
Comparison of Heuristic Algorithms in Functions Optimization and Knapsack Problem

Ivica Martinjak

High School Dugo Selo, Dugo Selo, Croatia

ivica.martinjak@zg.htnet.hr

Marin Golub
University of Zagreb

Faculty of Electrical Engineering and Computing, Zagreb

Department of Electronics, Microelectronics, Computer and Intelligent Systems

marin.golub@fer.hr

Abstract. This paper addresses the comparison of
heuristic algorithms in the case of real functions

optimization and knapsack problem. Metaheuristics

for algorithms hill climbing, simulated annealing,

tabu search and genetic algorithm are shown, test

results are presented and conclusions are drawn.

Input parameters for optimization functions problem

are optimised on a sample of functions. Also,

algorithms' efficiencies are compared and their

achievement for large dimension of problems is

measured.

Keywords. Heuristic Algorithms, Genetic
Algorithm, Hill Climbing, Simulated Annealing, Tabu
Search, Knapsack Problem

1. Introduction

Problems which have a property that, for any

problem instance for which the answer is "yes" (in a
decision problem) there exist a proof that this answer
can be verified by a polynomial-time algorithm are
called NP-class problems (NP stands for "non-
deterministic polynomial"). A problem Q is said to be
NP-hard if all problems in the NP-class are reducible
to Q [6]. Although complexity of NP-hard problems is
high (e.g. O(2n), O(n!),..) these problems, in the case
of larger n, cannot be solved in a reasonable amout of
time using deterministic techniques. To solve these
problems in a realistic timeframe, we use heuristic
methods.

This work compare heuristic algorithms in the
case of real function optimization and knapsack
problem. Algorithms simulated annealing, tabu search
and genetic algorithm are compared in knapsack
problem, whereas in function optimization we also
used hill climbing. For both classes of problems and
for each algorithm heuristic function are created and a
custom C program was written.

Sample of 11 functions are tested in order to
standardize input parameters for this class of problem.
To test algorithms achievement, a knapsack problem
up to 100 item were solved.

2. Real functions optimization

All algorithms, except hill climbing, which are

used in this paper use binary n-tuples as solutions
presentation. That means that we define set of all
posible solutions as X={0,1}n. We tested 3 polynom
and 8 others complex functions, which are shown in
Appendix A. In the case of hill climbing, we were
looking for result on 15 decimal places, whereas in
others algorithms on 6 decimal places.

2.1. Experiments with hill climbing

We developed simple heuristic function; in each
iteration, current interval is divided in n equidistant
subintervals. Borders of this subitervals are
neighborhood of current solution. The best candidate
in neighborhood became new solution and their
neighboours determine new interval. Algorithm will
stop when new candidate is not better than current
solution.

Table 1. Hill climbing results with input

parameter n=100

 n=100

Function f(xbest) - fopt numiter

fp0 0 5
fp1 0 5
fp2 0 5
f0 0 5
f1 0 5
f2 0 6
f3 0 7
f4 0 1
f5 0 6
f6 0 5
f7 0 1

Experiments show that even for small input
parametar n such as n=10 result is very precise. For

n=100 algorithm is generate result in 15 decimal
places, for each function, as presented in Table 1.

It can be seen that only a few iteration is enough
to find optimal solution. Figure 1 shows how current
solution change during iteration. Disadvantage of this
approoach is in posibility to skip global optimum if n
is too small, but in practice results are very precise
and reliable for reasonable large input parametar n.

0 1 2 3 4 5 6 7
2.972

2.974

2.976

2.978

2.98

2.982

2.984

2.986

2.988

2.99
2.989384266778107

iteration

f(xbest)

Figure 1. Change of current solution
during iteration

2.2. Experiments with simulated annealing

and tabu search

In the case of simulated annealing algorithm we

chose pretty simple heuristic, where Hamming
distance is 1. Neighbourhood of current solution x is a
set of all binary n-tuples that are different from x for
one bit. In the case of tabu search, heuristic function
is defined in the same manner. In each iteration, tabu
algorithm finds out the best solution in
neighbourhood. In order to avoid searching the same
neighbourhood repeatedly, tabu list remembers
positions of last L changed bits so as to enable
heuristic to skip those neighbourhoods.

Table 2. Simulated annealing and tabu search

results in function optimization

 Number of optimal solutions in 10 runs

Function
Simulated
annealing

Tabu search

 cmax=1000
α=0.98

cmax=2000
α=0.985

cmax=500
L=1

cmax=1000
L=1

fp0 5 6 9 10
fp1 2 10 8 10
fp2 6 7 10 10
f0 3 3 6 10
f1 5 4 6 9
f2 0 1 2 6
f3 2 2 6 6
f4 7 8 10 10
f5 2 2 4 6
f6 4 6 10 10
f7 7 6 10 10

Results of optimization function with simulated
annealing and tabu search are demonstrated in Table
2. We can see two tests of both algorithms, with input
parameters and number of generated optimal solutions
in 10 runs. In optimization function with simulated
annealing, experiments showed that increase in
iteration number gives better result only if cooling is
slower. To increase just a number of iteration or just
cooling ratio does not lead to better performance of
algorithm.

Tabu search shown itself as a very efficient
algorithm in function optimization. In most cases it
generated optimal solution or departure was very
small. It can be noted that efficiency of algorithm
actually does not depend on the length of tabu list L
(it is enough to remember last position), but only on a
number of iteration.

But when comparing these two algorithms, it is
important to notice that tabu search needs more
fitness function computations although it uses a
smaller iteration number (Table 4).

2.3 Experiments with genetic algorithms

Two genetic algorithms were developed. One with

one-point crossover operator and other one with
uniform crossover. Both of them use steady-state
selection and simple mutation that keeps current best
solution. The length of chromosomes depends on the
length of interval and the number of decimal places
(we compute it using conversion from binary
representation into Gray code and vice verse).

Table 3. Genetics algorithms results in

function optimization

 Number of optimal solutions in 10 runs

Function
GA with one-
point crossover

GA with uniform
crossover

 VEL_POP

=50
t=100
pm=0.01

VEL_POP

=100
t=1000
pm=0.007

VEL_POP

=50
t=100
pm=0.01

VEL_POP

=100
t=1000
pm=0.007

fp0 4 8 7 9
fp1 5 7 8 9
fp2 6 9 7 10
f0 4 6 4 6
f1 6 6 5 9
f2 2 4 4 8
f3 6 8 8 9
f4 10 10 10 10
f5 6 5 3 9
f6 7 8 8 9
f7 7 8 6 10

Test results of function optimization with these

genetic algorithms are presented in Table 3. In each
test the percentage of chromosomes for elimination M
was 50%. In the first series of tests other input
parameters were: population of 50 chromosomes, time

of evolution was 100 iteration and probability of
mutation operator was 0.01. In the second series, we
analysed how an increase in population affects the
result.

First, it was noticed that algorithm with uniform
crossover is more efficient than the other one with
one-point crossover. Further, experiments showed
that, similar to simulated annealing, increase in
iteration number gives better result only in case of
larger population. When we increased iteration
number from 100 to 1000, with same population of
50, almost none of results were improved. But when
we did the same with larger population, improvement
was obvious. Also, our results confirm a well known
fact about genetic algorithms that is that algorithm is
the most sensitive to probability of mutation.

2.4 Comparison of the algorithms

Table 4 shows parallel results of function

optimization with heuristic algorithms hill climbing,
simulated annealing, tabu search and genetic
algorithms. Shown data are obtained from the sample
of 11 real function one variable and presented
summary results. For each of compared algorithms we
can see number of fitness function computation,
probability of generating optimal solution and the
largest departure from it - for given parameters. Two
last items describe expectation of number of optimal
solutions and the largest departure for this class of
problem, for given input parameters.

Table 4. Parallel results in function

optimization

Algorithm

Input
parameters

Fitness
function

computation

Probability
of finding
optimal
solution

The largest
departure

Hill
climbing

n=100 100-
700

100%

Simulated
annealing

cmax=1000
α=0.98

1000 39% 26%

 cmax=2000
α=0.985

2000 50% 35%

Tabu
search

cmax=500
L=1

10000 74% 0.002%

 cmax=1000
L=1

20000 88% 0.002%

Genetic
algorithm
(one-
point

VEL_POP

=50
t=100
pm=0.01

15000 57% 5%

crossover) VEL_POP

=100
t=1000
pm=0.007

100000 71% 5%

Genetic
algorithm
(uniform
crossover)

VEL_POP

=50
t=100
pm=0.01

15000 63% 5%

 VEL_POP

=100
t=1000
pm=0.007

100000 89% 5%

 All of compared algorithms were very successful
in solving this class of problem generating optimal
solution in most runs. The most efficient, the most
precise and the most reliable was heuristic algorithm
hill climbing, which is at the same time conceptually
the simplest between compared algorithms.

3. Knapsack problem

The knapsack problem is a problem in

combinatorial optimization. It describes maximization
problem of choosing as much as possible items that
can fit into one bag of maximum weight (Figure 2).
We can find similar problems in business,
cryptography and other areas.

Instance: profits

weights

capacity

110 ,..., −nppp

110 ,..., −nωωω

W

Find: n-tuple [] { }nnxx 1,0,... 10 ∈−
 such that

∑
−

=

→=
1

0

max
n

i

ii xpP , and

∑
−

=

≤
1

0

.
n

i

ii Wxw

Figure 2. Knapsack problem

Knapsack problem is NP-hard, with complexity of

2
n. On this problem, with floating point instance, we

will compare heuristic algorithms simulated
annealing, tabu search and genetic algorithms. We
chose 12 knapsack instance with 15, 25, 50 and 100
items (3 for each n). When input algorithm
parameters are optimised, instances are tested in 30
runs.

3.1 Experiments with simulated annealing

When using simulated annealing to solve

knapsack problem heuristic was the same as in
function optimization (the one with Hamming
distance equal 1).

Table 5. Simulated annealing results in

knapsack problem

α cmax Min Max Average
Number of

best
solutions in
30 runs

0.999 1000 929.31 953.80 940.30 0
 5000 939.12 954.04 949.99 7
 20000 948.58 954.04 953.36 19

0.9995 5000 939.12 954.04 949.99 7
 20000 948.58 954.04 953.36 19
 200000 935.80 954.04 954.03 29

Program was started 30 times for each example

and results for dimension 15 (k2) are shown in Table
5. In each test initial temperature was 1000.

3.2 Experiments with tabu search

The main idea of tabu search heuristic function for

knapsack problem is to “fill and empty” knapsack. An
item with largest relative value is added in knapsack
but when it is not possible than an item with smallest
profit and weight ratio is taken away (pseudocode in
Figure 3).

1. if at least one index i exists where
0=ix and i is not on the current TabuList

among these values of i choose the one such that

 max→
i

i

w

p

 and change xi from 0 to 1

2. otherwise
 (if there is no i satisfying conditions above)
consider all i such that 1=ix and

 i is not on the current TabuList
among these values of i, choose the one such that

min→
i

i

w

p

 and change xi from 1 to 0

Figure 3. Tabu search heuristic function

for knapsack problem

When tabu search in knapsack problem is used,
the length of tabu list L for each individual problem
instance should be optimised. Results for dimension
of 50 (k7), with number of iteration of 200, are
demonstrated in Table 6. All our experiments showed
that result becomes better only if up to 200 iterations
are run and other authors1 drew the same conclusion.

Table 6. Tabu search result in knapsack

problem

L Min Max Average Number of

best
solutions in
30 runs

1 8931.56 9305.68 9227.49 3
2 8971.99 9305.68 9246.06 3
3 8931.56 9305.68 9251.67 6
4 9101.37 9305.68 9277.87 23
5 9132.37 9305.68 9268.28 16
6 9148.14 9305.68 9274.72 10
7 9162.64 9305.68 9264.26 6
8 9161.01 9305.68 9254.74 3

3.3 Experiments with heuristic algorithm

The same like in function optimization, we

compared two genetic algorithms in knapsack
problem. The first one with one-point crossover and

1 [5] pg. 179: "... We found cmax=200 to be sufficient for the
problem instances we considered."

the second with uniform crossover. Also, in each test
the percentage of chromosomes for elimination M was
50%. Experiments are done and results for 25 (k4)
items are demonstrated in Table 7.

In the presented case (25 items) and in the case of
15 items compared genetic algorithms are almost
equally successful, but in the case of bigger
dimension algorithm with uniform crossover
generated better solutions in 30 runs.

Table 7. Genetic algorithms results in
knapsack problem

 Number of best solutions in 30 runs

VEL_POP=50

numiter
GA with one-
point crossover

GA with uniform
crossover

100 1 0
500 2 1

1000 3 5
1500 3 5
2000 2 6
5000 7 10
10000 5 11

3.4 Comparison of the algorithms

Combinatorial problem called knapsack problem,

which is NP-hard and has an important role in
mathematics modelling, is solved with heuristic
algorithms in order to compare algorithms. All the
algorithms generated solutions (optimal or close to
optimal) with upper bound complexity much lower
than the size of solution space, as it is demonstrated in
Table 8. In 4 cases all of algorithms generated the
same solution (on 6 decimal places), 5 times
difference between the best and worst solution was
<1%, twice around 1% and once difference between
the best and worst profit was 7% (Table 9).

Table 8. Size of solution space and fitness

function computation for compared
algorithms

n Solution

space

(2
n
)

SA GA with
one-point
crossover

GA with
uniform
crossover

TS

15 32768 2000 15000 15000 3000
25 3.3·107 200000 50000 50000 5000
50 1.1·1015 10000000 150000 150000 10000
100 1.2·1030 500000000 5000000 5000000 20000

In case of tabu search increase in number of

iteration over 200 does not give better results. Length
of tabu list must be optimised for each problem
instance. It seems that larger dimension of problem
requires bigger length of tabu list. Results obtained by
genetic algorithm confirm this algorithm as very
reliable and widely applicable. For larger dimension
of problems, genetic algorithm with uniform

crossover showed better performance, whereas in
smaller dimensions algorithms were almost equal.

Table 9. The best found solutions in

knapsack problem

Inst n Max found profit in 30 runs Diff
k1 15 108.875827 0
k2 15 954.046872 0
k3 15 349132.314969 0
k4 25 191.142478 (SA, Gu,Gp) <1%
k5 25 1315.517401 (TS,Gu,Gp) <1%
k6 25 352365.538940 0
k7 50 9305.682195 (TS) <1%
k8 50 5206136.288693 (SA) <1%
k9 50 1683291473.712614 (TS) <1%
k10 100 606.936611 (TS) 1.5%
k11 100 1724.588480 (TS,Gu,Gp) 7%
k12 100 997402182.537699 (TS) 1.2%

4. Conclusion

This paper showed that function optimization as

well as knapsack problem can be successfully solved
using heuristic algorithms.

It is demonstrated that conceptually very simple
heuristics, as in case when neighborhood consist n-
tuple with Hamming distance 1, can solve these
problems successfully. Further, it is shown that the
same heuristics can be used for different classes of
problems. For example, the difference between
simulated annealing algorithms for function
optimization and knapsack problem is only in profit
function (whereas it is general characteristic of
genetic algorithm).

Experiments with simulated annealing showed
that increase in number of iteration gives better result
only in combination with increase in cooling ratio.
Tabu search algorithm was especially efficient in
knapsack problem, whereas genetic algorithms were
very reliable in both classes of problems. Genetic
algorithm with uniform crossover was more efficent
and relialbe than the other one with one-point
crossover.

The test results showed that the most efficient and
the most reliable algorithm for functions optimizing is
hill climbing (Table 4). In the case of NP-class
knapsack problem, upper-bound complexity of all the
algorithms is much lower than in case when
deterministic methods are used (Table 8). In our
experiments, the most efficient algorithm in knapsack
optimizing is tabu search.

5. Appendix A: Tested functions

-1 0 1 2 3 4 5 6 7 8
-3

-2

-1

0

1

2

3

4

5

f6

Figure 4. An example of test function (f6)

Table 10. Tested functions and its extreme

values

Function Interval fopt

xxxf p 4)(3
0 −= [-2, 2] 3.079201

12
4

1
)(234

1 +−−= xxxxf p
 [-2, 5] -31

)33035(
8

1
)(24

2 +−= xxxf p
 [-1, 1] -0.428571

)10sin(1)(0 xxxf π+= [-1, 2] 2.850275

x

x
xf

)10sin(
)(

2

1

π
=

 [-1, 2] 4.771197

)10sin()(22
2 xxxf π= [1, 2] 3.850135

)sin(
3)(xxxf = [0, 50] 45.555967

[])(cos)(4 xtgxxf = [-2, 6] 5.747734

)cos()(5 xtgxxf = [0, 5] 2.989384

 −=)(
2

30
sin)(6 xarctg

x
xxf

π [-1, 8] 4.632533

22

2

7
)001.01(

5.0)(sin
5.0)(

x

x
xf

+

−
−= [-100, 100] 1

6. Appendix B: Knapsack problem instance

Table 11. An instance of the knapsack
problem with 25 items (k4)

Profits 20.049179 5.110572 0.859042 14.058633

19.863343 14.066975 11.069603 7.568319
25.772103 14.762425 21.760358 20.308861
19.489480 9.548243 5.002621 8.732641
20.090447 9.244832 25.731283 19.410956
17.169970 3.545943 6.894962 22.323248
24.606240

Weights 9.560385 2.400555 0.466834 6.577130
10.976847 6.401247 5.532914 4.051069
12.249868 7.006832 10.754451 9.337501
9.467215 4.395741 2.693165 4.784752
9.927797 4.646784 12.094998 9.043678
9.470741 1.933542 3.225321 10.455664
12.321248

Capacity 89.888139

Solution X=[1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 0 0 1 1
0 0 0 1 0]

Profit 191.142478

7. References

[1] Božiković, Marko, Globalni paralelni genetski

algoritam, diplomski rad,
http://www.zemris.fer.hr/~golub/ga/ga.html
(22.05.2006.), Faculty of Electrical Engineering
and Computing, Zagreb, 2000.

[2] Golub, Marin, Genetski algoritam, skripta, prvi
dio, http://www.zemris.fer.hr/~golub/ga/ga.html
(22.05.2006.), Faculty of Electrical Engineering
and Computing, 2004.

[3] Golub, Marin, Genetski algoritam, skripta,
drugi dio,
http://www.zemris.fer.hr/~golub/ga/ga.html
(22.05.2006.), Faculty of Electrical Engineering
and Computing, 2004.

[4] Ivanšić, Ivan, Numerička matematika, Element,
Zagreb, 1998.

[5] Kreher, D.L., Stinson, D.R., Combinatorial
algorithms, CRC Press, New York, 1999.

[6] Leung, Y-T. Joseph, Handbook of scheduling,
CRC Press, New York, 2004.

[7] Pavković, B., Dakić, B., Polinomi, Školska
knjiga, Zagreb, 1990.

[8] Sedgewick, Robert, Algorithms, Addison-
Wesley Publishing Company, Inc., 1988.

