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Abstract. This paper addresses the comparison of 
heuristic algorithms in the case of real functions 

optimization and knapsack problem. Metaheuristics 

for algorithms hill climbing, simulated annealing, 

tabu search and genetic algorithm are shown, test 

results are presented and conclusions are drawn. 

Input parameters for optimization functions problem 

are optimised on a sample of functions. Also, 

algorithms' efficiencies are compared and their 

achievement for large dimension of problems is 

measured.  
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1. Introduction 

 
Problems which have a property that, for any 

problem instance for which the answer is "yes" (in a 
decision problem) there exist a proof that this answer 
can be verified by a polynomial-time algorithm are 
called NP-class problems (NP stands for "non-
deterministic polynomial"). A problem Q is said to be 
NP-hard if all problems in the NP-class are reducible 
to Q [6]. Although complexity of NP-hard problems is  
high (e.g. O(2n), O(n!),..) these problems, in the case 
of larger n, cannot be solved in a reasonable amout of 
time using deterministic techniques. To solve these 
problems in a realistic timeframe, we use heuristic 
methods. 

This work compare heuristic algorithms in the 
case of real function optimization and knapsack 
problem. Algorithms simulated annealing, tabu search 
and genetic algorithm are compared in knapsack 
problem, whereas in function optimization we also 
used hill climbing. For both classes of problems and 
for each algorithm heuristic function are created and a 
custom C program was written.  

Sample of 11 functions are tested in order to 
standardize input parameters for this class of problem. 
To test algorithms achievement, a knapsack problem 
up to 100 item were solved.  

2. Real functions optimization 

 
All algorithms, except hill climbing, which are 

used in this paper use binary n-tuples as solutions 
presentation. That means that we define set of all 
posible solutions as X={0,1}n. We tested 3 polynom 
and 8 others complex functions, which are shown in 
Appendix A. In the case of hill climbing, we were 
looking for result on 15 decimal places, whereas in 
others algorithms on 6 decimal places. 

 
2.1. Experiments with hill climbing 
 

We developed simple heuristic function; in each 
iteration, current interval is divided in n equidistant 
subintervals. Borders of this subitervals are 
neighborhood of current solution. The best candidate 
in neighborhood became new solution and their 
neighboours determine new interval. Algorithm will 
stop when new candidate is not better than current 
solution. 

  
Table 1. Hill climbing results with input 

parameter n=100 
 

 n=100 

Function f(xbest) - fopt numiter 

fp0 0 5 
fp1 0 5 
fp2 0 5 
f0 0 5 
f1 0 5 
f2 0 6 
f3 0 7 
f4 0 1 
f5 0 6 
f6 0 5 
f7 0 1 

 

Experiments show that even for small input 
parametar n such as n=10 result is very precise. For 



n=100 algorithm is generate result in 15 decimal 
places, for each function, as presented in Table 1.  

It can be seen that only a few iteration is enough 
to find optimal solution. Figure 1 shows how current 
solution change during iteration. Disadvantage of this 
approoach is in posibility to skip global optimum if n 
is too small, but in practice results are very precise 
and reliable for reasonable large input parametar n. 
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Figure 1. Change of current solution 
during iteration 

 

2.2. Experiments with simulated annealing 

and tabu search 

 
In the case of simulated annealing algorithm we 

chose pretty simple heuristic, where Hamming 
distance is 1. Neighbourhood of current solution x is a 
set of all binary n-tuples that are different from x for 
one bit. In the case of tabu search, heuristic function 
is defined in the same manner. In each iteration, tabu 
algorithm finds out the best solution in 
neighbourhood. In order to avoid searching the same 
neighbourhood repeatedly, tabu list remembers 
positions of last L changed bits so as to enable 
heuristic to skip those neighbourhoods.  

 
Table 2. Simulated annealing and tabu search 

results in function optimization 
 

 Number of optimal solutions in 10 runs 

Function 
Simulated 
annealing 

Tabu search 

 cmax=1000
α=0.98 

cmax=2000
α=0.985 

cmax=500 
L=1 

cmax=1000 
L=1 

fp0 5 6 9 10 
fp1 2 10 8 10 
fp2 6 7 10 10 
f0 3 3 6 10 
f1 5 4 6 9 
f2 0 1 2 6 
f3 2 2 6 6 
f4 7 8 10 10 
f5 2 2 4 6 
f6 4 6 10 10 
f7 7 6 10 10 

Results of optimization function with simulated 
annealing and tabu search are demonstrated in Table 
2. We can see two tests of both algorithms, with input 
parameters and number of generated optimal solutions 
in 10 runs. In optimization function with simulated 
annealing, experiments showed that increase in 
iteration number gives better result only if cooling is 
slower. To increase just a number of iteration or just 
cooling ratio does not lead to better performance of 
algorithm.  

Tabu search shown itself as a very efficient 
algorithm in function optimization. In most cases it 
generated optimal solution or departure was very 
small. It can be noted that efficiency of algorithm 
actually does not depend on the length of tabu list L 
(it is enough to remember last position), but only on a 
number of iteration. 

But when comparing these two algorithms, it is 
important to notice that tabu search needs more 
fitness function computations although it uses a 
smaller iteration number (Table 4). 

 
2.3 Experiments with genetic algorithms 

 
Two genetic algorithms were developed. One with 

one-point crossover operator and other one with 
uniform crossover. Both of them use steady-state 
selection and simple mutation that keeps current best 
solution. The length of chromosomes depends on the 
length of interval and the number of decimal places 
(we compute it using conversion from binary 
representation into Gray code and vice verse).  

 
Table 3. Genetics algorithms results in 

function optimization 
 

 Number of optimal solutions in 10 runs 

Function 
GA with one-
point crossover 

GA with uniform 
crossover 

 VEL_POP

=50 
t=100 
pm=0.01 

VEL_POP

=100 
t=1000 
pm=0.007 

VEL_POP

=50 
t=100 
pm=0.01 

VEL_POP

=100 
t=1000 
pm=0.007 

fp0 4 8 7 9 
fp1 5 7 8 9 
fp2 6 9 7 10 
f0 4 6 4 6 
f1 6 6 5 9 
f2 2 4 4 8 
f3 6 8 8 9 
f4 10 10 10 10 
f5 6 5 3 9 
f6 7 8 8 9 
f7 7 8 6 10 
 
Test results of function optimization with these 

genetic algorithms are presented in Table 3. In each 
test the percentage of chromosomes for elimination M 
was 50%. In the first series of tests other input 
parameters were: population of 50 chromosomes, time 



of evolution was 100 iteration and probability of 
mutation operator was 0.01. In the second series, we 
analysed how an increase in population affects the 
result. 

First, it was noticed that algorithm with uniform 
crossover is more efficient than the other one with 
one-point crossover. Further, experiments showed 
that, similar to simulated annealing, increase in 
iteration number gives better result only in case of 
larger population. When we increased iteration 
number from 100 to 1000, with same population of 
50, almost none of results were improved. But when 
we did the same with larger population, improvement 
was obvious. Also, our results confirm a well known 
fact about genetic algorithms that is that algorithm is 
the most sensitive to probability of mutation.  
 
2.4 Comparison of the algorithms 

 
Table 4 shows parallel results of function 

optimization with heuristic algorithms hill climbing, 
simulated annealing, tabu search and genetic 
algorithms. Shown data are obtained from the sample 
of 11 real function one variable and presented 
summary results. For each of compared algorithms we 
can see number of fitness function computation, 
probability of generating optimal solution and the 
largest departure from it - for given parameters. Two 
last items describe expectation of number of optimal 
solutions and the largest departure for this class of 
problem, for given input parameters.  

 
Table 4. Parallel results in function 

optimization 
 

 
Algorithm 

Input 
parameters 

Fitness 
function 

computation 

Probability 
of finding 
optimal 
solution 

The largest 
departure 

Hill 
climbing 

n=100 100-
700 

100%  

Simulated 
annealing 

cmax=1000
α=0.98 

1000 39% 26% 

 cmax=2000
α=0.985 

2000 50% 35% 

Tabu 
search 

cmax=500 
L=1 

10000 74% 0.002% 

 cmax=1000 
L=1 

20000 88% 0.002% 

Genetic 
algorithm 
(one-
point  

VEL_POP

=50 
t=100 
pm=0.01 

15000 57% 5% 

crossover) VEL_POP

=100 
t=1000 
pm=0.007 

100000 71% 5% 

Genetic 
algorithm 
(uniform 
crossover)  

VEL_POP

=50 
t=100 
pm=0.01 

15000 63% 5% 

 VEL_POP

=100 
t=1000 
pm=0.007 

100000 89% 5% 

 All of compared algorithms were very successful 
in solving this class of problem generating optimal 
solution in most runs. The most efficient, the most 
precise and the most reliable was heuristic algorithm 
hill climbing, which is at the same time conceptually 
the simplest between compared algorithms. 

 
3. Knapsack problem 

 
The knapsack problem is a problem in 

combinatorial optimization. It describes maximization 
problem of choosing as much as possible items that 
can fit into one bag of maximum weight (Figure 2). 
We can find similar problems in business, 
cryptography and other areas.  
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Figure 2. Knapsack problem 

 
Knapsack problem is NP-hard, with complexity of 

2
n. On this problem, with floating point instance, we 

will compare heuristic algorithms simulated 
annealing, tabu search and genetic algorithms. We 
chose 12 knapsack instance with 15, 25, 50 and 100 
items (3 for each n).  When input algorithm 
parameters are optimised, instances are tested in 30 
runs.  

 
3.1 Experiments with simulated annealing 

 
When using simulated annealing to solve 

knapsack problem heuristic was the same as in 
function optimization (the one with Hamming 
distance equal 1).  

 
Table 5. Simulated annealing results in 

knapsack problem 
 

α cmax Min Max Average 
Number of 

best 
solutions in 
30 runs 

0.999 1000 929.31 953.80 940.30 0 
 5000 939.12 954.04 949.99 7 
 20000 948.58 954.04 953.36 19 

0.9995 5000 939.12 954.04 949.99 7 
 20000 948.58 954.04 953.36 19 
 200000 935.80 954.04 954.03 29 

 
Program was started 30 times for each example 

and results for dimension 15 (k2) are shown in Table 
5. In each test initial temperature was 1000.  



3.2 Experiments with tabu search 
 
The main idea of tabu search heuristic function for 

knapsack problem is to “fill and empty” knapsack. An 
item with largest relative value is added in knapsack 
but when it is not possible than an item with smallest 
profit and weight ratio is taken away (pseudocode in 
Figure 3). 

 

1. if at least one index i exists where 
0=ix  and i is not on the current TabuList  

among these values of i choose the one such that  

 max→
i

i

w

p  

    and change xi from 0 to 1  

2. otherwise 
 (if there is no i satisfying conditions above)  
consider all i such that 1=ix  and 

 i is not on the current TabuList 
among these values of i, choose the one such that 

min→
i

i

w

p  

    and change xi from 1 to 0  

 
Figure 3. Tabu search heuristic function 

for knapsack problem 
 

When tabu search in knapsack problem is used, 
the length of tabu list L for each individual problem 
instance should be optimised. Results for dimension 
of 50 (k7), with number of iteration of 200, are 
demonstrated in Table 6. All our experiments showed 
that result becomes better only if up to 200 iterations 
are run and other authors1 drew the same conclusion. 

 
Table 6. Tabu search result in knapsack 

problem 
 
L Min Max Average Number of 

best 
solutions in 
30 runs 

1 8931.56 9305.68 9227.49 3 
2 8971.99 9305.68 9246.06 3 
3 8931.56 9305.68 9251.67 6 
4 9101.37 9305.68 9277.87 23 
5 9132.37 9305.68 9268.28 16 
6 9148.14 9305.68 9274.72 10 
7 9162.64 9305.68 9264.26 6 
8 9161.01 9305.68 9254.74 3 

 

3.3 Experiments with heuristic algorithm 
 
The same like in function optimization, we 

compared two genetic algorithms in knapsack 
problem. The first one with one-point crossover and 

                                                 
1 [5] pg. 179: "... We found cmax=200 to be sufficient for the 
problem instances we considered." 

the second with uniform crossover. Also, in each test 
the percentage of chromosomes for elimination M was 
50%. Experiments are done and results for 25 (k4) 
items are demonstrated in Table 7. 

In the presented case (25 items) and in the case of 
15 items compared genetic algorithms are almost 
equally successful, but in the case of bigger 
dimension algorithm with uniform crossover 
generated better solutions in 30 runs.  
 

Table 7. Genetic algorithms results in 
knapsack problem 

 
 Number of best solutions in 30 runs 

VEL_POP=50 

numiter 
GA with one-
point crossover 

GA with uniform 
crossover 

100 1 0 
500 2 1 

1000 3 5 
1500 3 5 
2000 2 6 
5000 7 10 
10000 5 11 

 
3.4 Comparison of the algorithms 

 
Combinatorial problem called knapsack problem, 

which is NP-hard and has an important role in 
mathematics modelling, is solved with heuristic 
algorithms in order to compare algorithms. All the 
algorithms generated solutions (optimal or close to 
optimal) with upper bound complexity much lower 
than the size of solution space, as it is demonstrated in 
Table 8. In 4 cases all of algorithms generated the 
same solution (on 6 decimal places), 5 times 
difference between the best  and worst solution was 
<1%, twice around 1% and once difference between 
the best and worst profit was 7% (Table 9). 

 
Table 8. Size of solution space and fitness 

function computation for compared 
algorithms  

 
n Solution 

space 

(2
n
) 

SA GA with 
one-point 
crossover 

GA with 
uniform 
crossover 

TS 

15 32768 2000 15000 15000 3000 
25 3.3·107 200000 50000 50000 5000 
50 1.1·1015 10000000 150000 150000 10000 
100 1.2·1030 500000000 5000000 5000000 20000 

 
In case of tabu search increase in number of 

iteration over 200 does not give better results. Length 
of tabu list must be optimised for each problem 
instance. It seems that larger dimension of problem 
requires bigger length of tabu list. Results obtained by 
genetic algorithm confirm this algorithm as very 
reliable and widely applicable. For larger dimension 
of problems, genetic algorithm with uniform 



crossover showed better performance, whereas in 
smaller dimensions algorithms were almost equal. 

 
Table 9. The best found solutions in 

knapsack problem  
 

Inst n Max  found profit in 30 runs Diff 
k1 15            108.875827  0 
k2 15            954.046872  0 
k3 15      349132.314969  0 
k4 25 191.142478 (SA, Gu,Gp) <1% 
k5 25 1315.517401 (TS,Gu,Gp) <1% 
k6 25 352365.538940  0 
k7 50 9305.682195 (TS) <1% 
k8 50 5206136.288693 (SA) <1% 
k9 50 1683291473.712614 (TS) <1% 
k10 100 606.936611 (TS) 1.5% 
k11 100 1724.588480 (TS,Gu,Gp) 7% 
k12 100 997402182.537699 (TS) 1.2% 
 
4. Conclusion 

 
This paper showed that function optimization as 

well as knapsack problem can be successfully solved 
using heuristic algorithms.  

It is demonstrated that conceptually very simple 
heuristics, as in case when neighborhood consist n-
tuple with Hamming distance 1, can solve these 
problems successfully. Further, it is shown that the 
same heuristics can be used for different classes of 
problems. For example, the difference between 
simulated annealing algorithms for function 
optimization and knapsack problem is only in profit 
function (whereas it is general characteristic of 
genetic algorithm). 

Experiments with simulated annealing showed 
that increase in number of iteration gives better result 
only in combination with increase in cooling ratio. 
Tabu search algorithm was especially efficient in 
knapsack problem, whereas genetic algorithms were 
very reliable in both classes of problems. Genetic 
algorithm with uniform crossover was more efficent 
and relialbe than the other one with one-point 
crossover. 

The test results showed that the most efficient and 
the most reliable algorithm for functions optimizing is 
hill climbing (Table 4). In the case of NP-class 
knapsack problem, upper-bound complexity of all the 
algorithms is much lower than in case when 
deterministic methods are used (Table 8).  In our 
experiments, the most efficient algorithm in knapsack 
optimizing is tabu search.  

 

5. Appendix A: Tested functions 
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Figure 4. An example of test function (f6) 
 
Table 10. Tested functions and its extreme 

values  
 

Function Interval fopt 

xxxf p 4)( 3
0 −=  [-2, 2]   3.079201 

12
4

1
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)sin(
3 )( xxxf =  [0, 50] 45.555967 

[ ])(cos)(4 xtgxxf =  [-2, 6]   5.747734 

)cos()(5 xtgxxf =  [0, 5]   2.989384 
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6. Appendix B: Knapsack problem instance  
 

Table 11. An instance of the knapsack 
problem with 25 items (k4)  

 
Profits 20.049179 5.110572 0.859042 14.058633 

19.863343 14.066975 11.069603 7.568319 
25.772103 14.762425 21.760358 20.308861 
19.489480 9.548243 5.002621 8.732641 
20.090447 9.244832 25.731283 19.410956 
17.169970 3.545943 6.894962 22.323248 
24.606240 

Weights 9.560385 2.400555 0.466834 6.577130 
10.976847 6.401247 5.532914 4.051069 
12.249868 7.006832 10.754451 9.337501 
9.467215 4.395741 2.693165 4.784752 
9.927797 4.646784 12.094998 9.043678 
9.470741 1.933542 3.225321 10.455664 
12.321248 

Capacity 89.888139 

Solution X=[1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 0 0 1 1 
0 0 0 1 0] 

Profit 191.142478 
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