
Influence of the Crossover Operator in the
Performance of the Hybrid Taguchi GA
Stjepan Picek

Faculty of Electrical Engineering
and Computing

Unska 3, Zagreb, Croatia
Email: stjepan@computer.org

Marin Golub
Faculty of Electrical Engineering

and Computing
Unska 3, Zagreb, Croatia

Email: marin.golub@fer.hr

Domagoj Jakobovic
Faculty of Electrical Engineering

and Computing
Unska 3, Zagreb, Croatia

Email: domagoj.jakobovic@fer.hr

Abstract—This paper investigates the influence of different
crossover operators on the efficiency of the hybrid Taguchi
genetic algorithm and aims to provide guidelines for algorithm’s
usage in continuous optimization. We examine the hybrid Taguchi
genetic algorithm (HTGA) with 8 different crossover operators
and apply it to 15 benchmark numerical optimization problems.
The implementation uses binary representation which maps
chromosomes to values in real domain with arbitrary precision.
Different crossover operators are used with the HTGA and
a detailed statistical analysis is performed to evaluate their
performance. The results indicate that the HTGA obtains better
results with crossover operators different than the ones commonly
reported in literature.

I. INTRODUCTION

Evolutionary algorithms present an important tool in the
area of optimization tasks. One of the algorithms from the
evolutionary algorithms family which has been successfully
applied to the variety of optimization problems is genetic al-
gorithm (GA). In Holland’s version of genetic algorithm (GA)
crossover operator played a major role as an exploitation force
and mutation operator was generally treated as subordinate to
crossover operator [1]. From then, different versions of genetic
algorithm and operators have emerged [2] [3].
One of those modifications of genetic algorithm is the hybrid
Taguchi genetic algorithm (HTGA). In a HTGA, the Taguchi
method is performed between the crossover and mutation
operators of the genetic algorithm. The Taguchi method is a
design approach that uses ideas from the statistical experimen-
tal design. [4]. Hybrid Taguchi genetic algorithm represents
combination between traditional GA and Taguchi method.
Taguchi method can select better genes that undergo crossover
process and by it, enhance the genetic algorithm.
Hybrid Taguchi method can be regarded as a variant of the
crossover operator to be used within a conventional GA or
as a variant of the genetic algorithm itself. The first approach
can be justified by the fact that it is directly connected with
the creation of the offspring from the parent individuals which
is the main characteristic of a crossover operator. The latter
approach is justified by the fact that hybrid Taguchi algorithm
generates additional individuals, evaluates them and performs
selection. Further justification for the second view may be
found in the fact that different “simple” crossover operators
may be used within the Taguchi method.

We employ different crossover operators with the hybrid
Taguchi approach in order to see what combination gives the
best overall results.
First it is necessary to answer the question of whether it is
possible to find the best search algorithm. The answer is no,
since the “No Free Lunch” theorem demonstrates that when
averaged over all problems, all search algorithms perform
equally. However, if the individual is working with some
background knowledge of the problem, it is possible for him
to choose more suitable algorithms.
When performing multiple problem analysis it is important
to use the proper statistical methods in the analysis of the
results. Many of the papers in this niche do not use the proper
statistical methods which can lead to wrong interpretation of
the results.
Experiments conducted suggest that there are better choices
regarding crossover operator used within HTGA. More specif-
ically, single-point operator, as the most common choice of
crossover operator used in HTGA never outperformed some
less usual crossover operators.
In Section 2 we present the relevant theory, Section 3 defines
the experimental environment and presents results, Section 4
gives a discussion about the results, and finally, Section 5
draws a conclusion.

II. PRELIMINARY

A. Selection Methods

Selection is a mechanism for choosing individuals in the
population that create offspring for the next generation [3].
In our experiments, we use roulette-wheel selection and tour-
nament selection. For additional information about these two
selection mechanisms refer to [5].

B. Crossover Operator

Crossover is a process where new individuals are created
from the information contained within the parents. Crossover
operators are usually applied probabilistically according to a
crossover rate pc. In this paper crossover refers to a two-
parent case where two individuals are selected as the parents to
produce one offspring. Table I enumerates crossover operators
used in this paper.
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TABLE I
CROSSOVER OPERATORS USED IN THE EXPERIMENTS

Crossover operator Reference

Single-point crossover [3] [5]

Two-point crossover [5]

Half-uniform crossover [6]

Uniform crossover [3] [5]

Shuffle crossover [2]

Segmented crossover [2] [7]

Reduced surrogate crossover [2]

Non-geometric crossover [8]

Additionally, here we briefly present less known crossover
operators.

1) Reduced Surrogate Crossover: To reduce the chance of
producing clones Booker suggested examining the selected
parents to define suitable crossover points [9]. A reduced
surrogate crossover operator reduces parent strings to a skeletal
form in which only those bits that differ in two parents are
represented. Recombination is then limited only to the posi-
tions of the bits in reduced surrogates. Single-point crossover
is used for the recombination of the skeletal forms of parents.
If at least one crossover point occurs between the first and
last bits in reduced surrogate, then the offspring will never
duplicate the parents [2] [10].

2) Segmented Crossover: Segmented crossover represents a
variant of multi-point crossover. In this crossover the number
of crossover points is not constant. Fixed number of crossover
points is replaced by the segment switch rate s, which specifies
the probability that the segment will end at any point in the
string. Starting from first position in a string, one real-valued
number q and one natural number j are generated. The number
q represents the probability that j will be crossover point. In
experiments we conducted, segment switch rate s is set to the
value of 0.2 [2] [7].

3) Shuffle Crossover: First, a single crossover position
is selected. Before the variables are exchanged, they are
randomly shuffled in both parents. After the recombination,
the variables in the offspring are unshuffled in reverse. This
removes positional bias as the variables are randomly reas-
signed each time a crossover is performed. In a way, shuffle
crossover is similar to the uniform crossover. The difference
is that the uniform crossover exchanges bits and not segments
like the shuffle crossover [2].

4) Non-geometric Crossover: Non-geometric crossover is a
crossover operator that generates offspring outside the segment
between offspring’s parents. First, a primary parent needs to be
chosen, either randomly or based on the fitness of the parents.
Offspring is created as a copy of primary parent, and then
the bits of the offspring are bit-flipped with the prespecified
probability when the values of the bits are the same in the
both of the parents [8].

C. Hybrid Taguchi Genetic Algorithm

In their work, Leung and Zhang [11] stated that some
phases of GAs can be regarded as experiments. They proposed
incorporating an orthogonal array design into GAs in order to
make it more statistically sound.
After parent solutions are sampled for the reproduction, an
orthogonal array is used so the parent solutions can produce
a small but representative set of offspring. Parameters of an
orthogonal array are Q as the number of factor levels, M as
the number of experiments (rows of the orthogonal array),
and N as the number of factors (columns of the orthogonal
array). An orthogonal array is a fractional factorial matrix,
which assures a balanced comparison of levels of any factor or
interaction of factors. The array is called orthogonal because
all columns can be evaluated independently of one another.
Instructions for the creation of the orthogonal array with an
arbitrary number of parameters and more detailed explanations
about the orthogonal arrays can be found in [12]. For factors
of an orthogonal array we use the dimensions of a problem.
Offspring are created based on the factors from the two parents
and the values from the orthogonal array. From M offspring,
n are chosen to become the part of next generation. In our
experiments, n is set to the value of 2. For the offspring
selection scheme the best offspring and the best parent are
chosen since it implicitly provides elitism. The fundamental
principle of the HT method is to improve the quality of a
product by minimizing the effect of the causes of variation
without eliminating the causes. To achieve that goal, two major
tools used are the signal-to-noise ratio (SNR) which measures
quality and the orthogonal arrays which are used to study
many design parameters simultaneously [4]. After generating
offspring, their fitness values and SNR are calculated. The
equation for calculating SNR is

SNR =
1

y2
. (1)

where y represents fitness function value. Next, the effects of
the various factors (variables) are calculated, which can be
defined as follows:

Efl =
∑

(SNRi) . (2)

where factor f is at level l, and index i in SNRi defines the
experiment number. The optimal level for a factor is the level
that gives the highest value of Efl in the experimental region.
After the optimal levels for each factor are selected, an optimal
chromosome is obtained. For a detailed instruction on a HTGA
refer to [4].
In its original form, HTGA uses single-point crossover oper-
ator for the creation of all M offspring. Since there are many
available crossover operators, it is advisable to evaluate the
efficiency of alternate operators within the HTGA, which has
not been investigated previously. In this work we apply every
operator given in Table I to the each of the test problems
described below to estimate HTGA performance.

1481



D. Test Functions

Test functions given in the Table II have been selected for
the investigation of crossover efficiency. These functions rep-
resent well known problems for evaluating the performance of
evolutionary algorithms. Most of the problems are taken from
the CEC 2005 Special Session on Real-Parameter optimization
[15]. The main difference is that we usually did not shift the
global optimum location. The table shows the formula for
the function, domain range of the problem, and the reference
where additional information on the function can be found.

E. Binary Encoding of Chromosomes

Binary coded chromosome represents a real value in the
interval [lbound, ubound]. The real value can be decoded
using the integer value of the binary string (bin val ) of lenght
n:

real val = lbound+
bin val

(2n − 1)
(ubound− lbound) . (3)

Alternatively, the analogous integer binary value may also
be obtained using the desired real value of the chromosome:

bin val =
real val − lbound

ubound− lbound
(2n − 1) . (4)

III. ENVIRONMENTAL SETTINGS AND RESULTS

In all the experiments, binary-coded genetic algorithm with
3-tournament or roulette-wheel selection is used. Individuals
are binary vectors which represent real values [7]. Parameters
of the genetic algorithm that are in common for every round
of the experiments are the following: simple bit mutation with
mutation probability pm of 0.01 per bit, population size N of
30, precision is set to 3 digits after the decimal point (which
is sufficient to produce large enough number of possible
solutions for used test problems), number of independent runs
for each experiment is 30, dimensionality D of all the test
problems is set to 50, and the number of fitness evaluations
is set to 500000 (in accordance with the required number of
fitness evaluations as stated in [15]). For all the test functions,
finding global minimum is the objective.
All parameters are additionally displayed in Table III for
clarity.

TABLE III
PARAMETERS USED IN EXPERIMENTS

Mutation probability pm 0.01 per bit

Population size N 30

Precision of solution 3 digits after the decimal point

Number of runs 30

Dimensionality of the problem D 50

Number of fitness evaluations 500000

Naturally, by choosing different mutation parameters it is
possible to expect different results of analysis. We decided
to use the simplest mutation operator and a constant pm

value since the mutation operator is not of primary interest in
this paper. Experiments where roulette-wheel selection is used
have an initial phase where the parameter tuning is done. The
objective is to find the best value of pc for every crossover
operator.
In this phase, each operator is run 30 times on each test
function with different values of pc, ranging from 0.1 to 1
in steps of 0.1. For every combination the pc value which
gives the smallest mean error on best individuals in 30 runs
was chosen. The results from the initial phase are not displayed
here, but it can be concluded that for all the test cases crossover
probabilities in the range 0.1-0.3 have reached the best results.
In all the experiments, k-tournament selection method has a k
value of 3. The goal of the rest of the experiments is to find
the best overall operator for both selection schemes on the set
of all the test functions. As a performance measure we use
error rate obtained for every operator.
This structure of input data is in accordance with previous
analysis performed over multiple algorithms and test prob-
lems [15] [16]. When conducting a statistical analysis,
first it is necessary to decide whether to use parametric on
nonparametric statistical tests. To be able to use the para-
metric tests, it is necessary to check if the data satisfies
the independency, normality, and heteroscedasticity conditions
[16] [17]. Independence of the events is obvious since
there are independent runs of the algorithms. To check the
normality we use Shapiro-Wilk test and for heteroscedasticity
we use Levene test. The results show that the normality and
heteroscedasticity conditions are not satisfied and because of
that the nonparametric statistical tests should be used. The
tests were conducted for a level of significance α of 0.05.
References regarding the statistical methods used can be found
in [17] and [18]. As a genetic algorithm test suite the
Evolutionary Computation Framework (ECF) was used. ECF
is a C++ framework intended for the application of any type
of the evolutionary computation, developed at the University
of Zagreb [19].

A. Experiments and Results

Table IV gives the results for a Friedman two-way analysis
of variances by ranks, which represents the most well known
procedure for testing the differences between more than two
related samples [17]. The objective of this test is to show
that there are statistical differences between groups (crossover
operators) for both selection methods. If this is true, then
additional post-hoc statistical analysis can be performed to
discover where those differences are.

With the level of significance α of 0.05 both the Friedman
and Iman-Davenport statistic show significant differences in
operators with test values of 39.22 and 8.35, respectively, and
p < 0.001 for roulette-wheel selection. Friedman and Iman-
Davenport statistic for tournament selection case amounts to
the values of 40.88 and 8.92, respectively, and p < 0.001
which indicates significant statistical differences.

In the post-hoc analysis we applied the Bonferroni-Dunn,
Hochberg, Finner and Li tests [18] over the results of
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TABLE II
BENCHMARK FUNCTIONS USED IN EXPERIMENTS

Test function Domain Range Reference

f (x) =
∑D

i=1
x2
i [-5.12, 5.12] [13]

f (x) =
∑D

i=1
i · x2

i [-5.12, 5.12] [13]

f (x) =
∑D

i=1
5 · i · x2

i [-5.12, 5.12] [13]

f (x) =
∑D

i=1

(∑i

j=1
x2
j

)
[-65.536, 65.536] [13]

f (x) =
∑D−1

i=1
100 ·

(
xi+1 − x2

i

)2
+ (1− xi)

2 [-2.048, 2.048] [14]

f (x) = 10 ·D +
∑D

i=1

(
x2
i − 10 · cos (2 ·Π · xi)

)
[-5.12, 5.12] [13]

f (x) =
∑D

i=1
−xi · sin

(√
|xi|
)

[-500, 500] [12]

f (x) =
∑D

i=1
x2
i /4000−

∏D

i=1
cos
(
xi/
√
i
)

+ 1 [-600, 600] [14]

f (x) = −20 · e
−0.2

√∑D

i=1
x2
i
/D

− [-32.768, 32.768] [13]

−e
∑D

i=1
cos(2Πxi)/D + 20 + e

f (x) = −
∑D

i=1
sin (xi) ·

(
sin
(
i · x2

i /Π
))20

[0, 3.14] [13]

f (x) =
∑D

i=1

(
106
)(i−1/D−1)

· x2
i − 450 [-100, 100] [15]

f (x) =
∑D

i=1
|xi|+

∏D

i=1
|xi| [-10, 10] [12]

f (x) =
∑D

i=1
2 ·D+ [3, 13] [14]∑D−1

i=1
[sin (xi + xi+1) + sin (2 · xi · xi+1/3)]

f (x) = 1/D ·
∑D

i=1

(
x4
i − 16 · x2

i + 5 · xi

)
[-5, 5] [12]

f (x) =
∑D

i=1

(∑20

k=0

[
0.5k · cos

(
2Π · 3k (xi + 0.5)

)])
[-0.5, 0.5] [15]

−D
∑20

k=0

[
0.5k · cos

(
Π · 3k

)]
TABLE IV

AVERAGE RANKINGS OF THE ALGORITHMS (FRIEDMAN)

Algorithm Ranking Tournament Ranking Roulette-wheel

Single-point 3.87 4.07

Two-point 3.6 4.2

Half-uniform 4.2 4.2

Uniform 3.73 3.07

Segmented 3.23 3

Shuffle 7.07 6.67

Reduced surrogate 3.47 3.87

Non-geometric 6.8 6.93

Friedman procedure. The analysis indicates the level of
significance with which the control operator is better than
each of the remaining operators (i.e. for which the null
hypothesis is rejected, where null hypothesis represents
the case when there are no significant differences) and
the adjusted p values are shown in Table V. The results
highlight segmented crossover as the best operator for both

selection methods, so the post- hoc analysis is performed
with segmented crossover as the control method.

For the Bonferroni-Dunn test, a critical difference (CD)
[16] has a value of 2.41. The interpretation of this measure
is that the performance of two algorithms is significantly
different only if the corresponding mean ranks differ by at
least a critical difference, which is depicted in Fig. 1 and Fig.
2. A cut line is drawn at height equal to the sum of critical
difference and ranking of the control algorithm. The bars that
exceed this line are associated with the algorithms that have
worse performance than the control algorithm. Bonferroni-
Dunn’s test distinguish that segmented crossover is better than
shuffle or non-geometric crossover. Post-hoc analysis confirms
that for the both selection methods, segmented crossover is
better than shuffle crossover and non-geometric crossover with
α = 0.05. These results coincide with hypotheses rejected by
Bonferroni-Dunn test.

A contrast estimation procedure based on medians [18] can
be used to estimate the differences between each two crossover
operators. In this test the performance of the algorithms is
reflected by the magnitudes of the differences in error rates,
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TABLE V
POST-HOC COMPARISON (CONTROL OPERATOR: SEGMENTED CROSSOVER)

Selection Algorithm unadjusted p pBonf pHochberg pFinner pLi

Roulette-wheel

Non-geometric 0.000011 0.000077 0.000077 0.000077 0.000184

Shuffle 0.000041 0.00029 0.000248 0.000145 0.000696

Two-point 0.179712 1.257987 0.665128 0.370125 0.751532

Half-uniform 0.179712 1.257987 0.665128 0.370125 0.75153

Single-point 0.233038 1.631266 0.665128 0.370125 0.796837

Reduced surrogate 0.332564 2.327946 0.665128 0.376057 0.848421

Uniform 0.940584 6.58409 0.940584 0.940584 0.940584

Tournament

Shuffle 0.000022 0.000151 0.000151 0.000151 0.000122

Non-geometric 0.000078 0.000546 0.000468 0.000273 0.000441

Half-uniform 0.296718 2.077023 0.823063 0.560152 0.626443

Single-point 0.502335 3.516345 0.823063 0.705124 0.73952

Uniform 0.601845 4.212915 0.823063 0.724531 0.772803

Two-point 0.709388 4.965717 0.823063 0.763481 0.80037

Reduced surrogate 0.823063 5.761443 0.823063 0.823063 0.823063

Fig. 1. Bonferroni-Dunn’s test for tournament selection, critical difference = 2.41, control operator: segmented crossover

Fig. 2. Bonferroni-Dunn’s test for roulette-wheel selection, critical difference = 2.41, control operator: segmented crossover
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TABLE VIII
AVERAGE RANKINGS OF THE ALGORITHMS (FRIEDMAN)

Algorithm Ranking

Segmented tournament 2.67

Reduced surrogate tournament 2.6

Segmented roulette-wheel 2.27

Uniform roulette-wheel 2.47

and test values are shown in Table VI and Table VII for
the roulette-wheel and tournament selection, respectively. A
negative value for the operator in a given row indicates that
the operator performs better than the operator in a given col-
umn. For the tournament selection shuffle and non-geometric
crossover operators obtained significantly worse results than
all the other operators, so they were excluded from the Table
VII for clarity. These results highlight the segmented and
reduced surrogate operators as the best performing ones when
tournament selection is used, and segmented and uniform
crossover as the best operators when roulette-wheel selection
is used.

Finally, additional comparison was performed to find the
best overall crossover operator regardless of the selection
method. In this analysis only the two best algorithms for each
selection method were used, and results obtained are displayed
in Table VIII.

Since Friedman and Iman Davenport statistics can not
show significant differences in operators when α = 0.05
no additional post-hoc analysis has been made, rather we
conducted only contrast estimation analysis. From Table IX
it can be concluded that the best overall algorithm is HTGA
with segmented crossover and roulette-wheel selection.

IV. DISCUSSION

The results show that there exist significant statistical differ-
ences in performance when alternative crossover operators are
used within the Taguchi part of the genetic algorithm. There
are also differences depending on the selection method used,
where two most common selection methods are employed.
It should be stressed that the roulette-wheel selection, un-
like the tournament variant, includes an additional crossover
probability parameter. This parameter influences the ratio at
which the hybrid Taguchi procedure is applied within the
genetic algorithm operator flow. Overall, the best results (in
most cases) were obtained with the probability of crossover of
0.1− 0.3, which could be attributed to the exploratory nature
of the hybrid Taguchi approach.
For both the roulette-wheel selection and the tournament
selection segmented crossover operator performed the best.
However, there are differences when comparing the best algo-
rithms with both selection methods. Hybrid Taguchi genetic
algorithm with roulette-wheel selection gives better results
than HTGA with k-tournament selection. Furthermore, it can
be observed that the algorithms are much more stable when
roulette-wheel selection is used. In other words, the algorithms

that perform best for some problems never perform the worst
for any other problem from the employed benchmark set.
When tournament selection is used, on the other hand, it
can be observed that the best algorithms for some of the
test problems also performed among the worst for several
other problems. A likely reason for worse performance of
tournament selection may be the fact that tournament selec-
tion by itself contributes a great deal of selection pressure,
and Taguchi method also contributes to quicker convergence.
When applying tournament selection and Taguchi method
together, the overall selection pressure is very high and it can
result in trapping in suboptimal solution. Segmented crossover
operator with roulette-wheel selection performed the best and
it can be outlined as a rough recommendation for hybrid
Taguchi genetic algorithm when multiple-problem analysis is
conducted. Multi-point crossover operators can search through
larger search spaces more thoroughly, but they also disrupt
the schema more easily. The reason that segmented crossover
with Taguchi method performed the best possibly lies in the
fact that segmented crossover contributed with a search of
larger solution space and then the Taguchi method chooses
better offspring among those solutions. Other operators that
search through larger search space, like uniform crossover,
performed well, although somewhat poorer and the reason
might be in easier schema disruption. These results show that
there is room for improvement of the performance of the
hybrid Taguchi genetic algorithm. In further work it will be
necessary to experiment with additional test functions. Those
new test functions should also include problems that are more
natural to solve using binary interpretation.
Test functions have a great influence on the results of the
experiments. If the chosen problems are too easy, it can result
in too fast convergence to the global optimum for all crossover
operators. On the other hand, choosing problems that are too
difficult can result in the trapping of the algorithm in the
local optima. The test problems used in experiments here were
chosen because they represent a standard test suite for examin-
ing performance of an algorithm. Additionally, some of these
test problems were also used in examining the performance
of original HTGA so it was natural to compare performance
with the same test problems. Further experiments should also
be done to compare hybrid Taguchi genetic algorithm with
roulette-wheel selection and segmented crossover, and other
top performance methods.

V. CONCLUSION

This paper presents an implementation and a detailed sta-
tistical analysis of different crossover operators used within
a hybrid Taguchi GA. The presented results can provide
guidelines to operator selection in hybrid Taguchi applica-
tion to numerical optimization problems. The performance is
evaluated on a well established set of optimization problems,
which should indicate the approximate performance in real-
world applications. Since in most cases there is not enough
time for an exhaustive operator and parameter search, the
provided findings may prove useful to researchers in similar
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TABLE VI
CONTRAST ESTIMATION TEST FOR ROULETTE-WHEEL SELECTION

Single-point Two-point Half-uniform Uniform Segmented Shuffle Red. surr. Non-geom.

Single-point 0 0.006 0.012 0.057 0.098 -0.24 -0.002 -0.247

Two-point -0.006 0 0.007 0.052 0.093 -0.246 -0.008 -0.252

Half-uniform -0.012 -0.007 0 0.045 0.086 -0.252 -0.015 -0.259

Uniform -0.057 -0.052 -0.045 0 0.041 -0.297 -0.06 -0.304

Segmented -0.098 -0.093 -0.086 -0.041 0 -0.338 -0.101 -0.345

Shuffle 0.24 0.246 0.252 0.297 0.338 0 0.237 -0.007

Red. surr. 0.002 0.008 0.015 0.06 0.101 -0.237 0 -0.244

Non-geom. 0.247 0.252 0.259 0.304 0.345 0.007 0.244 0

TABLE VII
CONTRAST ESTIMATION TEST FOR TOURNAMENT SELECTION

Single-point Two-point Half-uniform Uniform Segmented Reduced surrogate

Single-point 0 0.004 -0 -0 0.004 0.004

Two-point -0.004 0 -0.004 -0.004 0.001 0

Half-uniform 0 0.004 0 -0 0.005 0.004

Uniform 0 0.004 0 0 0.005 0.004

Segmented -0.004 -0.001 -0.005 -0.005 0 -0

Reduced surrogate -0.004 -0 -0.004 -0.004 0 0

TABLE IX
CONTRAST ESTIMATION TEST FOR THE BEST OVERALL ALGORITHM

Segmented tour. Red. surrogate tour. Segmented roulette-wheel Uniform roulette-wheel

Segmented tournament 0 0.003 0.221 0.11

Reduced surrogate tournament -0.003 0 0.218 0.107

Segmented roulette-wheel -0.221 -0.218 0 -0.111

Uniform roulette-wheel -0.11 -0.107 0.111 0

optimization environments. The experiments conducted show
that hybrid Taguchi genetic algorithm can be modified to a
more powerful version with a choice of a different selection
and crossover operator. The results singled out HTGA with
roulette-wheel selection and segmented crossover as the most
successful combination.
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