
On the Recombination Operator in the Real-Coded
Genetic Algorithms

Stjepan Picek
Faculty of Electrical

Engineering and Computing
Zagreb, Croatia

Email: stjepan@computer.org

Domagoj Jakobovic
Faculty of Electrical

Engineering and Computing
Zagreb, Croatia

Email: domagoj.jakobovic@fer.hr

Marin Golub
Faculty of Electrical

Engineering and Computing
Zagreb, Croatia

Email: marin.golub@fer.hr

Abstract—Crossover is the most important operator in real-
coded genetic algorithms. However, the choice of the best operator
for a specific problem can be a difficult task. In this paper
we compare 16 crossover operators on a set of 24 benchmark
functions. A detailed statistical analysis is performed in an
effort to find the best performing operators. The results show
that there are significant differences in efficiency of different
crossover operators, and that the efficiency may also depend on
the distinctive properties of the fitness function. Additionally, the
results point out that the combination of crossover operators
yields the best results.

I. INTRODUCTION

Genetic algorithms (GAs) represent a class of the evolu-
tionary algorithms family that has been successfully applied
to various optimization processes. To enable a successful ap-
plication, a perfect blend of genetic operators is often needed.
Three most important operators are the selection, crossover
and mutation. Here, the crossover plays an important role as
an exploitation force (in fact, in Holland’s version of GA the
crossover had major role and mutation was generally treated
as a subordinate to crossover) [1].

From the first work of Holland in 1970s genetic algorithms
evolved and got more complex and naturally, the operators
evolved likewise. Today, the operators are mainly divided as for
binary-coded genetic algorithms, real-coded genetic algorithms
and permutation based genetic algorithms. For each of these
variations there are a plethora of possibilities when choosing
the operators (for example, in [2] 66 binary-coded and 89
real-coded crossover operators are listed). Among so many
operators it is often difficult to choose the best ones for the
problem at the hand. From one perspective, the lack of publicly
available research that is trying to systematically evaluate
different operators is somewhat surprising. It seems that when
developing a new operator it is common to compare it with
just one or two well known operators on a set of just a few
benchmark functions.

In this paper, we restrict our effort to the crossover operator
in the real-coded genetic algorithm. Further, we compare
different crossover operators on a set of benchmark functions
commonly used for real-coded GAs.

When discussing a crossover operator, the first ques-
tion is how important crossover operator really is. There
are genetic algorithms that use extremely complex crossover
schemes, and yet, there are other variations than completely

exclude crossover. However, many researchers today regard the
crossover operator as the most innovative and relevant operator
in real-coded genetic algorithms [3] and we will adhere to that
point of view. Since we determined that crossover operator
is important, the next question is how to compare different
crossover operators. Many of the operators are created with
a special purpose at mind, so it can be regarded somewhat
unfair to compare them against each other. Furthermore, in the
“No Free Lunch” theorem [4] it is demonstrated that when
averaged over all problems, all search algorithms perform
equally. However, the “No Free Lunch” theorem operates
under assumption there is no background knowledge about the
problems. Since researchers rarely work on a problem that they
do not know anything about, it is often possible to choose a
more suitable algorithm.

We conduct our experiments on a set of well known
problems [5] for which the optimum values are known, as
well as a suitable representation and some of the properties of
those problems. From that perspective, we feel it is possible to
give a comparison of crossover operators and possibly some
guidelines for their use. Since all experiments are conducted
on the same set of problems, this comparison is as honest
as it can be done. Naturally, for some specific problems, the
crossover can behave in a completely different manner. Our
experiments belong to the Multiple Algorithms - Multiple
problems comparison scenario, so it is important to choose
the adequate statistical procedures when evaluating the results,
which is addressed in detail. The goal of our paper is to give
statistically sound analysis of a set of crossover operators.
As far as we know, in our experiments we compared the
largest set of crossover operators for real-coded GAs up to
now. Additionally, this is the first time to use Combination
crossover (as defined in our paper) or to compare it against
other crossover operators where those operators are building
blocks of Combined crossover.

In Section 2 we present the relevant theory, Section 3
defines the experimental environment and presents the results,
Section 4 gives a discussion about the results, and finally,
Section 5 draws a conclusion.

II. PRELIMINARY

A. Crossover Operator

A crossover is a process where new individuals are created
from the information contained within the parents. In this paper

the crossover refers to a two parent case where two individuals
are selected as the parents to produce one offspring. Crossover
operators can be divided into two versions for floating point
strings. The first one is analogous with the crossover operator
for binary-coded GAs. Only here, instead of bit values or bi-
nary coded values, alleles are floating point numbers. That kind
of recombination has a disadvantage that only mutation can
insert new values into the population, since recombination only
gives new combinations of existing values [6]. The second one
creates new allele values in the offspring that lie between the
parents for each gene position [6]. Crossover operator are
presented here only briefly, for further informations references
are given. We believe the most important part was to write
formulas for operators here, since some variations can be found
in the literature describing implementation details of specific
crossover operators.

If n denotes the dimensionality of the fitness function,
for all crossover operators presented here holds that parents
βf1 = βf1

1 , β
f1
2 , ..., β

f1
n and βf2 = βf2

1 , β
f2
2 , ..., β

f2
n form a

child βs = βs
1, β

s
2, ..., β

s
n, where f1 and f2 are the parents’

fitness values. In some operators, a parameter α is used whose
value is chosen at random over [0, 1] if not specified otherwise.
Here, α parameter is a weighting factor.

1) Discrete Crossover: When creating an offspring βs from
parents βf1 and βf2 , the allele value for each gene i is given
by βs

i = βf1
i or βs

i = βf2
i with equal likelihood [6].

2) Simple Arithmetic Crossover: First, a recombination
point k is chosen. Then the first k float values of a random
chosen parent are taken and copied into the child. The rest is
the arithmetic average of parents 1 and 2 [6]. The arithmetic
average is obtained via:

βs1 = α · βf2 + (1− α) · βf1 (1)

3) Single Arithmetic Crossover: First, a random allele k
is chosen. At that position take the arithmetic average of
two parents. Other points are copied from the parents. The
expression for arithmetic average is the same as for the Simple
Arithmetic Crossover [6].

4) Whole Arithmetic Crossover: This is probably the most
commonly used operator, which works by taking the weighted
sum with the same α of two parental alleles for each gene [6]:

βs1 = α · βf1 + (1− α) · βf2 (2)

5) Local Crossover: Local crossover is the same as whole
arithmetic crossover, except that the value α is randomly
selected for each gene location [7].

βs
i = α · βf1

i + (1− α) · βf2
i (3)

6) SBX Crossover: Simulated Binary Crossover (SBX) is
devised to simulate the effect of one-point binary crossover
[3] [8]. Two parents βf1 and βf2 generate offspring βs1 and
βs2 in the following way:

βs1
i =

1

2

[
(1 +Bk)β

f1
i + (1−Bk)β

f2
i

]
(4)

and
βs2
i =

1

2

[
(1−Bk)β

f1
i + (1 +Bk)β

f2
i

]
(5)

where Bk ≥ 0 obtained from the uniform random number
source u(0, 1) in the following way

B(u) =

(2 · u)
1
η+1 if u ≤ 1

2(
1

2·(1−u)

) 1
η+1

if u > 1
2

(6)

7) BLX-alpha Crossover: Blend alpha crossover combines
two parents βf1 and βf2 to generate offspring βs by sampling
a new value in the range [mini − I · a,maxi + I · a] at each
position i. Here, mini and maxi are smaller and larger parent
values at location i. I equals maxi − mini [9]. For the α
value we use 0.5. The child is generated in the following way:

βs
i = (mini− I ·a)+α · |(maxi+ I ·a)− (mini− I ·a)| (7)

8) BLX-alpha-beta Crossover: Blend alpha beta crossover
operator creates a new offspring by selecting a random value
from the interval between the two alleles of the parent solutions
βf1 and βf2 . The interval is increased in direction of the
solution with better fitness by the factor α, and into the
direction of the solution with worse fitness by the factor β
[10]. The value for α is 0.75, and for β 0.25. The formula for
the generation of the offspring βs is the same as in BLX-alpha
Crossover.

9) Flat Crossover: Flat crossover generates descendant βs

whose genes are randomly generated in the interval
[
βf1 , βf2

]
[3] [11]. This crossover is the same as BLX-alpha crossover
when α = 0.

10) BGA Crossover: Two parents βf1 and βf2 generate
offspring βs. Let βf1 be the parent with better fitness. In that
case, the offspring has genes calculated in the following way:

βs
i = βf1

i ± rangi · γ · λ (8)

where λ equals

λ =
βf2
i − β

f1
i

‖βf1 − βf2‖
(9)

The sign “-” is selected with 0.9 probability and rangi =
0.5 · (bi − ai).

γ equals

γ =

15∑
k=0

αk · 2−k (10)

where αi ∈ 0, 1 is randomly generated with p(αi = 1) = 1
16

[3] [12].

11) Heuristic Crossover: First, take two parents βf1 and
βf2 and assume that the first parent (βf1) has smaller value
on each allele [13]. Then the offspring βs is created as

βs
i = α · (βf1

i − β
f2
i) + βf1

i (11)

12)Average Crossover: Two parents βf1 and βf2 generate
offspring βs in the following way [14]

βs
i = (βf1

i + βf2
i)/2 (12)

13)Onepoint Crossover: In onepoint crossover the descen-
dant is created in the same way as in the onepoint crossover
for a binary-coded GA. First, choose a random point k. Two
parents βf1 and βf2 generate offspring βs1 and βs2 . The first
offspring copies allele values from the first parent up to the
point k, and from the second parent from that point. For the
second offspring the procedure is analogous [15].

14) Random Crossover: Random crossover is devised as
a benchmark for testing the effectiveness of other crossover
operators, so this is not a crossover operator in true sense
[16]. Here, child is created by combining one individual from
the parent pool and one individual with the random values:

βs
i = (βf

i + βrandom
i) (13)

B. Combination Crossover

This crossover is actually a combination of all the previous
individual crossovers, where in each reproduction phase a
single crossover operator is chosen uniformly at random from
the pool of all available crossover operators. The reasoning
behind this approach is that the evolution is able to use as many
possible transitions in the search space as possible, although
it may impair convergence in some cases.

Additionally, we include the case when there is no
crossover operator present for the completeness of the analysis.

C. Benchmark Functions

For test functions we use functions that are available
in the COCO platform (COmparing Continuous Optimisers)
[5]. From that platform, 24 noise-free real-parameter single-
objective benchmark functions are chosen. The naming con-
vention for those functions adopted here is from f1 to f24.
The arrangement of the functions is the same as in COCO
(for instance, the function f1 is a sphere function, and f24 is
Lunacek bi-Rastrigin function). All functions are implemented
with an arbitrary number of dimensions, which is set to 30 in
this paper.

As stated in [5], the first 5 functions are separable.
Functions 6-9 are with low or moderate conditioning, and from
10 to 14 are functions with high conditioning. The first 14
functions are all unimodal. The functions from 15 to 19 are
multi-modal with adequate global structure and from 20 to
24 are multi-modal with weak global structure. For further
informations on functions or their properties refer to [5]. We
point here that for bounds we used are [−50, 50], which is
much larger that traditionally used in COCO ([−5, 5]), since we
are not interested in obtaining the best solution but in finding
the differences between the algorithms.

III. ENVIRONMENTAL SETTINGS AND RESULTS

In all the experiments, a real-coded genetic algorithm with
k-tournament steady-state selection is used. In this algorithm,
k individuals are randomly selected for a tournament, and
the worst of those individuals is eliminated. The eliminated
individual is immediately replaced with a new one by crossing
the two surviving parents from the tournament and applying
the mutation operator with a given probability. For the pa-
rameter k we chose k = 3 since that setting provides the

TABLE I: Parameters Used in Experiments

Parameter Size

Tournament size k 3

Mutation probability pm 0.3 per individual

Population size N 100

Number of runs 40

Dimensionality of the problems 30

Bounds of the problems [−50, 50]

Number of fitness evaluations 1E6

best results from our previous experience. We did not conduct
experiments with other selection procedures since the selection
mechanism (or the mutation operator) were not of interest in
this paper. Of course, there is a possibility that some crossover
operator works better with some other selection mechanism.
Since this line of research would yield exponential number
of experiments (every crossover operator for every selection
mechanism for every mutation operator), we chose a single
mutation and a selection operator for all the experiments.

As a genetic algorithm test suite the Evolutionary Com-
putation Framework (ECF) was used [17]. ECF is a C++
framework intended for the application of any type of the evo-
lutionary computation, developed at the University of Zagreb.
The framework includes all crossover operators used in this
paper.

Parameters of the genetic algorithm that are common for
every round of the experiments are the following: the mutation
probability is set to 0.3 per individual, population size N of
100, number of independent runs for each experiment is 30,
dimensionality D of all the test problems is set to 30, and
the number of fitness evaluations is set to 1E6. Bounds for
all experiments are set to [-50, 50]. For all the test functions,
finding the global minimum is the objective. All parameters
are additionally displayed in Table I for clarity.

A. The Experiments

There are three rounds of experiments, where every round
has its distinctive goal. The goal for the first round of ex-
periments is to find the best crossover operator for all the
problems, in the second round the goal is to find the best
operator for unimodal problems only, and in the third round the
best operator for multi-modal problems. This schedule could
sound somewhat opposite from the one that should be used
(i.e. first find the best operator for unimodal and multi-modal
problems, and then, at the end, for all the problems) but we
chose this approach in an effort to boost the power of statistical
analysis. Further justification for this approach will be given
in the following sections.

As a performance measure we use the average error ob-
tained for every operator (all the test functions are implemented
so the global minimum has the value of zero). For each
operator and each test function, a set of 30 best solutions from
30 runs are collected and their average value is taken as the
error rate. This structure of input data is in accordance with
previous analysis performed over multiple algorithms and test
problems [18] [19].

When conducting a statistical analysis, it is necessary to
decide whether to use parametric on nonparametric statistical
tests. To be able to use the parametric tests, it is necessary
to check if the data satisfies the independency, normality, and
heteroscedasticity conditions [18]. Parametric tests have the
advantage that posses better resolution when comparing data,
however, if all the necessary condition are not satisfied then
using parametric tests can lead to erroneous results.

The independence of the events is obvious since there are
independent runs of the algorithms. To check the normality
we use the Shapiro-Wilk (S-W) test. The results obtained
for the S-W test are not presented here but they show that
the values do not have normal distributions. For the het-
eroscedasticity property we use the Levene test, which shows
that heteroscedasticity is also not satisfied. Since the tests
showed that the solutions are not normally distributed and the
variances of the distributions of the different algorithms are
not homogeneities, we rely on nonparametric statistical tests.
The tests were conducted for a level of significance α of 0.05.

References regarding the statistical methods used can be
found in [20] and [21]. For the statistical analysis we use R
programming environment [22] and Keel [23].

B. Best Overall Performance

The goal for this round of experiments is to try to find the
best crossover operator for all the problems. In this setting
we have 24 problems and 16 crossover operator variations
(although, two of those variations are GA without the crossover
and GA with random crossover which can not really compare
with real crossover operators).

Since nonparametric statistical tests have lower resolution
than the parametric tests, it is important to try to follow the
guidelines on the ratio of number of algorithms to the number
of problems [18]. In our setting the number of algorithms
(operators) is relatively large as compared to the number of test
functions; still, this difference will not influence significantly
the first test we conduct. The first test is the Friedman two-
way analysis of variances by ranks, a well known procedure for
testing the differences between more than two related samples.
The goal of the Friedman test application is to try to show
whether there are differences between the crossover operators.
Additionally, we employ the Iman-Davenport test which is a
derivation of Friedman test that produces better statistics [18].
The results for the average rankings are displayed in Table II.
For each test problem the operators are given a rank from 1 to
16, based on the average error they produce on a given problem
(the best operator receives the rank of 1). The average rank of
each operator is calculated as the mean of all the ranks of an
operator over all the test problems.

With the level of significance α of 0.05, the Friedman test
reveals significant differences in crossover operators with test
values of 173.59 and p < 0.001. The corresponding Iman-
Davenport value is 21.42 and p < 0.001. Since there are
significant differences between operators, we can use post-hoc
statistical analysis that will show us where those differences
are. In post-hoc analysis a comparison is made between the
control crossover operator (the operator with the lowest value
from Friedman test) and all the other operators. As displayed in
Table II, the best operator is the Combination crossover. The

TABLE II: Average Rankings of the Crossover Operators

Algorithm Ranking

Arithmetic Whole 6.791
Arithmetic Simple 8.229
Arithmetic Single 9.145
Average 8.104
BGA 6.562
Discrete 7.895
Flat 9.229
Heuristic 9.062
Onepoint 8.354
Random 14.875
SBX 6.937
No crossover 16
Local 5.791
BLX-alpha 9.229
BLX-alpha-beta 8.229
Combination crossover 1.562

first post-hoc test is the Bonferroni-Dunn test [18] [20]. This
test does not have the strength in differentiating operators as
the other tests used, but it has the advantage that it can be easily
displayed in a graph. The interpretation of the Bonferroni-
Dunn test is that the performance of two crossover operators
is significantly different only if the corresponding average
ranks differ by at least a critical difference [18]. The critical
difference depends on the number of crossover operators and
test problems - the more there are crossover operators, the
critical differences will be bigger and the resolution of the
Bonferroni-Dunn test lower. Because of that, in this test we
used only 10 best operators based on the Friedman test. The
critical difference equals 2.4236, and the complete results are
displayed in Fig 1.

Next, we applied the Bonferroni-Dunn, Hochberg, Finner
and Li procedures [18] over the results of Friedman procedure.
In these tests, a comparison is made between the control
operator and the rest of the operators. Adjusted p-values are
shown in Table III. These results indicate whether the control
operator (here, Combination crossover) is better than each of
the remaining operators considering level of significance α of
0.05. Results show that the Combination operator performs
significantly better than any other operator. On the other hand,
on a set of all test functions, no crossover operator (except
for the Random and No crossover case) performs significantly
worse than any other crossover operator.

C. Unimodal Problems

In this round of experiments the goal is to find the best
crossover operator for test problems that are unimodal (14
in total). Since there are too many crossover operators to
effectively follow the guidelines from [18] as compared to
the number of available test problems, we selected the best
eight (half of total number of operators) performing operators
for comparison. Table IV gives the results of the average
rankings of the operators.

With the level of significance of 0.05, the Friedman test
shows significant differences in crossover operators with test
values of 59.69 and p < 0.001. The Iman-Davenport value is
20.25 with a value of p < 0.001. Since there are significant
differences, we can again employ post-hoc statistical analysis.
Here, the best crossover is the Combination crossover so we
use it as the control operator. In the Bonferroni-Dunn test the

Fig. 1: Bonferroni-Dunn’s test (CD = 2.42, control operator: Combination crossover)

TABLE III: Post-hoc comparison (control operator: Combination crossover)

Algorithm unadjusted p pBonf pHochberg pFinner pLi

No crossover 0 0 0 0 0
Random 0 0 0 0 0

BLX-alpha 0 0.000001 0 0 0
Flat 0 0 0 0 0

Arithmetic Single 0 0.000001 0 0 0
Heuristic 0 0.000001 0 0 0
Onepoint 0.000001 0.000012 0.000007 0.000002 0.000001

Arithmetic Simple 0.000001 0.000018 0.00009 0.000002 0.000001
BLX-alpha-beta 0.000001 0.000018 0.00009 0.000002 0.000001

Average 0.000002 0.000029 0.000012 0.000003 0.000002
Discrete 0.00004 0.000061 0.00002 0.000006 0.00004

SBX 0.000092 0.001379 0.000368 0.000115 0.000092
Arithmetic Whole 0.000142 0.002129 0.000426 0.000164 0.000142

BGA 0.000275 0.004121 0.000549 0.000294 0.000275
Local 0.00209 0.031346 0.00209 0.00209 0.00209

TABLE IV: Average Rankings of the crossover
operators/unimodal problems

Algorithm Ranking

Arithmetic Whole 3.6071
Arithmetic Simple 5.9643
BGA 3.6786
SBX 4.5357
Local 3.3214
Arithmetic Single 7.75
Average 5.6071
Combination crossover 1.5357

critical difference is 3.95 and the results are displayed in Fig.
2.

From Figure 2 we can see that it cannot be said

whether Combination crossover is significantly better than
Local, Whole Arithmetic or BGA crossover. The results from
the post-hoc statistical analysis are presented in Table V. The
table shows that the Combination operator performs better than
any other operator for unimodal problems, except for the Local
crossover operator.

D. Multi-modal Problems

Here the goal is to find the best crossover for multi-
modal problems (10 problems). Again we chose the best eight
crossover operators to conduct the analysis, for which the
average rankings are displayed in Table VI. Here Friedman
test shows significant differences with value 30.96 and p <
0.001, and Iman-Davenport with 7.1 and p < 0.001. The
control algorithm is the Combination crossover.

Fig. 2: Bonferroni-Dunn’s test (CD = 2.42, control operator: Combination crossover, unimodal problems)

TABLE V: Post-hoc comparison (control operator: Combination crossover)

Algorithm unadjusted p pBonf pHochberg pFinner pLi

Arithmetic Single 0 0 0 0 0
Arithmetic Simple 0.000002 0.000012 0.00001 0.000006 0.000002

Average 0.000011 0.000077 0.000055 0.000026 0.000012
SBX 0.001194 0.008356 0.004775 0.002088 0.00126
BGA 0.020638 0.144463 0.050521 0.028773 0.021344

Arithmetic Whole 0.02526 0.176822 0.050521 0.029408 0.026001
Local 0.053757 0.376297 0.053757 0.053757 0.053757

TABLE VI: Average Rankings of the crossover
operators/multi-modal problems

Algorithm Ranking

BLX-alpha 4.9
Flat 5.1
BLX-alpha-beta 3.5
Heuristic 4.5
SBX 6.9
Onepoint 5
Discrete 4.9
Combination crossover 1.2

Bonferroni-Dunn analysis is displayed in Fig. 3 with a
critical difference of 3.62. We can see that the Combination
crossover operator performs better than any of the algorithms
except for the BLX-alpha-beta crossover. Post-hoc statistics is
displayed in Table VII. After post-hoc analysis, we can see
that the results obtained from the Bonferroni-Dunn test are
confirmed, i.e. the Combination crossover performs better than
any of the other operators for multi-modal functions, except
for the BLX-alpha-beta crossover.

IV. DISCUSSION

There are too many possible combinations to try if one
would want to test every combination of crossover, selection
and mutation operators. Because of that, we test the perfor-
mance of only one operator - the crossover. We performed
three rounds of experiments in an effort to conclude which
crossover operators perform better. In the first round when
the goal was to find the best crossover operator for all the
test functions, the results show that the Combination crossover
performed the best. We are not aware that a comparison of this
kind of combined crossover with separate operators has been
presented before. Results that are obtained are expected from
one perspective, since in the Combination operator we have all
the other crossover operators, so definitely there are schemes
that can lead to good results. From the other perspective,
since there is no weighting factor when choosing a crossover
operator from the pool of operators, it could be possible that
some operators actually lead the search away from optimal
values. This can be especially so in case of Random crossover
(of course, Random crossover can be regarded as some instan-
tiation of ultimate mutation operator). It is hard to choose from
the other good operators (ten best ones) which one would be

Fig. 3: Bonferroni-Dunn’s test (CD = 2.42, control operator: Combination crossover, multi-modal problems)

TABLE VII: Post-hoc comparison (control operator: Combination crossover)

Algorithm unadjusted p pBonf pHochberg pFinner pLi

SBX 0 0.000001 0.000001 0.000001 0
Flat 0.000371 0.002594 0.002193 0.001296 0.000542

Onepoint 0.000523 0.003658 0.002193 0.001296 0.000542
BLX-alpha 0.000731 0.005118 0.002193 0.001296 0.000758

Discrete 0.000731 0.005118 0.002193 0.001296 0.000758
Heuristic 0.002591 0.018139 0.005183 0.003023 0.00268

BLX-alpha-beta 0.035764 0.250346 0.035764 0.035764 0.035764

the second best, but the Local crossover and BGA are quite
close.

In the second round of the experiments we tried to find the
best algorithm for unimodal problems. Again, the Combination
crossover exhibited the fastest convergence. After this opera-
tor, the best ones were the Whole arithmetic and the Local
crossover. It is worth to be reminded here that those two oper-
ators are very similar (the only difference is in the weighting
factor). Successfulness of the Whole arithmetic crossover is
of no surprise, since it is the most commonly used crossover
operator in real-coded GAs and that shows it endured many
comparisons and constantly performed good. The success of
the Local crossover is somewhat more surprising since it is not
so common in use. Still, since they are quite similar it is easy
to change from one version to another. That similarity can also
be regarded as a sanity check: if one operator performs good,
then the other should also perform similarly.

The third round of experiments concentrates on multi-
modal problems. The same as in round one and two, the Com-
bination crossover is again the one with the best performance.
The second best is BLX-alpha-beta; this can be expected since
the nature of that operator is quite adapt for multi-modal cases.

It is quite important to observe that no variation of arithmetic
crossovers (including Local) reached the top eight operators.
This should strongly indicate that those kind of operators are
not suitable for multi-modal problems.

It should be noted that the obtained results are also depen-
dent on the chosen maximum number of evaluations, which
was 1E6 in the experiments. In a different setting, e.g. with
different number of dimensions and where constraints may
dictate a different termination criteria, the outcomes may vary.

A. Further Research

There are several lines of further research we are currently
investigating. First, we are interested in the performance of
crossover operators when coupled with various selection and
mutation operators. Second, we plan to combine some of the
crossover operators with Taguchi [24] method which can
select better genes that undergo crossover process and by
it, enhance the genetic algorithm. We are currently working
on a procedure that can help us differentiate various test
problems based on their fitness landscapes [25]. Our goal
is to check whether there is a connection between a fitness
landscape type and the performance of a crossover operator.

Since the Combination crossover operator performed best in
all the experiments, it would be interesting to investigate the
influence of each crossover operator in this combined fashion.
Our intention is to repeat all the experiments but with a reduced
number of best crossover operators (from each category). After
that, we will add operators one at a time to check what is the
optimal combination.

V. CONCLUSION

In this work an exhaustive search was performed to find the
best crossover operator on a set of well-known optimization
problems. The results show that there are significant differ-
ences between crossover operators. However, a combination
of individual crossover operators, where an operator is chosen
at random each time the crossover is needed, performed
better than any other single crossover operator in most of
the experiments. If we neglect this Combination crossover
from the analysis, we can see that the differences between
operators are much smaller and in some cases there is no
statistically significant difference. From the obtained results we
can form a recommendation to use a combination of crossover
operators instead of a single operator. Naturally, there remains
the open question of what is the smallest subset of crossover
operators that yields significantly better results. In any case,
since many frameworks have more than one crossover operator
implemented, there should be no problems in using such a
combination.

REFERENCES

[1] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control, and Artificial
Intelligence. The MIT Press, Cambridge, USA, 1992.

[2] T. D. Gwiazda, Genetic Algorithms Reference. Tomasz Gwiazda, 2006.
[3] D. Ortiz-Boyer, C. Hervas-Martinez, and N. Garcia-Pedrajas, “Improv-

ing crossover operators for real-coded genetic algorithms using virtual
parents,” Journal of Heuristics, no. 13, pp. 265–314, 2007.

[4] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1, pp. 67–82, April 1997.

[5] N. Hansen, S. Finck, R. Ros, and A. Auger, “Real-Parameter Black-Box
Optimization Benchmarking 2009: Noiseless Functions Definitions,”
Tech. Rep. RR-6829, 2009.

[6] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.
Springer-Verlag, Berlin Heidelberg New York, USA, 2003.

[7] D. Dumitrescu, B. Lazzerini, L. C. Jain, and A. Dumitrescu, Evolution-
ary Computation. CRC Press, Florida, USA, 2000.

[8] K. D. R. B. Agrawal, “Simulated binary crossover for continuous search
space,” Tech. Rep., 1994.

[9] L. J. Eshelman and J. D. Schaffer, “Real-coded genetic algorithms and
interval-schemata,” in FOGA, L. D. Whitley, Ed. Morgan Kaufmann,
1992, pp. 187–202.

[10] M. Takahashi and H. Kita, “A crossover operator using independent
component analysis for real-coded genetic algorithms,” in Evolutionary
Computation, 2001. Proceedings of the 2001 Congress on, vol. 1, 2001,
pp. 643–649.

[11] N. J. Radcliffe, “Equivalence class analysis of genetic algorithms,” pp.
183–205, 1991.

[12] H. Mühlenbein and D. Schlierkamp-Voosen, “Predictive models for the
breeder genetic algorithm i. continuous parameter optimization,” Evol.
Comput., vol. 1, no. 1, pp. 25–49, Mar. 1993.

[13] A. H. Wright, “Genetic algorithms for real parameter optimization,”
in Foundations of Genetic Algorithms. Morgan Kaufmann, 1991, pp.
205–218.

[14] T. Nomura, “An analysis on crossovers for real number chromosomes in
an infinite population size,” in Proceedings of the Fifteenth international
joint conference on Artifical intelligence - Volume 2, ser. IJCAI’97. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997, pp. 936–
941.

[15] Z. Michalewicz, Genetic algorithms + data structures = evolution
programs (3rd ed.). London, UK, UK: Springer-Verlag, 1996.

[16] T. Jones, “Crossover, macromutation, and population-based search,” in
Proceedings of the Sixth International Conference on Genetic Algo-
rithms. Morgan Kaufmann, 1995, pp. 73–80.

[17] D. Jakobovic and et al., “Evolutionary computation framework,” Jan.
2013. [Online]. Available: http://gp.zemris.fer.hr/ecf/

[18] S. Garcia, D. Molina, M. Lozano, and F. Herrera, “A study on the
use of non-parametric tests for analyzing the evolutionary algorithms?
behaviour: a case study on the CEC 2005 special session on real
parameter optimization,” Journal of Heuristics, no. 15, pp. 617–644,
2009.

[19] S. Picek, M. Golub, and D. Jakobovic, “Evaluation of crossover operator
performance in genetic algorithms with binary representation,” in ICIC
(3), 2011, pp. 223–230.

[20] D. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, 4th ed. Chapman and Hall/CRC, 2007.

[21] T. Bartz-Beielstein, Experimental Research in Evolutionary Computa-
tion: The New Experimentalism. Springer, New York, USA, 2006.

[22] “The R project for statistical computing,” 2013. [Online]. Available:
http://www.r-project.org/

[23] J. Alcala-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. Garca, L. Snchez,
and F. Herrera, “Keel data-mining software tool: Data set repository, in-
tegration of algorithms and experimental analysis framework,” Journal
of Multiple-Valued Logic and Soft Computing, vol. 17, pp. 255–287,
2011.

[24] J.-T. Tsai, T.-K. Liu, and J.-H. Chou, “Hybrid taguchi-genetic algorithm
for global numerical optimization,” IEEE Transactions on Evolutionary
Computation, vol. 8, no. 4, pp. 365–377, August 2004.

[25] E.-G. Talbi, Metaheuristics - From Design to Implementation. Wiley,
2009.

