
Solving Timetable Scheduling Problem
by Using Genetic Algorithms

Branimir Sigl, Marin Golub, Vedran Mornar

Faculty of Electrical Engineering and Computing, University of Zagreb
Unska 3, 10000 Zagreb, Croatia

branimir.sigl@bj.hinet.hr, marin.golub@fer.hr, vedran.mornar@fer.hr

Abstract. In this paper a genetic algorithm for
solving timetable scheduling problem is
described. The algorithm was tested on small
and large instances of the problem. Algorithm
performance was significantly enhanced with
modification of basic genetic operators, which
restrain the creation of new conflicts in the
individual.

Keywords: timetable scheduling problem,
genetic algorithm, 3D representation

1. Introduction

This article describes an implementation of
genetic algorithm on timetable scheduling
problem. The timetable scheduling problem is
common to all educational institutions. Main
algorithm goal is to minimize the number of
conflicts in the timetable. Reduction to encoding
of search space was also implemented. The
algorithm was tested on small and large
timetable problems at Faculty of Electrical
Engineering and Computing (FER) in Zagreb.
The program interface was developed in C#. The
core of genetic algorithm was developed in C++
with STL (Standard Template Library) support.

2. Timetable Scheduling Problem

The scheduling problems are essentially the
problems that deal with effective distribution of
resources. During the scheduling process many
constraints have to be considered. Resources are
usually limited and no two tasks should occupy
one particular resource at the same time. For
most of the scheduling problems it has been
shown that they are NP-hard, and that they can
not be solved in polynomial time using a
deterministic algorithm.

School timetable scheduling problem presents
a set of tasks (classes) and a set of resources
(rooms, groups, instructors). Every task requests
some resources for its realization and has the

exact length. The set of timeslots when a class
can be scheduled is also determined. The goal is
to assign those tasks to their resources while
satisfying all of the hard constraints – no
resource should be allocated by multiple tasks at
the same time.

Figure 1. Timetable presented with 3D

structure

Scheduling a timetable could also be

represented like special class of 3D cutting
problems. The timetable could be presented as a
3D structure. The dimensions of 3D timetables
are: days (x-axis), timeslots (y-axis) and rooms
(z-axis). The classes are shown as cubes, which
should be placed in a 3D timetable structure (Fig.
1) [7]. The scheduling is a process of placing
those cubes into a timetable, in the way that no
conflicting classes (which allocate the same
resource, a student group or an instructor) are
placed in the same timeslot.

The timetable scheduling process could be
formally defined with binary variables xcdtrgi,
which have the value of 1 if and only if instructor
i lectures the class c on day d at time t, for group
g in room r.

The timetable should satisfy the following
conditions:
a) Group g can attend only one class at one

time.
b) Instructor i can teach only one class at one

time.
c) In room r only one class can be taught at one

time.
d) All lectures should be kept exactly once.

A GUI (Graphical User Interface) has been
developed to facilitate the input of data. For each
class the following can be set:
• days and times when the class could be

placed;
• rooms where the class could be placed;
• number of rooms occupied by a class

simultaneously
• groups of students that attend the class;
• instructors that teach the class.

The theoretical problem size can now be
reduced. As the groups and instructors are
intrinsic part of a class definition, indices i and g
are eliminated. The information about groups
and instructors is not discarded, however. It is
stored with the variable to be utilized later when
generating conflicts.

 Furthermore, since many combinations of
indices c,d,t,r are impossible, only the possible
combinations are generated.

Since one class can utilize more than one
classroom (e.g. a larger group occupies two PC
labs at he same time), the index r of variable
xcdtrgi actually denotes one of the possible
combinations of the room allocations.

The pseudocode for the variable generation is:

for each class c {

 generate all possible room combinations
 for each possible (day,time) pair {
 for each r in room combinations {
 create variable xcdtr
 }
 }
}

To facilitate the generation of conflict, three
auxiliary 3D structures are created. Each
structure represents a special type of view on the
timetable: from the aspect of room, group and
instructor. From every view new constraints can
be identified. X and y axes of all three auxiliary
structures represent the day and time. The z-axis
is different in every structure, representing
rooms, groups and instructors, respectively.
During the constraint generation process, each
variable is positioned, for all possible day-time

pairs, at the appropriate z coordinate, which
denote rooms, groups or instructors allocated by
the corresponding class. After filling of all the
data, each x-y-z coordinate is checked[1]. If more
classes compete for a particular resource, a new
constraint has to be generated. This process is
analogue to reducing of resource to only one task
in a single timeslot. The solver is now assured
that only one variable will take (for example) a
particular room in a single day-time
combination. All of those bound could be
represented as:

 1≤∑ classx (1)

Figure 2. Generation of conflicts and bounds

3. The Genetic Algorithm Implementation

Genetic algorithms are adaptive systems
inspired by natural evolution. They can be used
as techniques for solving complex problems and
for searching of large problem spaces. Genetic
algorithms are belonging to guided random
search techniques, which try to find the global
optimum. J.H. Holland presented this concept in
early seventies. The power of genetic algorithms
and other similar techniques (simulated
annealing, evolutionary strategies) lies in the fact
that they are capable to find global optimum in
multi-modal spaces (spaces with many local
optimums). Classical gradient methods will
always gravitate from starting position to some
local optimum, which could also be global, but it
can not be determined for certain. Genetic
algorithms are working with the set of potential
solutions, which is called population. Each
solution item (individual) is measured by fitness
function. The fitness value represents the quality
measure of an individual, so the algorithm can
select individuals with better genetic material for
producing new individuals and further
generations.

The simulation of evolution allows survival
of better individuals and extinction of inferior
ones. Evolution’s goal is to find better
individuals in each generation. The process of
evolution is maintained by selection, crossover
and mutation. In terms of genetic algorithms
those processes are called genetic operators. The
selection chooses superior individuals in every
generation and assures that inferior individuals
extinct. The crossover operator chooses two
individuals from current population (parents)
and creates a new individual (child) based on
parents’ genetic material. Selection and
crossover operators will expand good features of
superior individuals through the whole
population. They will also direct the search
process towards a local optimum. The mutation
operator changes the value of some genes in an
individual and helps to search other parts of
problem space.

In the algorithm presented here, each
individual in the population represents one
timetable. The algorithm starts from an
infeasible timetable, and tries to get the feasible
one.

In a timetable, every class can be placed only
once in the 3D timetable structure. This could be
ensured with generation of a new constraint for
each class that should be scheduled. These extra
constraints would just enlarge the problem size
and the number of constraints that should be
checked. Because every class can have only one
variable set to 1, individuals can be generated in
such way that every gene in an individual
represents one class. The value of a gene will be
the ordinal of a binary variable belonging to that
class.

Figure 3. Encoding of Individuals

The fitness value of an individual is

calculated as

fitness(individual) =

(Number of conflicts)*K + Quality (2)

The number of conflicts shows how many
constraints have been violated within the current
individual. When an individual reaches zero
conflicts, that means that it represents a feasible
timetable and that there are no collisions of
classes [1].

The quality of the timetable is determined by
earliness of scheduled classes. Students have
better ability to learn in morning hours and after
that, the interest for learning is continually
decreasing. That is why the best quality value is
set to the early hours and worse values are set for
late hours. The genetic algorithm will try to
schedule classes as early in the morning as it can,
indirectly minimizing the number of holes in a
student's schedule.

The main goal of the genetic algorithm
presented here is to achieve a feasible timetable.
That is why the feasibility function will mainly
try to minimize the number of conflicts in an
individual. This is achieved by multiplying the
number of conflict by a large constant K. The
quality of the timetable is of the lesser
importance. Individuals in a population are
sorted by ascending value, so the best individual
has the smallest fitness value.

The program uses eliminating selection,
which chooses and eliminates bad individuals
from the current population, making room for
new children that will be born from the
remaining individuals. The probability of
elimination increases proportionally with the
fitness value of the individual. As the remaining
individuals are better than the average of the
population, it is expected that their children will
be better as well.

There is some probability (though very small)
that eliminating selection deletes the best
individual. That would ruin the algorithm efforts
and put its work back for some number of
generations. Therefore, protection mechanism for
best individuals has to be made, so the good
genetic material is sustained in population. It is
called the elitism. The authors’ choice was to
keep just the top one individual.

The reproduction operators constitute a very
important part of genetic algorithms. Those
operators make use of good individuals (which
remained in population after selection) and
construct new, better individuals and overall
population.

The crossover operator operates on
individuals (called parents) and make new, child
individual from their genetic material. This
operator fills up empty places in population that

remained after elimination. If parents are good, it
is likely that their child will also be good.
Uniform crossover operator was chosen as the
best option for this kind of problem [8].

for each gene in (parent1 , parent2){
 if(parent1[gene]==parent2[gene]){
 child[gene]=parent1[gene];
 }else{
 child[gene] =
 random(parent1 ,parent2)[gene];
 }
}

Uniform crossover operator checks all genes

of both parents. If parents have equal values of a
gene, this value is written to the child. If values
from parent genes differ, then the algorithm
randomly chooses one parent as a dominant one
and takes its gene.

The program uses simple roulette wheel
parent selection algorithm. The probability of
selection of one individual is proportional to it’s
fitness value [4].

Cumulative fitness values are used for each
individual by the formula:

∑
=

=
k

i
ik individualfitnessq

1

)(, D = max(qk) (3)

where k=1, 2, …. POPULATION_SIZE.

The algorithm generates a random number r

from the interval (0, D) and selects an individual
which satisfies the condition:

 max qk <= r. (4)

Figure 4. Uniform crossover of individuals

The mutation is also a typical operator for the

genetic algorithm. It takes one or more genes
from an individual and changes its value. The
probability of the mutation is an input parameter
for genetic algorithm. The presented algorithm
iterates through every gene of every individual in
the population. For each gene a random number

form the interval (0, 1) is generated. If the
generated value is smaller than the given
probability of the mutation (pm), the gene
changes value to a random value which denotes a
different day-time value or room combination.

for each gene in individual{
 if(p(Random) < pm){
 gene = get random value from
 possible values list;
 }
}

Figure 5. Mutation of individuals

4. Improving genetic algorithm behavior

The main idea for improving operators was to
prohibit the introduction of new conflicts. Basic
operators did not take into account whether they
make individuals with more or with less conflicts
[5]. The outcome of the algorithm utilizing such
basic operators was noticeably poor. The
decision was made to add some programming
logic to the operators and to use different
selection algorithm.

The first step of the improved crossover
operator simply copies equal genes from parents
to the child individual. No additional conflicts
can be added through copying those equal
values. Different parent’s genes are specially
marked and delegated for further processing. In
the second step, the crossover operator checks
the list of equations for each marked gene in
child individual and counts the number of
potential conflicts generated for both parent’s
choices. The gene from a parent that generates
fewer conflicts is chosen, so no additional
conflicts are generated in addition to the
conflicts caused by the parents.

Such a modification was not introduced to the
mutation operator. Similar functionality of the
mutation operator would probably lead the whole
population to the local optimum. In most cases
the mutation operator generates inferior
individuals, but most of its genes are good.
Mutated genes help us to explore other parts of
searching space and to avoid reaching of local
optimum value.

Additional conflicts in population will be
generated when two equal individuals appear in
the mating process as parents. In that case one of
the parents will be mutated and the child will be
randomly generated. In this procedure a bad
child individual will be created, but it will not
spoil the population. Quite the reverse, it will
bring new genetic material to the saturated
population.

The improved algorithm uses tournament
eliminating selection [5]. This kind of selection
ensures elitism. Consequently, the top individual
can not be changed. The tournament selection
allows greater population size without slowing
down the algorithm. Better results were obtained
with population of much greater size, in contrast
to the basic algorithm, where enlargement of the
population resulted in significant performance
degradation.

5. Experimental Results

For experimental purposes data from Faculty
of Electrical Engineering and Computing (FER)
in Zagreb was used [7]. Algorithm was tested on
the small and large instances of problem (Table
1). The large problem is a full size FER schedule
for the autumn semester. The small size problem
was obtained from the large size with exclusion
of about 70% of classes from the scheduling
process. The small problem was solved without
conflicts. When solving the large size problem,
the basic algorithm stopped at about 95 conflicts.
With intelligent operators, algorithm reached
about 20 conflicts.

Table 1. Size of the problem

 SMALL LARGE
Classes / Size of individual 227 770
Rooms 27 41
Groups 55 114
Instructors 46 157
Number of binary variables 16103 35026
Number of bounds 4345 10898
Population size (classical) 256 256
Population size (improved) 5120 5120

0

2

4

6

8

10

12

14

16

18

20

500 5500 10500 15500 20500

.015

.009

.003

Figure 6. Evolution process for the small size
problem depending on mutation probability

0

50

100

150

200

250

300

350

400

500 10500 20500 30500 40500

.015

.009

.003

Figure 7. Evolution process for the large size
problem depending on mutation probability

0

20

40

60

80

100

120

140

5 505 1005 1505 2005 2505 3005 3505

.015

.009

.003

Figure 8. Evolution process with improved

operators for the small size problem

0

50

100

150

200

250

300

350

400

450

500

25 2525 5025 7525 10025

.015

.009

.003

Figure 9. Evolution process with improved

operators for the large size problem

Figures 6. and 7. show the results of genetic

algorithm with basic operators. This algorithm
experiences problems with convergence and
saturation of the population. After a certain
number of conflicts had been reached, very small
improvements were achieved through algorithm
running time.

The algorithm with improved operators (Figure
8, and 9.) shows much better results. Faster
convergence and fewer conflicts were achieved
in a lesser amount of running time.

8. Conclusion

The initial scheduling problem with large
number of binary variables has been reduced to
the acceptable size by eliminating certain
dimensions of the problem and encorporating
those dimensions into constraints. The grouping
of several binary variables into one gene value
significantly reduced the individual size. Now it
is possible to try to solve the full size problem
(problem of the whole FER schedule) with
genetic algorithm approach. Such a
representation of the scheduling problem
achieves the acceptable algorithm speed, so
small size problems are solved in tens of
seconds. Significant improvements have been
achieved by using intelligent operators. The
intelligent algorithm converges much faster then
the basic algorithm and represents a good
starting point for complete solving of the full
scale problem.

To completely solve the full scale problem,
further algorithms improvements will have to be
made. When generating the constraints, it could

be useful to sign each one, so no constraint will
be set (and checked) twice. Individuals should
be generated in such way that classes which are
more difficult to schedule occupy the front genes
of an individual, while classes easier to schedule
should occupy the back genes. This would be
useful for intelligent crossover operator, which
sets and checks the conflicts from front to back
of the individual. Also, a parallel computing
approach should be tried, so checking space of
the problem could be widened. Each thread could
start with different initial population and the
quality of solution is expected to be better.

9. References

[1] D. Abramson, J. Abela, “A Parallel Genetic

Algorithm for Solving the School Timetable
Problem”, 15. Australian Computer Science
Conference, Hobart, Feb 1992.

[2] L. Davis, "Handbook of Genetic
Algorithms", Van Nostrand Reinhold, New
York, 1991.

[3] D.E. Goldberg, "Genetic Algorithms in
Search", Optimization and Machine
Learning, Addison-Wesley, 1989.

[4] M. Golub, D. Jakobović, “Genetic
algorithm", parts I and II (in Croatian),
Faculty of electrical engineering and
computing, Zagreb, 1997/2002, available via
ftp from: http://ww.zemris.fer.hr/
~golub/ga/ga.html

[5] M. Golub, S.Kasapović, "Scheduling
Multiprocessor Tasks with Genetic
Algorithms", Proceedings of the IASTED
International Conference Applied
Informatics, February 18-21, 2002.,
Insbruck, Austria, pp. 273-278, available via
ftp from: http://www.zemris.fer.hr/
~golub/clanci/ai2002/ai2002.doc

[6] Z. Michalewicz, "Genetic Algorithms + Data
Structures = Evolutionary Programs",
Springer-Verlag, Berlin, 1992.

[7] V. Mornar, “Algorithms for some classes of
cutting stock problems", PhD dissertation (in
Croatian), Electrotechnical faculty,
University of Zagreb, Zagreb, 1990.

[8] R. Weare, E. Burke, D. Elliman, “A Hybrid
Genetic Algorithm for Highly Constrained
Timetabling Problems”, available via ftp
from: http://www.citeseer.com

