
AN IMPLEMENTATION OF
BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION

 IN GENETIC ALGORITHM

Marin Golub
Faculty of Electrical Engineering and Computing, University of Zagreb

Department of Electronics, Microelectronics, Computer and Intelligent Systems
Unska 3, 10000 Zagreb, Croatia

e-mail: golub@zemris.fer.hr

Abstract: This paper describes the implementation details and compares two methods for
optimisation of multi-dimensional cost functions. The implemented genetic algorithm uses two
chromosome representations: binary and floating point. In both representations the algorithm
is based on steady-state reproduction, roulette-wheel bad individuals selection and has the
same parameters.

Key words: genetic algorithm, chromosome representation, steady-state reproduction

1. Introduction

Genetic algorithms are very practical and robust optimisation methods [1],[3],[6]. The general idea is
the simulation of natural evolution in the search for the optimal solution of a given problem. In nature
individuals are competing to survive. In this competition, only the fittest individuals survive and
reproduce. Therefore, the genes of the fittest survive, while the genes of weaker individuals die out.
Genetic material is saved into the chromosomes. Parents’ genetic material is mixed during
reproduction and the offspring has genes of both parents. Also, an individual’s genetic material can
be changed by mutation. Mutation is a random change of one or more genes.

Implementation of this natural process is suitable as an optimisation method. Figure 1 shows the
structure of a genetic algorithm and an evolution program in general.

Figure 1: Structure of the genetic algorithm

When we simulate the natural genetic algorithm, each individual (chromosome) represents a potential
solution of a given problem. The GA spends most of the time on evaluating population. Therefore,

procedure Evolution program
begin

initialize population
while termination criterion is not reached
begin

evaluate population
select individuals for next population
perform crossover and mutation

end
end

the representation of chromosome is very important: it could be an array of bits, a number, an array
of numbers, a matrix, a string of characters or any other data structure. A chromosome must satisfy
given precision and constraints [2],[3],[5],[6]. And, of course, it has to be suitable for the
implementation of genetic operators.

In section 2 the implemented genetic algorithm with steady-state reproduction is described. In
sections 3 and 4 chromosome representations are described. Test function and experimental results
are described in sections 5 and 6, respectively.

2. Implemented genetic algorithm

In the binary and floating-point chromosome representation the implemented GA is the same and has
the same parameters: the size of population, the number of eliminated individuals and the number of
mutations per generation. The difference between the two methods is in chromosome representation
and specific genetic operators.

The initialisation process is very simple: it creates a population of POP_SIZE individuals
(chromosomes), where each chromosome is initialised randomly.

Evaluation function eval is defined as the difference between function f and the minimal value of
function f in current population: { }eval x f x f x

i i() () min ()= − , i=1,2,...POP_SIZE. This

procedure is called windowing [1] where minimum is equal to zero (minimum evaluation value is
zero). It eliminates negative evaluation values and protects the algorithm from becoming a random
search process if all individuals have approximately the same large function values [1].

The selection process saves the best individual. Figure 2 shows the steady-state reproduction with
roulette-wheel bad individual selection. Steady-state reproduction replaces only M individuals. On
the other hand, the generation replacement technique replaces its entire set of parents by their
children. Steady-state reproduction has one parameter: M - the number of new chromosomes to
create [1],[5].

Figure 2: Genetic algorithm with steady-state reproduction

The elimination probability pe is proportional to individual’s elimination fitness:
elimination_fitness { }= −max () ()

i ieval x eval x . Because the elimination probability of the best

individual is zero, that selection always saves the best individual.

procedure Genetic algorithm with steady-state reproduction
begin

initialize population
while termination criterion is not reached
begin

calculate elimination probability for each individual
turn roulette-wheel M times and each time delete chosen

individual
mate survived individuals and substitute M eliminated

individuals by their children
end

end

For this particular problem the following parameters are used: population size:
POP_SIZE=10,30,60,100, number of eliminated individuals: M=POP_SIZE/2 and number of
mutations per generation: N_M≅ POP_SIZE/3. For the one-dimensional problem, number of
populations (iterations) is set to 500, and for two and ten-dimensional problems it is set to 1000.

3. The binary implementation

In the binary implementation each chromosome consists of a binary vector that represents real value
of the variable x. If the problem is multidimensional, the chromosome consists of an array of binary
vectors. The length n of the binary vector depends on the required precision. The domain of the
variable x is [LB,UB] where LB,UB∈ℜ. Vector 0...00 (n bits and all bits are set to zero)
represents value LB and vector 1...11 represents value UB. Any other binary vector
bn-1bn-2...b2b1b0 represents value x with precision ∆x:

()x LB
b

UB LB
i

i

i

n

n= +
−

−=

−

λ 2

2 1
0

1

, ∆x
UB LB

n=
−
−2 1

(1),(2)

The precision of the binary representation can be extended by increasing the number of bits per
chromosome, but this considerably slows down the algorithm [5].

We used uniform crossover: each bit of a new child is taken from one of the parents randomly.
Figure 3 shows uniform crossover procedure.

Figure 3: Uniform crossover

The mutation is a random change of one bit. The mutation probability of the best individual is zero
and for the other individuals it is:

()p
N M

POP SIZE nm =
−

_
_ *1

, (3)

 where N_M is the number of mutations and n is a number of bits.

4. The floating point implementation

In the floating point implementation the chromosome consists of a floating point number. Of course, if
the given function has more than one variable, then the chromosome consists of an array of floating
point numbers. The precision of such an approach depends on the floating point number
implementation.

The crossover operator is defined as: x rand number in range x xchild parent parent= _ _ _ (,)1 2 .

procedure Uniform crossover
begin

for i=1 to n
child[bi]=choose_one_by_equal_chance(parent1[bi],parent2[bi])

end

The simple mutation operator defined by: x rand number in range LB UB= _ _ _ (,) gives bad
experimental results in fine local tuning. The reason of such behaviour of the algorithm with simple
mutation operator is the very low probability that after mutation an element will fall within a small
interval δ of the domain range [5]:

p
UB LBδ

δ
=

−
, (4)

where δ <<(UB-LB) Τ pδ ≅ 0.

The non-uniform mutation operator depends on the time, that is, on the generation number t. The
probability of mutation is constant, but mutation scope isn’t and it changes with time. If chromosome
xk is selected for mutation then the new chromosome xk’ is calculated as:

xk’=rand_number_in_range(LBM,UBM) (5)

where () (){ }LBM LB x UB LB r tk= − −max , , () (){ }UBM UB x UB LB r tk= + −min , , and

r t s
t
T

b

() = −
−

χ
χ

ρ

1
1

, where s is a random number from the interval [0,1], b is a system parameter
determining the degree of dependency on iteration number (we used b=5) and T is the maximal
generation number. This function enables decreasing the search scope and the procedure idea is
borrowed from simulated annealing [4]. If t is small value, then the search scope is a random number
between 0 and UB-LB. At the other hand, at the end of time (t→T) search scope tends to zero
(search scope → 0) [5].

5. Test function

0.9

0.92

0.94

0.96

0.98

1

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1

-100 -50 0 50 100

-5

0

5
-5

0

5
0

1

Figure 4: 1D test function

()
f x

x

x
() .

sin () .

. *
= −

−

+
05

05

1 0 001

2

2 2 ,

[]x ∈ − 100 100,

Figure 5: Segment of 2D test function

()[]
f x y

x y

x y
(,) .

sin .

.
= −

+ −

+ +
05

05

1 0001

2 2 2

2 2 2 ,

[]x y, ,∈ − 100 100

The test function [1] in N-dimensional space is given as:

()f x
x

x

i
i

N

i
i

N

r
= −

−

+

ε

υ

υ

=

=

λ

λ
05

05

1 0 001

2 2

1

2

1

2.
sin .

.

,
r
x

x
x

x N

=

ε
ε
ε
ε

υ

υ

1

2

...
, []x x x N1 2 100 100, ,..., ,∈ −

The global maximum of the given problem is ()f
r
0 1= . Figure 4 and Figure 5 show function ()f x

r
 in

one and two dimensional space respectively.

6. Experimental Results

For one and two-dimensional problems both methods give very similar results, however, the GA
with floating point representation is 60% faster then the GA with binary representation. The
differences between two GA methods are larger if the search space is three or more dimensional.
For the ten-dimensional problem GA with floating point implementation gives slightly better solutions
in a three times shorter time than the GA with binary implementation.

dimension of problem 1D 2D 10D
population size 10 30 60 100

number of iterations 500 500 1000 1000
number of experiments 1000 1000 100 100

chromosome representation Binary FP Binary FP Binary FP Binary FP
reach global optimum

f(x)=1
96.7% 98.2% 100% 100% 16% 8% none none

reach first local optimum
f(x)≅0.99

3.3% 1.8% none none 84% 92% none none

reach other local optimum
where f(x)>0.8

none none none none none none 53% 76%

d - average deviation 3.61E-4 1.96E-4 1E-5 7.6E-5 0.0083 0.0089 0.217 0.167
σ - standard deviation 0.0018 0.0013 1.9E-4 6.65E-4 0.0036 0.0024 0.093 0.062

CPU time in seconds
for 100 experiments

168 103 432 269 2825 1827 23878 7891

Table 1: Experimental optimisation results

Deviation d is calculated for each experiment as: () ()d f f x= −
r r
0 max . Last row in the table shows

how much CPU-time a SUN SPARCstation 2 (4/75) with 32 MB RAM spends for 100
experiments. The parameters of GA were not optimised. For a particular set of parameters results
would be better.

We should expect better results if we shrink the domain range. For example, let it be:
[]x x xN1 2 0 100, ,..., ,∈ . Table 2 shows results of the optimisation of the same test function, but with

a smaller domain range. The GA with floating point chromosome representation almost becomes a
random search process. The reason for such algorithm behaviour lies in bad crossover operator. If
we choose any two chromosomes from the domain range (neither of them is the global optimum), the
defined crossover can’t produce the global optimum, because the global optimum is on the edge of
the domain range.

dimension of problem 1D 2D
population size 30 60

number of iterations 500 1000
number of experiments 100 100

chromosome representation Binary FP Binary FP
reach global optimum

f(x)=1
100% 77% 23% none

reach first local optimum
f(x)≅0.99

none 23% 77% 74%

reach other local optimum
where f(x)>0.8

none none none 26%

d - average deviation ≅0 0.0025 0.0075 0.0135
σ - standard deviation ≅0 0.038 0.004 0.0089

Table 2: Experimental optimisation results with smaller domain range: []x x xN1 2 0 100, ,..., ,∈

7. Conclusion

The GA with floating point chromosome representation is simpler for implementation and it is faster
than GA with binary representation. There are two reasons for that:

1) For the binary implementation, the algorithm must have a conversion mechanism that
could convert a bit string (chromosome) to the real value. The floating point
implementation does not need such a mechanism, because the chromosome is at the
same time a real value.

2) Genetic operators crossover and mutation defined over floating point values are
simpler and faster than the uniform crossover and mutation over bit strings.

For multidimensional problem the GA with floating point chromosome representation gives slightly
better results then the GA with binary representation (Table 1). The solution of the problem of fine
local tuning in floating point representation lies in non uniform mutation.

On the other hand, the GA with floating point chromosome representation almost becomes a random
search process, if, for a particular problem, the crossover operator can’t produce the optimal
solution (see results in the Table 2).

References:

[1] Davis, L. (1991), Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York.
[2] Filhio, J.L.R., Treleaven, P.C., Alippi, C. (1994), “Genetic-Algorithm Programming

Environments”, Computer, Vol. 27-6, pp. 28-43., June 1994.
[3] Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization and Machine

Learning, Addison-Wesley.
[4] Laarhoven, P.J.M., Aarts, E.H.L. (1987), Simulated Annealing: Theory and

Applications, D. Reidel Publishing Company.
[5] Michalewicz, Z. (1994), Genetic Algorithms + Data Structures = Evolution Programs,

Springer-Verlag, Berlin.
[6] Srinivas, M., Patnaik, L.M. (1994), “Genetic Algorithms: A Survey”, Computer, Vol.

27-6, pp.17-26, June 1994.

