
An Asynchronous Model of Global Parallel Genetic Algorithms

Marin Golub, Leo Budin
Faculty of Electrical Engineering and Computing

Unska 3, HR-10000 Zagreb, Croatia
phone: +385 1 61 29 935, fax: +385 1 61 29 653

e-mail: {marin.golub, leo.budin}@fer.hr
contact author: Marin Golub, e-mail: marin.golub@fer.hr, fax: +385.1.61 29 653

Keywords: parallel genetic algorithm, multithreading, speed-up, tournament selection

Abstract

Genetic algorithms usually require more computation
power than other heuristic approaches do. In this paper
we introduce an efficient implementation of
asynchronously global parallel genetic algorithm with
3-tournament elimination selection. The parallelization
of the algorithm is achieved through multithreading
mechanism, a very effective and easy to implement
technique. With parallelization we can get a significant
decrease in computational time on a multiprocessor
system. Reducing interprocess communication is a key
to getting high performance in parallel computing. That
is the reason why the asynchronous model is used.

Described model of global PGA is suitable for
implementation on a shared memory multiprocessor.

1. Introduction

Genetic algorithm (GA) is a representative of a class of
methods based on heuristic random search techniques
[MIC92]. It was proposed by John H. Holland in the
early seventies and has found application in a number of
practical problems since. Genetic algorithm is a
powerful optimization algorithm in a wide spectrum of
applications [MUN93] and it requires a considerable
amount of computational time. The basic motivation of
GA parallelization is the reduction of the processing
time needed to reach an acceptable solution [CAN95].

In this work, the multithreading technique is recognized
as an efficient tool for transforming the genetic
algorithm into parallel form. Multiple threads are
relatively simple to implement and they require less
preparation and handling than processes.

The parallel algorithm discussed in this paper has been
designed for a shared memory multiprocessor. Several
parallel threads work over one common population.
From a parallel processing point of view, reducing
unnecessary communication among processors is
essential to avoid performance degradation [MUN93].

That is why the asynchronous approach has been
favored. A number of threads can operate on the
population at the same time, each one acting
independently.

In the next section we give a short survey of parallel
genetic algorithms. In Section 3 a model of global
parallel genetic algorithm is presented. Section 4
describes the asynchronous 3-tournament elimination
selection. Our approach to dealing with invalid
iterations is described in Section 5.

2. A Classification of Parallel Genetic
Algorithms

Genetic algorithm is a heuristic random search method
based on natural evolution which requires considerable
amount of CPU time. Since the optimization problem
has to be solved in given computing and time
constraints, parallel genetic algorithm is an attempt to
speed-up the program. The basic idea behind most
parallel programs is to divide a task into several
subtasks and execute subtasks simultaneously using
multiple processors.

Some parallelization methods use a single population,
while others divide the population into several relatively
isolated subpopulations [CAN98a]. Two approaches to
parallel genetic algorithms have been considered so far
[TAL91]: standard parallel approach and decomposition
approach. In the standard parallel approach the
evaluation and reproduction are done in parallel. This is
one-population model, because genetic operators work
over one population. The decomposition approach or
population partitioning is the most natural way to
parallelization. This approach consist in dividing the
population into subpopulations. Each processor runs the
genetic algorithm on its own subpopulation.
Periodically some individuals migrate from one
subpopulation to another.

Existing parallel implementations of genetic algorithm
can be classified into three main types of PGAs
[CAN98a, LIN97, MIC92](Figure 1):

• global single-population master-slave genetic
algorithms (GPGA),

• massively parallel genetic algorithms (MPGA),
• distributed genetic algorithms (DGA).

Furthermore, there are two additional models of PGAs
which combine three main types of PGAs or combine
PGA with some other optimization method:

• hierarchical parallel genetic algorithms (HPGA),
• hybrid parallel genetic algorithms

Figure 1. Models of parallel genetic algorithm

Global parallel genetic algorithms or master-slave
genetic algorithms consist of one population, but
evaluation of fitness and/or the application of genetic
operators are distributed among several processors
(Figure 2).

 ...

 Slaves

Figure 2. Master-slave genetic algorithm

As in the serial genetic algorithm, selection and mating
are global: each individual may compete and mate with
any other. Global PGA are usually implemented as
master slave programs, where the master stores the
population and the slaves evaluate the fitness
[CAN98a]. Usually the evaluation of the individuals is
parallelized, because the fitness of an individual is
independent from the rest of the population and there is

no need to communicate during this phase.
Communication occurs only as each slave receives its
subset of individuals to evaluate and when the slaves
return the fitness values.

The GPGA is synchronous if the algorithm stops and
waits the fitness values for all the population before
proceeding into the next generation. Synchronous
GPGA has the same properties as sequential genetic
algorithm, but it is faster if the algorithm spends most of
the time for the evaluation process. Synchronous
master-slave GAs have many advantages: they explore
the search space exactly as a sequential GA, they are
easy to implement and significant performance
improvements are possible in many cases [CAN98b].

Massively parallel genetic algorithms are also called
fine-grained genetic algorithms (fgGA). Fine-grained
PGAs are suited for massively parallel computers
(Figure 3) such as MasPar MP-1 [LOG92]. There are a
variety of fine-grained PGAs which have been proposed
and studied [LOG92, TAL91, SAR96].

Figure 3. A torus of 16 processors

MPGA has only one population, but interactions
between individuals is limited. Selection and mating are
restricted to a small neighborhood. The overlapping
neighborhoods allow individuals to move around
continuously and it provides an implicit mechanism for
migration. A good solution can disseminate across the
entire population.

Figure 4. Three different sizes and shapes of
neighbourhood

DGA
(cgGA)

PGA

MPGA
(fgGA)

GPGA
(master-slave GA)

hierarchical
PGA

hybrid
PGA

BASIC
MODELS

ADDITIONAL
MODELS

Master

New parameters are neighborhood size and shape.
Figure 4. shows examples of different neighborhood
sizes (4, 6 and 12) and three different neighborhood
shapes.

Distributed genetic algorithms are the most popular
parallel methods. Such algorithms assume that several
subpopulations (demes) evolve in parallel and that is
why this PGA is also called multiple-population or
multiple-demes genetic algorithm. Demes are relatively
isolated, so this algorithm is also known as island
parallel genetic algorithm or coarse-grained genetic
algorithm. Many papers and many authors describe such
parallel implementation and probably that is the reason
why it has so many different names.

Figure 5. A schematic of DGA with ring (left) and
injection island topology (right)

Figure 6. Examples of two-neighbourhood topologies

The models include a concept of migration (movement
of an individual string from one subpopulation to
another). It uses multiple demes (populations) that
occasionally exchange some individuals in a process
called migration. A specification of an island GAs
defines the size and number of demes, the topology of
the connections between them (Figure 5, Figure 6), the
migration rate (the fraction of the population that
migrates), the frequency of migrations and the policy to
select emigrants and to replace existing individuals with
incoming migrants. All these seven new parameters
have a great influence on the quality of the search and
on the efficiency of the algorithm [CAN99b]. Because
they are controlled by many parameters, the multiple-
population PGAs are the hardest to use.

Hierarchical parallel genetic algorithms combine two
of three basic models of PGA. When two methods of
parallelizing genetic algorithms are combined they form

a hierarchy. This class of algorithms is called
hierarchical because at higher level there are multiple-
deme algorithms with master-slave or fine grained at the
lower level (Figure 7). Also, at both levels there can be
multiple-deme genetic algorithms [CAN98a].

Hierarchical implementations can reduce the execution
time more than any of their components alone
[CAN98a]. The speed-up of a hierarchical parallel
genetic algorithm is product of speed-up of a PGA at
higher and speed-up of a PGA at lower level.

Figure 7. Examples of hierarchical PGAs which
combine multiple demes with fine-grained (left) and

multiple demes with master-slave (right) GAs

Hybrid parallel genetic algorithms combine PGA with
some classical optimization method, for example local
hill-climbing [MUE91, MUE92].

3. A Model of Global Parallel Genetic
Algorithm

The question that we want to answer in this section is:
which one of three basic models is the most suitable for
implementation on a shared memory multiprocessor
system with few processors? Obviously the massively
PGA is not suitable, because it needs massively parallel
computers with a number of processors (several
hundreds or even thousands). Two demes (if we have a
two processor system) is too small number of
subpopulations for the distributed genetic algorithm.
Even if we have more than two processors, there is still
too many new parameters that we must set: migration
rate, frequency of migrations, the policy of migrants
selection and the topology.

In contrast of other models of PGA the operation of
global parallel genetic algorithm (master-slave genetic
algorithm) is identical to a serial GA, and therefore any
available knowledge about serial GAs can be applied
directly to global PGA [CAN99a]. In the traditional
master-slave model, the master processor stores the
entire population and applies genetic operators to
produce the next generation. The slave processors are

used to evaluate the fitness of a fraction of the
population in parallel.

The parallel genetic algorithm can be implemented
using several threads. For every algorithm that we want
to execute in multiple threads, first we have to identify
independent parts and assign to each a thread.

Master thread{
initialize population;
evaluate population;
for(i=1;i<NUMBER_OF_PROCESSORS;i++){
 create new Slave thread;
}

}

Slave thread{
while(termination criterion is not

reached){
select three individuals;
eliminate the worst individual of three

selected;
child=crossover(survived individuals);
replace deleted individual with child;
perform mutation with probability pm;
evaluate new individual;

}
}

Figure 8. Asynchronous global parallel genetic
algorithm with 3-tournament bad individual selection

In our implementation of master-slave GA, the master
creates random initial population, evaluates created
individuals and starts the slaves (Figure 8). Each slave
performs whole evolution process in contrast of the
traditional master-slave GA where the slaves only
evaluate the fitness. This is a model of global GA,
because each individual may compete and mate with
any other.

The tournament selection is suitable for parallel
execution [CAN99a, CAN99b, YOS99]. The 3-
tournament bad individual selection in each step of the
evolution chooses with equal probability three
individuals from the mating pool. Then, it eliminates the
weakest one of those three individuals. The survived
two individuals are parents of a child which will replace
the eliminated one. The mutation is performed over
child with probability pm. New individual is evaluated
before proceeding into the next iteration. The number of
iterations is equal to the number of evaluations.

This model of global PGA, if it is synchronous, has
exactly the same properties as the same sequential GA,
with speed being the only difference. The traditional
synchronous GPGA has generational selection and the
algorithm stops and waits the fitness values for all the
population before proceeding into the next generation
[CAN98a]. In our case, the algorithm has elimination

selection and two or more threads in each iteration
should not eliminate the same individual. So, the
elimination of individuals can be synchronized.
Unfortunately, unlike we expected, such synchronous
GPGA is not faster; it is slower than sequential GA,
because it spends more time for synchronization than
for performing genetic operators [BUD98]. As the goal
of parallelization is speeding up the algorithm, the
synchronization must be avoided if possible.

The asynchronous GPGA with elimination selection
(Figure 8) does not have the same properties as
sequential GA. Moreover, expected speed-up factor is
equal to the number of processors. The worst thing that
could happen when we implement asynchronous GPGA
is that two or more threads select the same individual
for elimination. The work of only one of them will take
effect, while other threads will work in vain. The total
number of iterations is smaller than given number of
iterations, because some threads spend some iterations
in vain. That is the reason why the algorithm does not
give so good solution as the same sequential GA in
given number of iterations. But if we know the
probability of multiple elimination of the same
individual by several threads at the same time, we can
calculate the expected number of iterations when
threads will perform genetic operators in vain. The
asynchronous GPGA will have the same properties as
sequential GA, with speed-up being the only difference,
if the total number of iterations is increased.

4. The 3-Tournament Selection

Let the population consist of N individuals. The elitism
is inherently implemented, because the best individual
and the second best individual can not be eliminated if
the 3-tournament elimination selection is used. Let the
individuals be indexed by their fitness value, i.e. the
best one has the index i=1 and the worst one i=N. The
probability p(i) (Figure 9) of selection for elimination
of the i-th individual, where i=3,4,...,N, with 3-
tournament bad individual selection is given by:

 −
−

=

3

3

1

3
)(

N

ii

ip . (1)

Figure 9. Probability of elimination of the i-th
individual for four sizes of population (N=10,15,20,50)

Let us assume that the described algorithm is executed
on a two processor computer. The probability of double
selection of the i-th individual (both thread select the i-
th individual) in each iteration is equal to p(i)2. The
probability P2 of double selection of any individual on
the two processor system with two threads is the sum of
probabilities of double selection of each individual:

 ∑
=

=
N

i

ipNP
3

2
2)()(. (2)

Inserting Equation 1 into Equation 2 gives

2

3

2

3
2)2)(1(

)2)(1(3

3

3

1

3
)(∑∑

==

−−
−−

=

 −
−

=
N

i

N

i NNN

ii

N

ii

NP .(3)

Finally, the probability that one thread of two will work
in vain in each iteration is the function of the population
size (Figure 10) and it is given by

22

234

2
)2()1(5

64575459
)(

−−
+−+−=

NNN

NNNN
NP . (4)

Figure 10. The probability of double selection of the
same individual is a function of the population size N

If we have a two processor system we should expect
finding the solution two times faster than on the one
processor system. The speed-up factor of described
asynchronous GPGA is not equal to the number of
processors, because the number of iterations must be
increased.

5. The Number of Iterations

For two processor system the probability of double
elimination the same individual P2(N) is given by
Equation (4). That means that one of two threads will
work in vain with probability P2(N). Let us assume that
the total number of iterations IT is fairly distributed
among the threads: each of two threads perform IT/2
iterations. Expected number of useless iterations IU is
given by

)(
2 2 NP

I
I T

U ⋅= . (5)

The number of iterations I of sequential GA must be
equal to the total number of iterations IT minus useless
iterations IU:

)(
2 2 NP

I
II T

T ⋅−= . (6)

The total number of iterations IT is given by:

2

)(
1 2 NP

I
IT

−
= . (7)

The consequence is that described asynchronous GPGA
on a two processor system is not exactly two times
faster, but two minus P2(N) times faster then the serial
GA (Figure 11).

Figure 11. Speed-up of asynchronous GPGA on a two
processor system

For example, let the population consists of 50
individuals and the number of iterations is 100000. The
probability that both thread will select the same

individual for elimination P2(50) is 0.0367 (Equation 4).
The expected number of useless iterations IU (Equation
5) is 1835. In that case, if we want to achieve the same
solution with our GPGA as with sequential, the number
of iterations must be 101870 (Equation 7). Each one of
two thread will perform 50935 (half of 101870)
iterations. The speed up is not 2, because each one of
two threads will not perform 50000, but 50935
iterations. Finally, the speed-up is
s=100000/50935=1.963.

The execution time does not depend on the population
size N, if the total number of iterations is fixed. It
depends on the total number of iterations IT. If we want
to achieve the same results as sequential GA, the total
number of iterations must be increased (Equation 7).
The consequence is that speed-up depends on the
population size (Figure 11).

6. Concluding Remarks

The presented model of global parallel genetic
algorithm is suitable for implementation on a shared
memory computer with several processors. The
difference between traditional GPGA (master-slave
GA) and the described GPGA is in tasks which master
and slaves perform. In the traditional GPGA slaves only
evaluate individuals, while the master distributes
individuals among slaves for evaluation and the master
performs all genetic operators. The assumption is that
the evaluation takes most of the time in the evolution
process. In our case, the master only initializes the
population, while slaves perform the whole evolution
process including evaluation. The parts obtained by
dividing the genetic algorithm are independent. The
critical sections are avoided, because the
synchronization mechanisms would significantly slow
down the parallel program.

Advantages of our approach are: the algorithm is simple
for implementation, the elitism is inherently
implemented, all genetic operators and evaluation is
parallelized, there is no need for any communication
mechanism (the whole population is placed into shared
memory), it works without any synchronization, the
execution time for a given number of iterations does not
depend on the population size N for a constant number
of iterations and speed-up factor is near the number of
processors. Moreover, the algorithm can be executed by
any given number of processors without any code
adaptation. Disadvantages are: the number of iterations
must be increased because some threads may perform
invalid iterations and it is not suitable for any fitness-
proportional selection [CAN99a]. Nevertheless, the
number of invalid iterations is a function of the
population size and it can be predicted and calculated as

it was shown in this paper on an example for a two
threaded GPGA.

Acknowledgement

This work was carried out within the project 036-014
Problem-Solving Environments in Engineering, funded
by Ministry of Science and Technology of the Republic
of Croatia.

References

[BUD98] Budin, L., Golub, M., Jakobović, D., Parallel
Adaptive Genetic Algorithm, International
ICSC/IFAC Symposium on Neural Computation
NC’98, Vienna, 1998, pp. 157-163.

[CAN95] Cantú-Paz E., A Summary of Research on
Parallel Genetic Algorithms, 1995., available from:
www.dai.ed.ac.uk/groups/evalg/Local_Copies_of_P
apers/Cantu-Paz.A_Summary_of_Research_on_
Parallel_Genetic_Algorithms.ps.gz

[CAN98a] Cantú-Paz, E., A Survey of Parallel Genetic
Algorithms, Calculateurs Paralleles, Vol. 10, No. 2.
Paris: Hermes, 1998., available via ftp from:
ftp://ftp-illigal.ge.uiuc.edu/pub/papers/Publications/
cantupaz/survey.ps.Z.

[CAN98b] Cantú-Paz, E., Designing Efficient Master-
slave Parallel Genetic Algorithms, Genetic
Programming: Proceedings of the Third Annual
Conference. (pp. 455). San Francisco, CA, 1998.

[CAN99a] Cantú-Paz, E., Goldberg, D.E., Parallel
Genetic Algorithms with Distributed Panmictic
Populations, 1999. available from: http://www-
illigal.ge.uiuc.edu/cgi-bin/orderform/orderform.cgi.

[CAN99b] Cantú-Paz, E., Migration Policies, Selection
Pressure, and Parallel Evolutionary Algorithms,
1999., available via ftp from: ftp://ftp-
illigal.ge.uiuc.edu/pub/papers/IlliGALs/99015.ps.Z.

[GOO97] Goodman, E.D., Averill, R.C., Punch, W.F.,
Eby, D.J., Parallel Genetic Algorithms in the
Optimization of Composite Structures, Second
World Conference on Soft Computing (WSC2),
June, 1997., available from: http://garage.cps.msu.
edu/papers/GARAGe97-05-02.ps

[LIN97] Lin, S.C., Goodman, E.D., Punch, W.F.,
Investigating Parallel Genetic Algorithms on Job
Shop Scheduling Problems, Evolutionar
Programming VI, Proc. Sixth Internat. Conf., EP97,
Springer Verlag, NY, P. J. Angeline, et al., eds.,
Indianapolis, 383-394, June, 1997.

[LOG92] Logar, A.M., Corwin, E.M., English, T.M.,
Implementation of massively parallel genetic

algorithms on the MasPar MP-1, Applied
computing (vol. II) technological challenges of the
1990's, page 1015, 1992.

[MIC92] Michalewicz, Z. (1992), Genetic Algorithms +
Data Structures = Evolutionary Programs,
Springer-Verlag, Berlin.

[MUE91] Muehlenbein, H., Evolution in Time and
Space - The Parallel Genetic Algorithm,
Foundations of Genetic Algorithms, G. Rawlins
(ed.), pp. 316-337, Morgan-Kaufman, 1991.,
available via ftp from: ftp://borneo.gmd.de/pub/as/
ga/gmd_as_ga-91_01.ps

[MUE92] Muehlenbein, H., Parallel Genetic
Algorithms in Combinatorial Optimization,
Computer Science and Operations Research O.
Balci, R. Sharda and S. Zenios (eds.), pp. 441-456,
Pergamon Press, New York 1992., available via ftp
from: ftp://borneo.gmd.de/pub/as/ga/gmd_as_ga-
92_01.ps

[MUN93] Munetomo, M., Takai, Y., Sato, Y., An
Efficient Migration Scheme for Subpopulation-

Based Asynchronously PGA, Hokkaido University
Information Engineering Technical Report HIER-
IS-9301, Sapporo, July, 1993.

[SAR96] Sarma, J., De Jong, K., An Analysis of the
Effects of Neighborhood Size and Shape on Local
Selection Algorithms, Proceedings of the Fourth
International Conference on Parallel Problem
Solving from Nature (PPSN96), Sept. 22-26, Berlin,
Germany, 1996.

[TAL91] E.-G. Talbi ,P. Bessière, A parallel genetic
algorithm for the graph partitioning problem,
Supercomputing, 312 – 320, 1991.

[YOS99] Yoshida, N., Yasuoka, T., Moriki, T., Parallel
and Distributed Processing in VLSI Implementation
of Genetic Algorithms, Proceedings of the Third
International ICSC Symposia on Intelligent
Industrial Autimation, IIA’99 and Soft Computnig,
SOCO’99, June 1-4, Genova, Italy, pp. 450-454,
1999.

