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Abstract 

Genetic algorithms usually require more computation 
power than other heuristic approaches do. In this paper 
we introduce an efficient implementation of 
asynchronously global parallel genetic algorithm with 
3-tournament elimination selection. The parallelization 
of the algorithm is achieved through multithreading 
mechanism, a very effective and easy to implement 
technique. With parallelization we can get a significant 
decrease in computational time on a multiprocessor 
system. Reducing interprocess communication is a key 
to getting high performance in parallel computing. That 
is the reason why the asynchronous model is used. 

Described model of global PGA is suitable for 
implementation on a shared memory multiprocessor. 

1. Introduction 

Genetic algorithm (GA) is a representative of a class of 
methods based on heuristic random search techniques 
[MIC92]. It was proposed by John H. Holland in the 
early seventies and has found application in a number of 
practical problems since. Genetic algorithm is a 
powerful optimization algorithm in a wide spectrum of 
applications [MUN93] and it requires a considerable 
amount of computational time. The basic motivation of 
GA parallelization is the reduction of the processing 
time needed to reach an acceptable solution [CAN95]. 

In this work, the multithreading technique is recognized 
as an efficient tool for transforming the genetic 
algorithm into parallel form. Multiple threads are 
relatively simple to implement and they require less 
preparation and handling than processes. 

The parallel algorithm discussed in this paper has been 
designed for a shared memory multiprocessor. Several 
parallel threads work over one common population. 
From a parallel processing point of view, reducing 
unnecessary communication among processors is 
essential to avoid performance degradation [MUN93]. 

That is why the asynchronous approach has been 
favored. A number of threads can operate on the 
population at the same time, each one acting 
independently. 

In the next section we give a short survey of parallel 
genetic algorithms. In Section 3 a model of global 
parallel genetic algorithm is presented. Section 4 
describes the asynchronous 3-tournament elimination 
selection. Our approach to dealing with invalid 
iterations is described in Section 5. 

2. A Classification of Parallel Genetic 
Algorithms 

Genetic algorithm is a heuristic random search method 
based on natural evolution which requires considerable 
amount of CPU time. Since the optimization problem 
has to be solved in given computing and time 
constraints, parallel genetic algorithm is an attempt to 
speed-up the program. The basic idea behind most 
parallel programs is to divide a task into several 
subtasks and execute subtasks simultaneously using 
multiple processors. 

Some parallelization methods use a single population, 
while others divide the population into several relatively 
isolated subpopulations [CAN98a]. Two approaches to 
parallel genetic algorithms have been considered so far 
[TAL91]: standard parallel approach and decomposition 
approach. In the standard parallel approach the 
evaluation and reproduction are done in parallel. This is 
one-population model, because genetic operators work 
over one population. The decomposition approach or 
population partitioning is the most natural way to 
parallelization. This approach consist in dividing the 
population into subpopulations. Each processor runs the 
genetic algorithm on its own subpopulation. 
Periodically some individuals migrate from one 
subpopulation to another. 



Existing parallel implementations of genetic algorithm 
can be classified into three main types of PGAs 
[CAN98a, LIN97, MIC92](Figure 1): 

• global single-population master-slave genetic 
algorithms (GPGA), 

• massively parallel genetic algorithms (MPGA), 
• distributed genetic algorithms (DGA). 

Furthermore, there are two additional models of PGAs 
which combine three main types of PGAs or combine 
PGA with some other optimization method: 

• hierarchical parallel genetic algorithms (HPGA),  
• hybrid parallel genetic algorithms  

 

 

 

 

 

 

 

 

 

 

Figure 1.  Models of parallel genetic algorithm 

Global parallel genetic algorithms or master-slave 
genetic algorithms consist of one population, but 
evaluation of fitness and/or the application of genetic 
operators are distributed among several processors 
(Figure 2). 

 

 

 
 
 ... 

 Slaves 

Figure 2. Master-slave genetic algorithm 

As in the serial genetic algorithm, selection and mating 
are global: each individual may compete and mate with 
any other. Global PGA are usually implemented as 
master slave programs, where the master stores the 
population and the slaves evaluate the fitness 
[CAN98a]. Usually the evaluation of the individuals is 
parallelized, because the fitness of an individual is 
independent from the rest of the population and there is 

no need to communicate during this phase. 
Communication occurs only as each slave receives its 
subset of individuals to evaluate and when the slaves 
return the fitness values. 

The GPGA is synchronous if the algorithm stops and 
waits the fitness values for all the population before 
proceeding into the next generation. Synchronous 
GPGA has the same properties as sequential genetic 
algorithm, but it is faster if the algorithm spends most of 
the time for the evaluation process. Synchronous 
master-slave GAs have many advantages: they explore 
the search space exactly as a sequential GA, they are 
easy to implement and significant performance 
improvements are possible in many cases [CAN98b]. 

Massively parallel genetic algorithms are also called 
fine-grained genetic algorithms (fgGA). Fine-grained 
PGAs are suited for massively parallel computers 
(Figure 3) such as MasPar MP-1 [LOG92]. There are a 
variety of fine-grained PGAs which have been proposed 
and studied [LOG92, TAL91, SAR96]. 

 

 

 

 

 

 

 

 

Figure 3. A torus of 16 processors 

MPGA has only one population, but interactions 
between individuals is limited. Selection and mating are 
restricted to a small neighborhood. The overlapping 
neighborhoods allow individuals to move around 
continuously and it provides an implicit mechanism for 
migration. A good solution can disseminate across the 
entire population. 

 
 

 

 

 

  

Figure 4. Three different sizes and shapes of 
neighbourhood 

DGA 
(cgGA) 

PGA 

MPGA 
(fgGA) 

GPGA 
(master-slave GA) 

hierarchical 
PGA 

hybrid 
PGA 

BASIC 
MODELS 

ADDITIONAL 
MODELS 

Master 



New parameters are neighborhood size and shape. 
Figure 4. shows examples of different neighborhood 
sizes (4, 6 and 12) and three different neighborhood 
shapes. 

Distributed genetic algorithms are the most popular 
parallel methods. Such algorithms assume that several 
subpopulations (demes) evolve in parallel and that is 
why this PGA is also called multiple-population or 
multiple-demes genetic algorithm. Demes are relatively 
isolated, so this algorithm is also known as island 
parallel genetic algorithm or coarse-grained genetic 
algorithm. Many papers and many authors describe such 
parallel implementation and probably that is the reason 
why it has so many different names. 

 

 

 

 

 
 

Figure 5. A schematic of DGA with ring (left) and 
injection island  topology (right) 

 

 

 

 

 
 

Figure 6. Examples of two-neighbourhood topologies 

The models include a concept of migration (movement 
of an individual string from one subpopulation to 
another). It uses multiple demes (populations) that 
occasionally exchange some individuals in a process 
called migration. A specification of an island GAs 
defines the size and number of demes, the topology of 
the connections between them (Figure 5, Figure 6), the 
migration rate (the fraction of the population that 
migrates), the frequency of migrations and the policy to 
select emigrants and to replace existing individuals with 
incoming migrants. All these seven new parameters 
have a great influence on the quality of the search and 
on the efficiency of the algorithm [CAN99b]. Because 
they are controlled by many parameters, the multiple-
population PGAs are the hardest to use. 

Hierarchical parallel genetic algorithms combine two 
of three basic models of PGA. When two methods of 
parallelizing genetic algorithms are combined they form 

a hierarchy. This class of algorithms is called 
hierarchical because at higher level there are multiple-
deme algorithms with master-slave or fine grained at the 
lower level (Figure 7). Also, at both levels there can be 
multiple-deme genetic algorithms [CAN98a]. 

Hierarchical implementations can reduce the execution 
time more than any of their components alone 
[CAN98a]. The speed-up of a hierarchical parallel 
genetic algorithm is product of speed-up of a PGA at 
higher and speed-up of a PGA at lower level. 

 

 

 

 

 

 

 

 

Figure 7. Examples of hierarchical PGAs which 
combine multiple demes with fine-grained (left) and 

multiple demes with master-slave (right) GAs 

Hybrid parallel genetic algorithms combine PGA with 
some classical optimization method, for example local 
hill-climbing [MUE91, MUE92]. 

3. A Model of Global Parallel Genetic 
Algorithm 

The question that we want to answer in this section is: 
which one of three basic models is the most suitable for 
implementation on a shared memory multiprocessor 
system with few processors? Obviously the massively 
PGA is not suitable, because it needs massively parallel 
computers with a number of processors (several 
hundreds or even thousands). Two demes (if we have a 
two processor system) is too small number of 
subpopulations for the distributed genetic algorithm. 
Even if we have more than two processors, there is still 
too many new parameters that we must set: migration 
rate, frequency of migrations, the policy of migrants 
selection and the topology. 

In contrast of other models of PGA the operation of 
global parallel genetic algorithm (master-slave genetic 
algorithm) is identical to a serial GA, and therefore any 
available knowledge about serial GAs can be applied 
directly to global PGA [CAN99a]. In the traditional 
master-slave model, the master processor stores the 
entire population and applies genetic operators to 
produce the next generation. The slave processors are 



used to evaluate the fitness of a fraction of the 
population in parallel. 

The parallel genetic algorithm can be implemented 
using several threads. For every algorithm that we want 
to execute in multiple threads, first we have to identify 
independent parts and assign to each a thread. 

Master thread{ 
initialize population; 
evaluate population; 
for(i=1;i<NUMBER_OF_PROCESSORS;i++){ 
 create new Slave thread; 
} 

} 
 
 
Slave thread{ 
while(termination criterion is not 

reached){ 
select three individuals; 
eliminate the worst individual of three 

selected; 
child=crossover(survived individuals); 
replace deleted individual with child; 
perform mutation with probability pm; 
evaluate new individual; 

} 
} 
 

Figure 8. Asynchronous global parallel genetic 
algorithm with 3-tournament bad individual selection 

In our implementation of master-slave GA, the master 
creates random initial population, evaluates created 
individuals and starts the slaves (Figure 8). Each slave 
performs whole evolution process in contrast of the 
traditional master-slave GA where the slaves only 
evaluate the fitness. This is a model of global GA, 
because each individual may compete and mate with 
any other. 

The tournament selection is suitable for parallel 
execution [CAN99a, CAN99b, YOS99]. The 3-
tournament bad individual selection in each step of the 
evolution chooses with equal probability three 
individuals from the mating pool. Then, it eliminates the 
weakest one of those three individuals. The survived 
two individuals are parents of a child which will replace 
the eliminated one. The mutation is performed over 
child with probability pm. New individual is evaluated 
before proceeding into the next iteration. The number of 
iterations is equal to the number of evaluations. 

This model of global PGA, if it is synchronous, has 
exactly the same properties as the same sequential GA, 
with speed being the only difference. The traditional 
synchronous GPGA has generational selection and the 
algorithm stops and waits the fitness values for all the 
population before proceeding into the next generation 
[CAN98a]. In our case, the algorithm has elimination 

selection and two or more threads in each iteration 
should not eliminate the same individual. So, the 
elimination of individuals can be synchronized. 
Unfortunately, unlike we expected, such synchronous 
GPGA is not faster; it is slower than sequential GA, 
because it spends more time for synchronization than 
for performing genetic operators [BUD98]. As the goal 
of parallelization is speeding up the algorithm, the 
synchronization must be avoided if possible. 

The asynchronous GPGA with elimination selection 
(Figure 8) does not have the same properties as 
sequential GA. Moreover, expected speed-up factor is 
equal to the number of processors. The worst thing that 
could happen when we implement asynchronous GPGA 
is that two or more threads select the same individual 
for elimination. The work of only one of them will take 
effect, while other threads will work in vain. The total 
number of iterations is smaller than given number of 
iterations, because some threads spend some iterations 
in vain. That is the reason why the algorithm does not 
give so good solution as the same sequential GA in 
given number of iterations. But if we know the 
probability of multiple elimination of the same 
individual by several threads at the same time, we can 
calculate the expected number of iterations when 
threads will perform genetic operators in vain. The 
asynchronous GPGA will have the same properties as 
sequential GA, with speed-up being the only difference, 
if the total number of iterations is increased. 

4. The 3-Tournament Selection 

Let the population consist of N individuals. The elitism 
is inherently implemented, because the best individual 
and the second best individual can not be eliminated if 
the 3-tournament elimination selection is used. Let the 
individuals be indexed by their fitness value, i.e. the 
best one has the index i=1 and the worst one i=N. The 
probability p(i) (Figure 9) of selection for elimination 
of the i-th individual, where i=3,4,...,N, with 3-
tournament bad individual selection is given by: 
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Figure 9. Probability of elimination of the i-th 
individual for four sizes of population (N=10,15,20,50) 

Let us assume that the described algorithm is executed 
on a two processor computer. The probability of double 
selection of the i-th individual (both thread select the i-
th individual) in each iteration is equal to p(i)2. The 
probability P2 of double selection of any individual on 
the two processor system with two threads is the sum of 
probabilities of double selection of each individual: 
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Inserting Equation 1 into Equation 2 gives 
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Finally, the probability that one thread of two will work 
in vain in each iteration is the function of the population 
size (Figure 10) and it is given by 
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Figure 10. The probability of double selection of the 
same individual is a function of the population size N 

If we have a two processor system we should expect 
finding the solution two times faster than on the one 
processor system. The speed-up factor of described 
asynchronous GPGA is not equal to the number of 
processors, because the number of iterations must be 
increased. 

5. The Number of Iterations 

For two processor system the probability of double 
elimination the same individual P2(N) is given by 
Equation (4). That means that one of two threads will 
work in vain with probability P2(N). Let us assume that 
the total number of iterations IT is fairly distributed 
among the threads: each of two threads perform IT/2 
iterations. Expected number of useless iterations IU is 
given by 
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The number of iterations I of sequential GA must be 
equal to the total number of iterations IT minus useless 
iterations IU: 

 )(
2 2 NP

I
II T

T ⋅−= . (6) 

The total number of iterations IT is given by: 
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The consequence is that described asynchronous GPGA 
on a two processor system is not exactly two times 
faster, but two minus P2(N) times faster then the serial 
GA (Figure 11). 

 

Figure 11. Speed-up of asynchronous GPGA on a two 
processor system 

For example, let the population consists of 50 
individuals and the number of iterations is 100000. The 
probability that both thread will select the same 



individual for elimination P2(50) is 0.0367 (Equation 4). 
The expected number of useless iterations IU (Equation 
5) is 1835. In that case, if we want to achieve the same 
solution with our GPGA as with sequential, the number 
of iterations must be 101870 (Equation 7). Each one of 
two thread will perform 50935 (half of 101870) 
iterations. The speed up is not 2, because each one of 
two threads will not perform 50000, but 50935 
iterations. Finally, the speed-up is 
s=100000/50935=1.963. 

The execution time does not depend on the population 
size N, if the total number of iterations is fixed. It 
depends on the total number of iterations IT. If we want 
to achieve the same results as sequential GA, the total 
number of iterations must be increased (Equation 7). 
The consequence is that speed-up depends on the 
population size (Figure 11). 

6. Concluding Remarks 

The presented model of global parallel genetic 
algorithm is suitable for implementation on a shared 
memory computer with several processors. The 
difference between traditional GPGA (master-slave 
GA) and the described GPGA is in tasks which master 
and slaves perform. In the traditional GPGA slaves only 
evaluate individuals, while the master distributes 
individuals among slaves for evaluation and the master 
performs all genetic operators. The assumption is that 
the evaluation takes most of the time in the evolution 
process. In our case, the master only initializes the 
population, while slaves perform the whole evolution 
process including evaluation. The parts obtained by 
dividing the genetic algorithm are independent. The 
critical sections are avoided, because the 
synchronization mechanisms would significantly slow 
down the parallel program. 

Advantages of our approach are: the algorithm is simple 
for implementation, the elitism is inherently 
implemented, all genetic operators and evaluation is 
parallelized, there is no need for any communication 
mechanism (the whole population is placed into shared 
memory), it works without any synchronization, the 
execution time for a given number of iterations does not 
depend on the population size N for a constant number 
of iterations and speed-up factor is near the number of 
processors. Moreover, the algorithm can be executed by 
any given number of processors without any code 
adaptation. Disadvantages are: the number of iterations 
must be increased because some threads may perform 
invalid iterations and it is not suitable for any fitness-
proportional selection [CAN99a]. Nevertheless, the 
number of invalid iterations is a function of the 
population size and it can be predicted and calculated as 

it was shown in this paper on an example for a two 
threaded GPGA. 
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