35) 760019 E-mail: casse@inet.ba

ABSTRACT – In this paper, an efficient method based on
genetic algorithms is developed to solve the multiprocessor
scheduling problem. To efficiently execute programs in parallel
on multiprocessor scheduling problem must be solved to
determine the assignment of tasks to the processors and the
execution order of the tasks so that the execution time is
minimized. Even when the target processors is fully connected
and no communication delay is considered among tasks in the
task graph the scheduling problem is NP-complete. Complexity
of scheduling problems dependent of number of processors (P),
task processing time Ti and precedence constraints. This
problem has been known as strong NP-hard intractable
optimisation problem when it assumes arbitrary number of
processors, arbitrary task processing time and arbitrary
precedence constraints. We assumed fixed number of
processors and tasks are represented by a directed acyclic
graph (DAG) called “task graph”.

Keywords – DAG, parallel processing, multiprocessor
scheduling, genetic algorithms, optimisation, heuristics.

I. INTRODUCTION

 The telecommunication networks are one of good
example parallel and distributed systems and can be
considered as parallel call and service processing systems
where scheduling tasks in that system can be done with
genetic algorithms. A major challenge in parallel processing
is task scheduling. In the static scheduling a parallel
program, is represented by a directed acyclic graph (DAG).
DAG consists of:
- a collection of “vertices” V={Ti}, i=1,2,...,N, and where

V is a set of v nodes, representing the tasks;
- a collection of “edges”, E={eij}, each connecting some

two vertices and a directed, representing the precedence
relationship among the computational tasks. An edge goes
from one of the vertices towards the other.

Here we can draw a graph in which a directed edge says
we have to do one task before the other. Let us assume that
the task Tj cannot execute until Ti completes if i<j. This
problem can be reformulated as graph problems. The
general problem of multiprocessor scheduling can be stated
as scheduling a set of partially ordered computational tasks

onto a multiprocessor system so that a set of performance
criteria will be optimised. Task scheduling is the process of
deciding which instructions will be run by which processor,
and in which order. We assume that the multiprocessor
system is uniform (homogenous) and nonpreemptive etc. the
processors are identical, and a processor completes the
current task before executing a new one. Task execution
time can be nonuniform. Every processor can communicate
with each other and every has own memory. In this paper
we deal with the scheduling problem where number of
processors is fixed.

Other problem which can be discussed is find the
minimum number of processors in order to execute tasks in
a time not exceeding the length of the critical path of task
graph. Complexity of scheduling problems dependent of
number of processors (P), task processing time Ti and
precedence constraints. Example, when number of
processors is arbitrary, task processing time is equal and
precedence constraints is tree complexity this problem is
O(N) where N is number of computational tasks or example,
when number of processors is arbitrary, task processing time
equal and precedence constraints arbitrary complexity this
problem is NP-hard, which is evidence that there doesn’t
exist a good algorithm to solve it exactly [10].
Consequently, research effort has focused on finding
polynomial time algorithms, which produce optimal
schedules for restricted cases of the multiprocessor
scheduling problem. However we can find a solve that’s
pretty close to the optimal solution. This paper presents an
efficient method based on genetic algorithms to solve
multiprocessor scheduling problem.

This paper is organized as follows. First we present the
model for multiprocessor scheduling (Section 2), after that
the principles of genetic algorithms are precisely defined in
Section 3. In Section 4, our proposed genetic algorithm is
reviewed and analysed. Results and analyses are shown in
Section 5 and we close the paper with concluding remarks
and ways for further research – Section 6.

II. THE MULTIPROCESSOR SCHEDULING
PROBLEM

 The number of available processors is unlimited. A
multiprocessor system is composed of a set P of p identical
processors (homogeneous), that is, their processing speeds
are the same. The processors are fully connected without
any regard to link contention and nonpreemptive, that is,
each processor can execute at most one task at a time. A
parallel program is characterized by a directed acyclic (task)
graph G=(V, E) where V={Ti}, i=1,2, …,N represent the set
of tasks of the program with associated weights {ri} where ri
denotes the computation (execution) time of Ti, and E={eij}
is the set of directed edges which define a partial order or
precedence constraints on V. In our case of task graphs,
intertask communication is negligible etc. the
communication cost between two tasks assigned to the same
processor is assumed to be zero. In task graph, tasks without
predecessors are known as entry tasks and tasks without
successors are known as exit tasks. Every task is present and
appears only once in the schedule (completeness and
uniqueness). The problem of optimal scheduling a task
graph onto a multiprocessor system with p identical
processors is to assign the computational tasks to the
processors so that all of the tasks are completed in the
shortest possible time. The time that the last task is
completed is called the finishing time (FT) of the schedule.
A simple task graph with 10 tasks and a schedule is
illustrated in Fig.1.

Fig.1. Example of directed acyclic graph with execution
time and without communicating cost

S[1]

S[2]

S[3]

time

Fig.2. Example of optimal scheduling with precedence

constraints.

Inside of circle is the marks of tasks and from the right
side of circle are first indexes getting by topological sorting
and after comma execution time of task.

III. EVOLUTION AND GENETIC
ALGORITHM

 Evolutionary algorithms are optimisation and search
procedures inspired by genetics and the process of natural
selection. This form of search evolves throughout
generations improving the features of potential solutions by
means of biologically inspired operations. On the ground of
the structures undergoing optimisation the reproduction
strategies, the genetic operators adopted, evolutionary
algorithms can be grouped in: evolutionary programming,
evolution strategies, classifier systems, genetic algorithms
and genetic programming.

The genetic algorithms behave much like biological
genetics. The genetic algorithms are an attractive class of
computational models that mimic natural evaluation to solve
problems in a wide variety of domains. A genetic algorithm
comprises a set of individual elements (the population size)
and a set of biologically inspired operators defined over the
population itself etc. a genetic algorithms manipulate a
population of potential solutions to an optimisation (or
search) problem and use probabilistic transition rules.
According to evolutionary theories, only the most suited
elements in a population are likely to survive and generate
offspring thus transmitting their biological heredity to new
generations. A genetic algorithm maps a problem onto a set
of strings (the chromosomes), each string representing a
potential solution. The three most important aspects of using
genetic algorithms are: (1) definition of the objective
function, (2) definition and implementation of the genetic
representation, and (3) definition and implementation of the
genetic operators.

Table 1. Nature-to-computer mapping

Nature Computer
Individual Solution to a problem
Population Set of solutions
Fitness Quality of a solution
Chromosome Representation for a solution

 (e.g. set of parameters)

Gene Part of the representation of a solution

 (e.g. parameter or degree of freedom)

 Decoding of the representation of

 solutions

There are a lot of list heuristic methods which using to
scheduling tasks onto parallel processors. Most of them give
a good solution problem. Example, each task graph is
assigned a priority, then added to a list of waiting tasks in
order of decreasing priority. As processors become available

2 4 5 6

1 7 9

 3 8 10

1 2 3 4 5 6 7 8 9 10

10,2 9,1

6,3 7,2 8,4

1,4

5,1

2,2

3,2 4,1

4

3

10 6

8

1

7 2

5 9

the task with the highest priority is selected from the list and
assigned to the most suited processor. If more than one task
has the same priority a task is selected randomly. The basic
list scheduling heuristic is shown in pseudocode :

begin
 repeat
 select a task
 select a processor to run the task
 assign the task to the processor
 until all task s are scheduled
end.

Fig.3.List scheduling heuristic

Initialisation - an initial population of the search nodes is
randomly generated. The strings encoding mechanism
should map each solution to a unique string. The encoding
mechanism depends on the nature of the problem variables
and it use for representing the optimisation problem’s
variables. The representation is unique. In some cases the
variables assume continuous values, while in other cases the
variables are binary. It can be integer parameters, real-
valued parameters, vectors of parameters, Gray code,
dynamic parameter encoding etc. The fitness values of each
node are calculated according to the fitness function
(objective function). The fitness function provides the
mechanism for evaluating each chromosome in the problem
domain. It is always positive. Three operators are needed to
achieve this selection, crossover and mutation. The selection
criterion is that string with higher fitness value should have
a higher chance of surviving to the next generation. A
quality measure for the solutions (fitness function) of the
problem is known. Fitter solutions survive, while weaker
ones perish. There are many different models of selection.
The most popular selection in genetic algorithms is fitness
proportionate selection, rank selection, tournament selection
and elitist selection. After selection comes crossover.

The crossover operator takes two chromosomes (parents)
and swaps part of their genetic information to produce new
chromosomes (child). The offspring (child) keep some of
the characteristics of the parents. One point crossover
involves cutting the chromosomes of the parents at a
randomly chosen common point and exchanging the right -
hand – side sub-chromosomes. In two – point crossover
chromosomes are thought of as rings with the last and the
first gene connected. The rings are cut in two sites and the
resulting sub-parts are exchanged. In uniform crossover
each gene of the offspring is selected randomly from the
corresponding genes of the parents. Crossover is applied to
the individuals of a population with a constant probability.
Usually from 0.5 to 0.95.

Mutation consists of making (usually small) alterations to
the values of one or more genes in a chromosome. In genetic
algorithms, mutation is considered a method to recover lost
genetic material. Our proposed algorithm we call Turnir
genetic algorithm. When we have task graph, we need use
topological sorting. Topological sorting consist of finding
some global ordering consistent with these local constraints.

IV. PROPOSED ALGORITHM

 Let be G(V,E) directed acyclic graph shown by list. Task
graph is topological sortie if index (I)<index (J) if the node
Ti is predecessor from node Tj . If the number of nodes
(tasks) is N them index can be the natural number from
[1..N]. Include order Number [1..N] and order R of index of
tasks. Algorithm of topological sorting by width looking as
follows (Algorithm how we can give to the tasks indexes by
width):

for(I=1;I<= N;I++) {
 Number[I]:=Number_incoming_edges[I];
 if(Number[I]==0) put_in_order(R,I);
 J:=1
 While R nonempty {
 L=first_index_taken_from_order(R);
 Index[L]:=J
 J:=J+1;
 for all K from list_outgoing_edges[L]{
 Number[K]:=number[K]-1;
 if(Number[K]==0){put_in_order(R,K);}
 }
}

Fig.4. Topological sorting by width

When we got indexes of tasks, now, structure of our
genetic algorithm look as follows:

genetic algorithm {
 initialisation(P(0));
 for(i=0,i<I;i++) {//I-number of iterations
 randomly choose three individuals from
 P(i);
 mark the worst individuals for
 elimination;
 crossover surviving individuals;
 mutation child;
 evaluation child;
 replace eliminated individuals with new
 child
 }
}

Fig.5 . Proposed genetic algorithm

Now, we will consider initialisation, crossover, mutation
and evaluation algorithm.

With initialisation we will make population of solutions.
Let be N population size and Z will be number of tasks from
directed acyclic graph. Randomly we choose the one of
processors from set of [1,P] where P is total number of
processors and then add the task from the list of task sortie
by indexes on increasing order. Pseudocode of initialisation
is:

initialisation(P(0)) {
 for (i=0;i<N;i++){//N-population size
 for(j=1;j<=Z;j++){//Z-number of tasks
 set of tasks which do r-th processor
 extend with task Tj;
 //r-randomly chosen number: r∈[1,P]
 //P-number of processors

 }
evaluation(i-th individual);

}

Fig.6. Pseudocode of initialisation

The chromosome is consisting from P sorted arrays.
Example, let be P=3 and Z=10. One example of string
looking as:

S[1]
S[2]
S[3]

Fig.7. Example of string (work with indexes (sorted by
width) of tasks)

This is only chromosome (string) but not scheduling. On
that way, and with number of iterations we have defined
algorithm of initialisation.

The crossover operator use two strings randomly choose
(choose one at random task) Ti from one of two sets and put
on the new string. Precedence relation must be kept and
whole time we work with indexes of tasks (getting by
topological sorting). If Ti element the same set at both
parents then Ti is coping on the same place for new string
(child). If we randomly choose two same parents (strings
A=B) and if one of parents e.g. A the best string we use
operator mutation on the second B string. It is elitism. Else,
we mutate the first set and child generate randomly.
This algorithm performs the crossover operation on two
strings (A and B) and generates new string.

crossover (A;B) {
 if(A==B){ //elimination duplicate
 if(A is the best string) mutation(B);
 // elitism
 else mutation(A);
 random generate child;
 return
}

 for(i=1,i<=Z;i++){
 if(Ti∈P on both parents)
 Ti copy on the same place on the child
 else

 Ti below one from sets of parents
 (randomly);
}

}
Fig.8. Pseudocode of crossover

Increasing order indexes of the tasks must be kept.

Before crossover operation:

A[1]
A[2]
A[3]

B[1]
B[2]
B[3]

After crossover operation (child):

C[1]
C[2]
C[3]

Fig.9. Example of crossover operator (work only with

indexes)

Next, what we must to do is define the mutation operator.
We first generate two randomly chosen numbers r i q from
the sets [1,P]. The condition for that is that: a) r # q, and b)
set r aren’t empty

After that from set r, choose one task at random and
remove him in the set q. We must take in the account that
the task which we move, must be put on the place that
indexes of task be ordered by increasing.
Algorithm mutation:

mutation() {

generate two numbers randomly r,q∈[1,P]
with conditions:
a) r # q, and
b) set r aren’t empty

from set r, randomly pick a task and
removing him in the set q;

}

Fig.10. Pseudocode of mutation

Let be r=1 and q=2 and randomly choose the task has the
index 5.

Before mutation:

S[1]
S[2]
S[3]

After mutation:

S[1]
S[2]
S[3]

Fig.11. Example of mutation operator

Figure 12 shows the evaluation algorithm.

2 5 6
1 4 7 8 9
3 10

2 5 6
1 4 7 8 9
3 10

1 5
3 4 8
2 6 7 9 10

1 5
3 4 8 9
2 6 7 10

2 5 6
1 4 7 8 9
3 10

2 6
1 4 5 7 8 9
3 10

evaluation(){
 for(i=1;i<=P;i++) FTP[i]=0;
 // reset FTP for all processors
 for(i=1;i<=Z;i++){
 // Ti∈{sets of tasks processor p},
 p∈[1,P]
 FTP[p] += duration(Ti);
 for(j=1;j<=P;j++){
 if(j == p) continue;
 // the precedence relations are
 // maintained in this line:
 if(((Tx∈j)<Ti) && (FTP[j]>pom))
 // x is the biggest index of tasks set
 // p (tasks which execution onto
 // processor p), and that content the
 // condition x<j.
 FTP[p] = FTP[j] + Ti;
 }
 }
 FT=maxi∈[1,P]{FTP[i]};
}

Fig.12. Pseudocode of evaluation

The fitness function for the multiprocessor scheduling
problem in our genetic algorithms is finishing time a besides
it can be also throughput and processor utilization. Finishing
time of a schedule is defined as follows:
FT=maxi∈[1,P]{FTP[i]} where FTP[i] is the finishing time
for the last task in processor i.

V. RESULTS

 The experiments have been done on two computers:
a) SUN ULTRA on 140 MHz with 64 MB RAM, and
b) ALPHA STATION 600 on 333 MHz and 256 MB

RAM
Test problem consists in the work with two problems:
Problem with 452 tasks, which should be scheduling onto 20
processors. Number of tasks generated randomly as
processing times for every task and the precedence
constraints took from [12]. For this problem, optimal
solution is 537 time units. And it has been also taken from
[12]. To that solution we have done with our GA with next
parameters: mutation probability 1%, population size is 20
individual solutions and it has 10000 iterations with 85%
probability. We have done a few tens experiments. In the
15% cases we have got local optimum. The result of 540
time units doesn’t look as bad solution because it’s only
three time units worst solution from optimal solution from
the site [12]. This problem, on the computer b), for 1000
iterations spent 7 minutes and 40 seconds. We have
graphically showed evolution process for first problem
(Fig.13).

Fig.13. Evolution process

Second, we tested the problem with 473 tasks, which should
be scheduling onto 4 processors. This problem, for 1000
iterations on the computer b) spent 1 minute. Optimal
solution for this problem is 1178 time units (from the site).
The best solution with our genetic algorithm was 1182 time
units and the worst solution was 1187 time units. Average
solution with 1184 time units has got with the next
parameters: population size=50, number of iterations=30000
and mutation probability=0.01 or 1%. For better results, it
would be to adjust genetic algorithm and for that we need a
few hundred experiments, which take a few months on this
computers.
We measured the quality the schedules using a quantity
called speedup where:
Speedup = (completion time of a task graph using sequential
schedule) / (completion time of the task graph on
multiprocessor according to scheduling algorithm). For the
first problem with 452 tasks, total processing time is 4584
t.u., speedup = 8.54, until for the second problem with 473
tasks, total processing time is 4713 t.u., speedup = 3.98.

VI. CONCLUSION

 In this paper we present an efficient genetic algorithms
for scheduling precedence constrained task graphs with
negligible intertask communication onto multiprocessors
without taking contention in the communication channels
into consideration. This means that for such problems,
without limiting onto communication cost and contention of
the communication channels has to be designed a different
type of algorithm. Experimental results on the relatively
hard problems that have been taken from Internet [12] show
that genetic algorithm without optimisation of parameters
comes to optimum or near optimum solutions. In order to
get better results, concerning larger probability of the global
optimum, an optimisation of the parameters genetic
algorithm should be done. It is possible to make a parallel of
the described genetic algorithm, in a very simple way, by
using multithreading as described in [14,15,16].

VII. APPENDIX

Table 2 : Complexity of scheduling problems

Number of
Processors (m)

Task Processing
Time Ti

Precedence
Constraints

Complexity

Arbitrary Equal Tree O (n)

2 Equal Arbitrary O (n^2)

Arbitrary Equal Arbitrary NP-hard

Fixed (m>=2) Ti=1or2 for all i Arbitrary NP-hard

Arbitrary Arbitrary Arbitrary Strong NP-hard

REFERENCES

[1] Keith Grant, An Introduction to Genetic algorithms, CC++

Journal, march 1995
[2] Greg P. Semeraro, Evolutionary Analysis Tools For Real-Time

Systems, The sixth International symposium on Modeling,
analysis and Simulation of Computer and Telecommunication
Systems, Montreal, Canada, July 1998

 [3] M.Srinivas, Lalit M. Patnaik, Genetic Algorithms: A Survey,
IEEE, 1994

 [4] Jose L.Ribeiro Filho, Philip C. Treleaven, Genetic Algorithm
Programming Enviroments, IEEE, 1994

 [5] Eduardo B. Fernandez, Bertram Bussell, Bounds on the
Number of Processors and Time for Multiprocessor Optimal
Schedules, IEEE Transactions on Computers, Vol. C-22, No.8,
August 1973

 [6] G.N. Srinivasa Prasanna , B.R. Musicus, Generalized
Multiprocessor Scheduling and Applications to Matrix
Computations, IEEE Transactions on Parallel and Distributed
systems, Vol.7, No.6, June 1996

 [7] Ishfaq Ahmad, Yu-Kwong Kwok, On Parallelizing the
Multiprocessor Scheduling problem, IEEE Transactions on
Parallel and Distributed systems, Vol.10, No.4, April 1999

 [8] S. Selvakumar and C.Siva Ram Murthy, Scheduling
Precedence Constrained Task Graphs with Non-Negligible
Intertask Communication onto Multiprocessors, IEEE
Transactions on Parallel and Distributed systems, Vol.5, No.3,
March 1994

 [9] Edwin S.H.Hou, Nirwan Ansari, Hong Ren, A Genetic
Algorithm for Multiprocessor Scheduling, IEEE
Transactions on Parallel and Distributed systems, Vol.5, No.2,
February 1994.

 [10] Ricardo C. Correa, Afonso Ferreira, Pascal Rebreyend,
Scheduling Multiprocessor Task with Genetic Algorithm”,
IEEE Transactions on Parallel and Distributed systems, Vol.10,
No.8, August 1999.

 [11] Albert Y. Zomaya, Chris Ward, Ben Macey, Genetic
Scheduling for Parallel Processor Systems: Comparative
studies and Performance Issues, IEEE Transactions on Parallel
and Distributed systems, Vol.10, No.8, August 1999.

 [12] Advanced computing systems, available from:
http://www.kasahara.elec.waseda.ac.jp

 [13] Introduction to evolutionary computation, available from:
 http://www.cs.bham.ac.uk/~rmp/slide_book/node2.html
 [14] M. Golub, D. Jakobovic, A New Model of Global Parallel

Genetic Algorithm, Proceedings of the 22nd International
Conference ITI2000, Pula, 2000, pp.363-368

 [15] M. Golub, L. Budin, An Asynchronous Model of Global
Parallel Genetic Algorithms, Second ICSC Symposium on
Engineering of Intelligent Systems EIS2000, University of
Paisley, Scotland, UK, 2000, pp. 353-359

[16] M. Golub, D. Jakobovic, L. Budin, Parallelization of
Elimination Tournament Selection without Synchronization,
Proceedings of 5th IEEE International Conference on Intelligent
Engineering Systems

