
Evolving Cryptographically Sound Boolean Functions

ABSTRACT
This paper explores the evolution of Boolean functions for
a cryptographic usage. To succeed in that goal, we use two
well-known evolutionary computation methods. Addition-
ally, we investigate the influence of selection and mutation
operators in the evolution process. Since there are multiple
criteria that a Boolean function must satisfy to be appropri-
ate for a cryptographic usage, we also conduct experiments
with different combinations of criteria in a fitness function.
We also experiment with the new mutation operator and a
new kind of initialization process. Results obtained show
that those modifications can help in obtaining better solu-
tions. The results indicate that it is possible to obtain highly
quality results with algorithms that are not tailor-made for
this purpose. Additionally, among the algorithms tested,
the best performance was obtained with the variations of
the genetic programming algorithm.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—heuristic methods

General Terms
Algorithms, Experimentation

Keywords
Heuristic Methods, Genetic Algorithms, Genetic Program-
ming, Boolean Functions, Cryptography, Experimental Re-
sults

1. INTRODUCTION
Today, evolutionary algorithms (EAs) present an impor-

tant tool for different optimization tasks. Since the “No Free
Lunch” theorem [20] states that there is no single best algo-
rithm for all the problems, in the last decades a plethora of
algorithms were (and are) developed, each one with its prop-
erties and usages. Some of those evolutionary algorithms are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13, July 6-10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM TBA ...$15.00.

only applicable for a specific class of problems, while other
algorithms are applicable to various fields of optimization
problems. Of course, evolutionary algorithms would not be
so popular heuristic approach if there were not many real-
world problems that can be successfully solved by EAs.

One of the interesting real-world problems is the creation
of Boolean functions with the properties relevant for the area
of cryptography. From this point, when we talk about good
Boolean functions, we presume Boolean functions with good
cryptographic properties. Boolean functions for the use in
cryptography can be designed by random search, algebraic
construction or by heuristic methods [10]. Main advantage
of the algebraic construction approach is that it is possible
to design a function with an optimal property. However,
the downside is that due to the trade-off between criteria,
one optimal property could mean that some other properties
are weak. Furthermore, with the algebraic construction the
final result is only one Boolean function, whereas we could
possibly want a whole family of good Boolean functions.
For the purpose of this paper we do not assume reader’s
familiarity with the area of cryptography. However, notions
not directly related with Boolean functions we define on a
intuitive level and for a more detailed information refer to
[12].

Boolean functions have widespread use in symmetric cryp-
tography. Basically, ciphers in symmetric cryptography can
be divided to stream and block ciphers. Shannon defined
[18] two basic principles that a computationally secure cryp-
tosystem should follow to be the confusion and diffusion
principles. Diffusion principle serves to propagate the in-
fluence of each bit of plaintext and key to as many bits of
ciphertext as possible. Confusion principle is used to make
the relation between the key and ciphertext as complex as
possible. Confusion is obtained by non-linear transforma-
tions. In block ciphers, confusion comes from S-boxes where
S-box can be regarded as a vectorial Boolean function. In
stream ciphers Boolean functions are used to introduce non-
linearity (in fact, they are the only non-linear elements in
stream ciphers) into otherwise linear systems. For a detailed
description of block and stream ciphers refer to [12].

Since the problems of constructing good Boolean func-
tions are well known, there is a significant body of work on
heuristic methods [2] [5] [6] . Some of the algorithms
used were general, like genetic algorithms or simulated an-
nealing, while others were more specific and developed es-
pecially for the evolution of the Boolean functions. It must
be mentioned that heuristic methods often evolved Boolean
functions with at least comparable results as those obtained



by the algebraic constructions. In several cases heuristic
methods found Boolean functions with the best known (at
the time) set of properties. However, the best results were
obtained when heuristic algorithm was coupled with some
local search algorithm. If a Boolean function has n inputs,
then there are 22n possible Boolean functions. For n larger
than 4 it is impossible to do an exhaustive search.

The goal of our paper is to explore the possibilities for the
development of good Boolean functions. That was firstly
done by using Genetic Algorithm (GA) where it is impor-
tant to state that we also used out-of-the-box genetic algo-
rithm so there would be no need for additional adjustment
for someone who wants to reproduce our results. Further-
more, as far as we know, we are the first to use Genetic Pro-
gramming (GP) in the evolution of good Boolean functions.
Additionally, this is the first time that the influence of the
evolutionary operators is explored. We also experimented
with some operators specifically designed for Boolean func-
tions. Finally, for some combinations of algorithms we used
the widest set of criteria of all publicly known work that
Boolean functions needed to satisfy. We must state that the
algorithms presented here did not find the best solutions in
every property when compared with the combination of EA
and local search algorithms [7]. We believe that results ob-
tained in this paper can be further augmented if some local
search technique is to be used. In this paper we did not fol-
low that direction because we were interested solely in the
performance of EA.

In Section 2 we present the necessary background infor-
mation about Boolean functions, Section 3 defines the ex-
perimental environment and presents results, Section 4 gives
a discussion about the results, and finally, Section 5 draws
a conclusion.

2. BOOLEAN FUNCTIONS
In this section we present only the necessary information

about Boolean functions and their cryptographic properties.
For additional information refer to [4].

2.1 Basic properties and representations
Boolean function is a mapping from {0, 1}n to {0, 1}. Vec-

torial Boolean function or n ×m S-box is a mapping from
{0, 1}n to {0, 1}m. An n ×m S-box can be constructed by
combining m Boolean functions.

Set Fn
2 represents n-tuples of elements in Galois field F2

and it will be represented as x = (x1, ..., xn).
Basic (and most natural) representation of a Boolean func-

tion is a truth table (TT). When the total order is assigned,
Boolean function f with n inputs has a truth table with
2n elements, where each element ∈ {0, 1}. Every Boolean
function is uniquely determined by its truth table.

Second unique representation of a Boolean function is Al-
gebraic Normal Form (ANF). ANF is a multivariate poly-
nomial P defined as

P (x) =
⊕
a∈Fn

2

h (a) · xa (1)

where h is defined by Moebius inversion as

h (a) =
⊕
x≤a

f (x) , for any a ∈ Fn
2 (2)

Operation
⊕

is addition in characteristics 2.

Boolean function is also uniquely determined by its Walsh
transform. Walsh transform of a Boolean function f is de-
noted as Wf , which is a real-valued function defined for all
ω ∈ Fn

2 as

Wf (ω) =
∑

x∈Fn
2

(−1)f(x)⊕x·ω (3)

where x · ω can be regarded as a linear Boolean function of
x determined by the ω.

The autocorrelation function of a Boolean function f is a
real-valued function defined for all ω ∈ Fn

2 as

rf (ω) =
∑

x∈Fn
2

(−1)f(x)⊕f(x⊕ω) (4)

Autocorrelation function does not uniquely represent a
Boolean function. [5] Autocorrelation is a measure of a func-
tion’s periodicity [17], or the correlation of outputs between
inputs that are related to each other through some constant.

2.2 Cryptographic properties
In this section we shortly present the properties we inves-

tigated in the experiments and that are important for good
Boolean functions.

Definition 1. The Hamming weight wh (f) of a Boolean
function f is the number of ones in its binary truth table.

Definition 2. Boolean function f with n inputs is bal-
anced if its Hamming weight equals 2n−1.

Alternative way of stating that the Boolean function is
balanced is with the Walsh coefficients as

Wf

(
0
)

= 0 (5)

Boolean functions that are not balanced are not appropri-
ate for the use in cryptography. The higher the magnitude of
a Boolean function imbalance, the easier is to approximate
it with a linear function [5]. If the imbalance is large enough,
it could be possible to approximate Boolean function with a
constant function. In formulas we abbreviate balancedness
with BAL.

Definition 3. The nonlinearity NLf of a Boolean function
is its minimum Hamming distance to any affine function.

Nonlinearity can be calculated as

NLf =
1

2
(2n −max|Wf (ω) |) (6)

where maxWf is the maximum value of Walsh transform
of f over all vectors ω.

Nonlinearity property has been introduced to asses the
resistance of a Boolean function to linear and correlation
attacks.

Definition 4. The algebraic degree, deg(f), of a function
f is the number of variables in the highest order term in its
ANF with non-zero coefficient.

If a Boolean function has a high algebraic degree it aids
in ensuring that the function is not highly correlated with
any particular inputs [17].

Definition 5. Function is correlation immune (CI) of de-
gree q if the output of the function is statistically indepen-
dent of the combination of any q inputs.



Correlation immunity of degree q can be calculated with
the Walsh spectrum as

Wf (ω) = 0, 1 ≤ wh (ω) ≥ q (7)

Definition 6. Function is resilient with order q if it is bal-
anced and correlation immune with degree q.

Correlation immunity and resiliency are used to assess the
resistance of a Boolean function to the correlation attacks.
[13]

Definition 7. The algebraic immunity (AI) of a Boolean
function f on Fn

2 is defined as the lowest degree of the Boolean
function q from Fn

2 into F2 for which f · g = 0.

Algebraic immunity is used to assess the resistance of a
Boolean function to the algebraic attacks based on annihi-
lators [13].

Definition 8. A Boolean function f is said to satisfy the
propagation criterion (PC) of order q, if changing any (up
to q) bits in the input results in the output of the function
being changed for exactly half of the 2n vectors. [8]

Propagation criterion is important property of Boolean
functions to be used in S-box [14].

Zhang and Zheng [22] found that PC have some limi-
tations in identifying desirable cryptographic properties so
they introduced the idea of global avalanche characteristics
- GAC.

The global avalanche characteristics indicators consist of
an absolute indicator and a sum-of-square indicator.

The absolute indicator is used to define the distance be-
tween a Boolean function f and the set of functions with
linear structures.

Absolute indicator is defined as

AC (f) = maxω∈Fn
2 \{0}|rf (ω) | (8)

Sum-of-square indicator is defined as

SSI (f) =
∑

ω∈Fn
2

rf (ω)2 (9)

For a Boolean function to have good cryptographic prop-
erties we want it to be balanced, with high nonlinearity,
algebraic degree, algebraic immunity, correlation immunity,
low absolute indicator and sum-of-square indicator. It is
not possible to get the Boolean function with all the opti-
mal properties. Connections between some properties are
known, while connections between some others are still not
clear. Here we mention only as an example that bent Boolean
functions [4] have maximum possible nonlinearity and mini-
mum absolute indicator value but are not balanced and have
algebraic degree deg(f) ≤ n/2 and therefore they are not
appropriate for the use in the cryptography. For a more
detailed discussion about trade-off between properties and
attainable values for those properties refer to [4] [10].

3. ENVIRONMENTAL SETTINGS AND RE-
SULTS

Table 1: Fitness Functions for GA and GP Algo-
rithms

Name Formula

FIT1 fit1 = BAL+NL

FIT2 fit2 = fit1 +AI + CI +DEG

FIT3 fit3 = fit2 + SSI + PC +AC +Ws

3.1 Fitness function and representation
When conducting experiments we use three different fit-

ness functions - abbreviated FIT1, FIT2 and FIT3 as listed
in Table 1. In all the experiments, maximizing the value of
a fitness function is the objective.

Since the absolute indicator and sum-of-square indicator
give much larger absolute values than the other parameters
we normalized them in the following way:

AC (f) = AC (f) /(n >> 1) (10)

SSI (f) = (
√
SSI (f) /n) >> 1 (11)

where n is the number of inputs for a Boolean function.
In FIT3 formula we considered the whole Walsh spectrum

because the smaller the maximal value it is, the larger the
nonlinearity will be as stated in Equation 6. But, it seems
advantageous that whole Walsh spectrum be as flat as pos-
sible, and with as small as possible values (with that it is
somewhat closer to bent functions that have an ideal spread
of Walsh spectrum). Same principles were also used in [2].
The formula to calculate Walsh spectrum is

Ws (w) =

√∑
w

||Wf (w) | − 2
n
2 | (12)

In the initial experiments we initialize population with
random individuals where we do not require that the indi-
viduals are balanced. That is opposite from what is done
in most of the literature [10] [15], but we believe that the
evolution process would benefit from that additional diver-
sity. To ensure that the best solution is balanced, we use
a balance penalty as a part of fitness function, presented in
pseudo-code as

Algorithm 1 Calculate balancedness

if (hw (TT ) > 2n

2
) then

penalty ← 2n−hw(TT )
2n

·X
else
penalty ← 2n

2n−hw(TT )
·X

end if

where we experimentally found that X = - 5 scales well
for Boolean functions with n = 8 inputs when working with
FIT1 and FIT2. For FIT3 case we set X to - 50 to match
the scale. When experimenting with FIT3 with X parameter
set to -5, the pressure of balancedness penalty function was
not enough to get balanced functions, which is due to the
fact that other properties contributed more to the fitness
value. It is interesting, though, that GP found several bent
functions when X was -5.

The experiments are divided into three distinctive phases



where in each phase experiments are conducted with one
fitness function.

We could have also considered three different fitness func-
tions as three distinctive problems and normalize the val-
ues (and analyze as in the Multiple Problems - Multiple
Algorithms scenario) but we opted for the aforementioned
approach since we believe it will be more expressive in dis-
playing the differences between algorithms.

Additionally, in each of those three phases we give two
perspectives: first, from a cryptographic point of view where
we are interested in the best solutions and the properties
of those solutions, and second, from EA view, where we
conduct extensive statistical tests to try to find the best
algorithm.

As previously stated, we compare 2 different algorithms:
GA and GP. Since GA and GP are in standard form, we
will assume reader’s familiarity with them. In statistical
analysis, each modification of an algorithm (e.g. different
mutation or initialization) is treated as a separate algorithm.

The first decision needed was to decide on the appropri-
ate choice for the representation of the individuals. As men-
tioned in Background section, there are several ways how to
uniquely represent Boolean functions. For GA we decided
to represent the individuals as binary vectors where values
are truth tables of functions, and for GP individuals are bi-
nary trees of Boolean functions which are then evaluated
according to the truth tables.

Since there is a plethora of possibilities for the different ge-
netic operators we decided to conduct experiments with sev-
eral combinations of them. First we evaluate the influence
of selection where we conduct experiments with three dif-
ferent selection procedures: steady-state tournament (SST),
generational roulette-wheel (RW) selection and elimination
(generation gap, EL) selection. The same selection mech-
anisms are applied both to genetic algorithm and genetic
programming.

After the selection operator that gave the best results is
determined, we conduct further experiments with variations
of mutation operators and initialization procedures as fol-
lows.

3.2 GA variations
For GA representation, mutation is selected uniformly at

random between simple and mixed mutation.
To evaluate the influence of mutation operators, we use

a new variation of mutation operator - balanced mutation.
Pseudo-code for balanced mutation is

Algorithm 2 Balanced mutation

if (hw (TT ) = 2n−1) then
mutate (pm)← 2 bits

else
mutate (pm)← 1 bit

end if

Balanced mutation is designed to preserve the balanced-
ness property of a Boolean function. Of course, in the
case that the Boolean function is not balanced, there is a
50% chance that this kind of mutation will result in even
more unbalanced function. However, this way algorithm can
search larger solution space and balancedness penalty will
stop highly unbalanced function from propagating through
generations.

Additionally, we used adaptive mutation rate for all mu-
tation operators. In the beginning, the mutation is given a
fixed probability, but as the evolution starts to stagnate (i.e.
no improvement in the best solution), the mutation proba-
bility raises. The probability is increased until it reaches a
predefined maximum level, or until a new best solution is
found, when the mutation rate is reset to initial value.

To explore the influence of initial population initialization,
further experiments are conducted with GA where we ini-
tialize the algorithm with balanced population: truth tables
are either randomly set or initialized with the orthogonal ar-
ray [21]. GA is initialized with random balanced individuals
in the following way

Algorithm 3 Random balanced initialization

TT ← 0
count← 0
while count 6= 2n−1 do

if pos [rnd] = 0 then
pos [rnd]← 1
count← count+ 1

end if
end while

3.3 GP variations
Of all the modifications in the previous section, with GP

we employ only the adaptive mutation rate, in the same
manner as for the GA. Orthogonal initialization is also used
on GA only; GP would be difficult to initialize in this manner
since there is no simple way to represent trees in orthogonal
array and balanced random initialization would be compu-
tationally intensive since it would require a trial and error
approach.

Function set for genetic programming in all the exper-
iments is OR, NOT, XOR, AND, IF, and terminals corre-
spond to Boolean variables. Genetic programming has max-
imum tree depth of 11. For the Boolean functions we are
interested only in XOR and AND operators, but it is quite
easy to transform it from one notation to other.

3.4 Common parameters
Parameters that are in common for every round of the ex-

periments are the following: the size of Boolean function is
8 (the size of the truth table is 256), number of independent
runs for each experiment is 30 and the population size is
500. In steady-state tournament selection, tournament size
is equal to 3; crossover probability for roulette-wheel selec-
tion is 0.5 and selection pressure (the ratio of best and worst
individual fitness) is 10. In elimination selection, the gen-
eration gap is 0.6. Mutation probability for non-adaptive
variations is set to 0.3 per individual.

Further information regarding experimental setup is listed
as needed.

In effort to find the differences in the performance of the
algorithms, we also compare the best algorithms with the
random search genetic algorithm. Stopping criterion for the
random search algorithm is 400 generations. This algorithm
is a standard random search algorithm with only the ran-
dom initialization of GA individuals. We also conducted
experiments with random search GP, but due to the more
complex process of tree initialization, the resulting solutions



are much worse in average (we do not display the results for
the GP random search).

Algorithm names presented in tables are abbreviated in
the following way: the first part is the representation (GA
or GP), the next is a selection operator (SST, RW or EL),
and finally the fitness function (FIT1 to FIT3). For in-
stance, genetic algorithm with roulette-wheel selection and
second fitness function would be GA RW FIT2. Aside from
those basic information, the abbreviation can contain BAL
which means that the balanced mutation is used, ALL that
means the mutation operator is randomly selected from all
possible mutation operators, +VAR represents the adaptive
mutation rate, ORT means the initial population is created
with an orthogonal array, RAND means that the algorithm
is random search.

If it is clear from the context, we omit the fitness function
or selection operator from the abbreviation.

As a test suite the Evolutionary Computation Framework
(ECF) was used. ECF is a C++ framework intended for the
application of any type of the evolutionary computation, de-
veloped at the University of Zagreb [11]. For the statistical
analysis we use R programming environment [1].

3.5 Best Solutions
With the objective to find the best individuals, stopping

criterion is 300 generations without improvement for GA,
and 30 generations without improvement for GP. Since from
the cryptographic point of view we are interested in obtain-
ing the best possible results, the best solution for GA and
GP algorithms for every fitness function are presented in Ta-
ble 2. As a reference, we also give solutions obtained via ran-
dom search. All solutions are balanced so we did not specifi-
cally write that property in the table. Genetic programming
with the adaptive mutation and steady-state tournament
selection (GP SST ALL+VAR) reached the highest known
combination of NL, AC, SSI and Ws, as far as we know.
The truth table of that solution in hexadecimal format is
denoted as
040B616EFBF4616E5E513B34A1AE3B34C7C8828D3837
222D9D927877626D7877.

3.6 Statistical Analysis
In the Single Problem - Multiple Algorithms scenario that

we follow for these experiments, we opted to follow the
guidelines about statistical methods from [3] [9] [16]. For
details about statistical tests refer to [19].

The stopping criterion for the experiments is the num-
ber of generations, here set to 50. We are aware that 50
generations is quite low, but all the algorithms manifested
quick convergence and little improvement after 50 genera-
tions in average. This is also in accordance with the results
presented in [10]. Our opinion is that the analysis of the per-
formance of the algorithms with the number of generations
as the stopping criterion yields more objective results then
those obtained when stagnation is the stopping criterion.

To try to find the best algorithm from the initial pool of 14
variations of algorithms, we conduct statistical analysis on
6 algorithms that produced the best solutions. As a fitness
function we use FIT2 and steady state tournament selection
for all the algorithms since the results obtained for that set
of parameters are the best.

We use two approaches in the statistical analysis. First
one, average-case scenario, takes average values from each of

the runs and compares those values. Second kind of analysis
is based on the threshold values. Here we set values for
different properties (based on the values obtained in the Best
Solutions section) and check the percentage of the solutions
that reach those values. For all the experiments, level of
significance α is equal to 0.05.

3.6.1 Average Case Best Algorithm
Basic statistical data for best algorithms are displayed in

Table 3. All algorithms use steady-state tournament selec-
tion and fitness 2 (FIT2) function.

To find the best algorithm, first we check necessary con-
ditions to use parametric statistical tests.

To do that, we use Shapiro-Wilk test to examine normality
condition and Levene test to examine the heteroscedasticity
condition (there is no need to check independence condition
because there are independent runs of experiments with ran-
dom initial populations).

Since the tests showed that the solutions are not normally
distributed and the variances of the distributions of the dif-
ferent algorithms are not homogeneities we use nonparamet-
ric statistical tests.

First we use Kruskal-Wallis (K-W) test to try to discover
whether there are differences between algorithms. Since the
chi-square value (75.14) of K-W test is greater then the
tabled critical chi-square value (11.07) for a level of signif-
icance 0.05 we conclude there are differences between the
algorithms. All algorithms use steady-state tournament and
second fitness function (FIT2) so those data will be omitted
from the abbreviations from now. Algorithm GP is chosen
as a control (best) algorithm based on the ranking of the
algorithms obtained with the ordinal values. To verify if the
GP algorithm is the best, now we conduct pairwise sign test
between it and every other algorithm. Results are displayed
in Table 4.

Based on the results of the sign test, we can conclude that
in average, GP, GA BAL and GP ALL+VAR algorithms
perform better than the standard GA. Boxplots for the al-
gorithms from Table 3 are displayed in Figure 1.

3.6.2 Threshold Values Best Algorithm
In this experiment, we decide on the desired minimum

values that the properties of Boolean functions should have.
Of course, that is subjective and depends on the goals of
the researchers. We examined here following properties (AI,
DEG, NL, Ws, SSI, AC) with the threshold values (4, 7, 111,
156, 147968, 48). Additionally, Boolean functions need to
be balanced. Values used here are selected solely to help us
determine the performance of the algorithms so they should
not be considered as a guideline when searching for the best
solutions. Since normality condition is not fulfilled and vari-
ances of the distributions are not homogeneities, we use non-
parametric statistical tests. To check whether there are dif-
ferences between algorithms we use Friedman test [9]. Due
to the lack of space, we display results for the following
algorithms: GA, GP and GP ALL+VAR. Results for the
Friedman test are displayed in Table 5.

The p-value of Friedman test equals 0.04 so we conclude
there are differences between the algorithms. For the post-
hoc analysis we use Bonferroni and Hochberg methods with
the GA as a control algorithm (decided based on the rank
values from Friedman test). Results obtained are in Table
6.



Table 2: Best Solutions
Fitness 1

Algorithm (NL,DEG,AI,CI,AC, SSI, PC,Ws)

GA SST ALL+VAR ORT (114, 7, 4, 0, 56, 126976, 0, 145)

GP SST ALL+VAR (116, 6, 3, 0, 32, 87040, 0, 90)

GA SST RAN (110, 7, 4, 0, 56, 158080, 0, 154)

Fitness 2
Algorithm (NL,DEG,AI,CI,AC, SSI, PC,Ws)

GA SST BAL (114, 7, 4, 0, 48, 128128, 0, 143)

GP SST (116, 7, 3, 0, 40, 95104, 0, 101)

GA SST RAN (110, 7, 4, 0, 72, 160384, 0, 152)

Fitness 3
Algorithm (NL,DEG,AI,CI,AC, SSI, PC,Ws)

GP SST (112, 7, 4, 0, 40, 128896, 0, 135)

GA SST BAL (112, 7, 4, 0, 40, 123520, 0, 132)

GA SST RAN (110, 7, 4, 0, 40, 131200, 138)

Table 3: Best Algorithms Statistics
Algorithm Min Max Mean Stdev

GA 114.494 120.348 115.135 1.065

GP 112.336 119.398 116.565 1.827

GA BAL 114.784 120.888 116.077 1.903

GA ALL+VAR 114 115 114.697 0.29

GP ALL+VAR 113 119 116.421 1.441

GA ALL+VAR ORT 114.476 115.002 114.734 0.151

Table 4: Sign Test Analysis
Control algorithm: GA

Algorithm Win Loss Sign Test

GP 24 6 0.001

GA BAL 25 5 0.000

GA ALL+VAR 11 19 0.2

GP ALL+VAR 25 5 0.000

GA ALL+VAR ORT 12 18 0.36



GA GA_ALL+VAR GA_ALL+VAR_ORT GA_BAL GP GP_11_ALL+VAR

112
114

116
118

120

Algorithm

Val
ue

Figure 1: Box plot of the best algorithms

Table 5: Average Rankings of the Algorithms
Algorithm Ranking

GA 1.2857
GP 2.1429
GP ALL+VAR 2.5714

Table 6: Post-hoc Analysis
algorithm unadjusted p pBonf pHochberg

GP ALL+VAR 0.016157 0.032314 0.032314
GP 0.108809 0.217619 0.108809

Since the level of significance is 0.05 we can conclude that
in the threshold experiment GA performs better than the
GP ALL+VAR algorithm.

4. DISCUSSION
Output space of possible Boolean functions is huge and

therefore it is impossible to do exhaustive search for Boolean
function with the number of inputs relevant in cryptography.
However, output space of Boolean functions with good (of
course, there is a question: “What is good?”) cryptographic
properties is also large. In that large space of good Boolean
function it is difficult to find Boolean functions with excel-
lent cryptographic properties. This is an obvious example
of the convergence of the algorithm towards the local op-
tima. In an attempt to search beyond those local optima
we employ different algorithms. As expected, every modi-
fication of basic GA or GP algorithms displayed differences
in the performance of the algorithm. In the experiments we
used 3 different selection methods where we expected that
the roulette-wheel selection should be the best one, because
preliminary results (also the results from other researchers)

showed that all algorithms display very quick convergence.
Since steady-state tournament selection has the biggest se-
lection pressure we believed that, when coupled with a prob-
lem with the fast convergence it will lead to suboptimal re-
sults. However, algorithms with the steady-state tourna-
ment selection consistently found the best solutions among
all the algorithms. One explanation could be that since the
convergence is quick the majority of the population have
good properties so extra selection pressure helps in the com-
bining of the best individuals. We also experimented with 3
different fitness functions. Function with the smallest num-
ber of variables (FIT1) displayed very good results and some
results even outperform any results from existing research.
Simple function has the advantage that there are no con-
flicts between variables, and some high quality properties
inherently mean that other properties will also be good. In
FIT2 fitness function we tried to control more properties of
a Boolean function. That approach showed the best results
in average. Here, it could be prudent to use a weighted
fitness function approach. In FIT3 function the results are
worse than for the first 2 fitness functions. This is due to the
fact that some properties reach much higher values so linear
grading in fitness function (value of every property is added
to the final result and all properties are equally significant)
is not the best approach. However, the problem there is that
we use many properties so we could first run evolutionary al-
gorithm to find the best weights for those properties. It can
also be observed that some of the properties (PC and CI)
were constantly 0. The obvious reason for that is that those
properties are in conflict with some of the other proper-
ties. Additionally, possible values for the PC and CI are not
high enough to direct the search from more influential ones
(in regards to attainable values). Modifications in the mu-
tation and selection operators displayed good performance
and should be considered in future research for additional



analysis. Naturally, modifications in selection procedure are
much easier to do for a GA since its representation is easier
to control.
The results of statistical analysis show that there exist sig-
nificant statistical differences in the performance between
the algorithms. We performed 2 kinds of analysis where
the best algorithms are different. In the analysis based
on average values best results are obtained for GA BAL
and GP ALL+VAR algorithms. The analysis based on the
threshold values is heavily influenced by the choice of the
threshold levels. We displayed here one example of that
analysis where the best algorithms were GA and GP ALL+VAR.
On the basis of several conducted analysis we conclude that
there are better algorithms to use than those commonly used
[5] [6].

4.1 Further Research
We are interested in the further investigation of the in-

fluence of cryptographic properties in the evolution process.
There is possibility that some other set of properties would
yield better results. Additionally, there are properties we
did not consider and they are important for the resilience
against some cryptographic attacks (i.e. transparency or-
der that is related with side-channel attacks). From other
perspective, we are interested in experimenting with some
new algorithms like Cartesian Genetic Programming or Esti-
mation of Distribution Algorithms. Initial experiments with
those two algorithms give promising results. Of course, there
is always the need to expand the research to the Boolean
functions with a various number of inputs.

5. CONCLUSIONS
Finding Boolean functions with good cryptographic prop-

erties is a difficult problem. That is especially so because
some of the properties are conflicting so it is not even pos-
sible to reach all optimal values. Research on this subject
was mostly reserved for a cryptographic perspective: to find
the best possible solution. In that kind of research, evo-
lutionary computation is just a tool so there is little data
on the performance of different algorithms. In this paper
we tried to find good Boolean function but with the em-
phasis on the evolutionary computation algorithms. Results
showed that there is a lot of room for improvements since
the experiments showed that the best algorithms are not
those commonly used.

6. REFERENCES
[1] The R project for statistical computing, 2013.

[2] H. Aguirre, H. Okazaki, and Y. Fuwa. An evolutionary
multiobjective approach to design highly non-linear
boolean functions. In Proceedings of the Genetic and
Evolutionary Computation Conference GECCO’07,
pages 749–756, 2007.

[3] T. Bartz-Beielstein. Experimental Research in
Evolutionary Computation: The New
Experimentalism. Springer, New York, USA, 2006.

[4] A. Braeken. Cryptographic Properties of Boolean
Functions and S-Boxes. PhD thesis, Katholieke
Universiteit Leuven, 2006.

[5] L. Burnett. Heuristic Optimization of Boolean
Functions and Substitution Boxes for Cryptography.

PhD thesis, Faculty of Information Technology,
Queensland University of Technology, 2005.

[6] L. Burnett, W. Millan, E. Dawson, and A. Clark.
Simpler methods for generating better boolean
functions with good cryptographic properties.
Australasian Journal of Combinatorics, 29:231–247,
2004.

[7] J. A. Clark, J. L. Jacob, S. Stepney, S. Maitra, and
W. Millan. Evolving boolean functions satisfying
multiple criteria. In Progress in Cryptology -
INDOCRYPT 2002, pages 246–259, 2002.

[8] T. W. Cusick and P. Stanica. Cryptographic Boolean
Functions and Applications. Elsevier Inc., San Diego,
USA, 2009.

[9] S. Garcia, D. Molina, M. Lozano, and F. Herrera. A
study on the use of non-parametric tests for analyzing
the evolutionary algorithms? behaviour: a case study
on the CEC 2005 special session on real parameter
optimization. Journal of Heuristics, (15):617–644,
2009.

[10] K. Goossens. Automated creation and selection of
cryptographic primitives. Master’s thesis, Katholieke
Universiteit Leuven, 2005.

[11] D. Jakobovic and et al. Evolutionary computation
framework, Dec. 2011.

[12] J. Katz and Y. Lindell. Introduction to Modern
Cryptography. Chapman and Hall/CRC, Boca Raton,
2008.

[13] F. Laffite. The boolfun Package: Cryptographic
Properties of Boolean Functions.

[14] S. Maitra. Autocorrelation properties of correlation
immune boolean functions. In Progress in Cryptology -
INDOCRYPT 2001, pages 242–253, 2001.

[15] W. Millan, A. Clark, and E. Dawson. Heuristic design
of cryptographically strong balanced boolean
functions. In Advances in Cryptology - EUROCRYPT
’98, pages 489–499, 1998.

[16] D. Ortiz-Boyer, C. Hervas-Martinez, and
N. Garcia-Pedrajas. Improving crossover operators for
real-coded genetic algorithms using virtual parents.
Journal of Heuristics, (13):265–314, 2007.

[17] M. Read. Explicable boolean functions. Master’s
thesis, Department of Computer Science, The
University of York, 2007.

[18] C. Shannon. Communication theory of secrecy
systems. Bell System Technical Journal,
28(4):656–715, 1949.

[19] D. Sheskin. Handbook of Parametric and
Nonparametric Statistical Procedures. Chapman and
Hall/CRC, fourth edition, 2007.

[20] D. H. Wolpert and W. G. Macready. No free lunch
theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1(1):67–82, Apr. 1997.

[21] Q. Zhang and Y.-W. Leung. An orthogonal genetic
algorithm for multimedia multicast routing. IEEE
Transactions on Evolutionary Computation,
3(1):53–62, Apr. 1999.

[22] X. Zhang and Y. Zheng. Gac-the criterion of global
avalanche characteristics of cryptographic functions.
Journal of Universal Computer Science, 1(5):316–333,
1995.


