A FEW IMPLEMENTATIONS OF PARALLEL GENETIC ALGORITHM

Marin Golub, Domagoj Jakobovige
Faculty of Electrical Engineering and Computing, University of Zagreb
Department of Electronics, Microelectronics, Computer and Intelligent Systems
Unska 3, 10000 Zagreb, Croatia
e-mail: marin.golub@fer.hr, domagoj.jakobovic @fer.hr

Abstract: In this paper we describe the parallel genetic algorithm implementation using
multithreading. The genetic algorithm was extended to deal with several genetic operators
over binary vectors and floating-point numbers. Particularly, the possibilities of
parallelisation of generational, steady-state and tournament selection are examined. The
tournament selection appears to be the most suitable for parallel implementation.

Key words: genetic algorithm, multithreading, tournament selection, adaptive mutation
1. Introduction

Genetic algorithm is a heuristic random search method based on natural evolution which
requires considerable amount of CPU time. Since the optimisation problem has to be solved in
given computing and time constraints, parallel genetic algorithm is an attempt to speed up the
program without interfering with other properties of the algorithm.

The parallel genetic algorithm (PGA) can be implemented using several threads. The main
benefits that arise from multithreading are: better program structure (any program in which
many activities do not depend upon each other can be redesigned so that each activity is
executed as a thread) and efficient use of multiple processors (numerical algorithms and
applications with a high degree of parallelism, such as matrix multiplication or, in this case,
genetic algorithm, can run much faster when implemented with threads on a multiprocessor)
(SunSoft, 1994).

/ thread for
parameter
[] / control

—>
thread for _
selection
thread for user

interface (prints
K | | out the results)

Fig. 1 Parallel genetic algorithm realised with multiple threads

For every algorithm that we want to execute in multiple threads, first we have to identify
independent parts and assign to each a thread. One or more threads can be assigned to each

genetic operator (selection, crossover and mutation - Fig. 1). Additionally, we can assign a
thread for user interface, a thread for parameter control, a thread for results comparison with
other methods (e.g. we can implement a completely random search mechanism and compare
its results with the genetic algorithm), etc.

2. The choice of selection

The steady-state selection has one parameter M - the number of new chromosomes to create.
Generational replacement is the spatial case of steady-state selection in which parameter M
equals the size of the population (Davis, 1991). Similarly, the tournament selection is the
spatial case of steady-state selection too, in which parameter M equals 1 (Table 1).

Table 1 Steady-state reproduction and parameter M

Parameter M Type of selection Description
M=POP_SIZE | Generational selection replaces whole population
1<M<POP SZE | Steady-state selection replaces M individuals

replaces only one individual (the worst of three

M=1 Tournament selection . . .
chosen) with child of two survived parents

The steady state reproduction replaces M individuals in each iteration of evolution process.
Let us divide that algorithm into three independent parts and assign to each one a thread. First
thread executes only the crossover and creates new individuals. The second one performs the
selection and deletes selected individuals. The third one does only the mutation. In that case,
without any synchronisation, the population size will not be constant. If the thread for deletion
is faster then the thread for creation, after some time, the population will consist of one
individual (the last individual can’t be deleted because it is the best one at the same time).
Crossover operator needs two individuals to create a child and it waits for the other individual
creation forever, because nobody will create it. That is the deadlock. The other possibility is
memory overflow if the creation thread is faster than elimination.

That problem can be solved by simple synchronisation mechanism: if the population size is to
small, the elimination thread waits; if the population size is to big the creation thread waits.
The change of variable POP_SZE must be assigned to a critical section to prevent multiple
threads from simultaneously changing it. Few experiments showed that the parallel genetic
algorithm described above spends more computation time for synchronisation than for
optimisation, and the parallel program is even slower than the sequential one.

For steady-state selection with parameter M=1 the roulette-wheel bad individual selection is
not a good choice. As for the each turn the selection probabilities for whole population have to
be calculated, roulette-wheel selection slows down the algorithm. In that case solution is
tournament bad individual selection. The tournament bad individual selection in each step of
the evolution chooses with equal probability three individuals from the mating pool. Then, it
eliminates the weakest one of those three individuals. The survived two individuals are
parents of a child which will replace the eliminated one.

3. Genetic operators as independent parts of genetic algorithm

The parallel steady-state genetic algorithm with tournament bad individual selection was
implemented. In this implementation, genetic algorithm consists of two threads: one performs
tournament selection and crossover and the other mutation (Fig. 2).

PARALLEL GENETIC ALGORI THM

{
initialize population;
create thread for tournament selection and crossover;
create thread for mutation;
wait while termination criterion is not reached;
delete all threads;

}

Thread for mutation

forever

{ <«
choose randomly one individual and mutate it;

}

Thread for tournament selection and crossover

forever

{
choose randomly three individuals; «— |
delete the worst of three chosen individuals;
new individual = crossover (survived parents);

}

Fig. 2 The structure of simple parallel genetic algorithm (SPGA)

The major problem of that simple parallel implementation is that it has no control over
mutation probability. The consequence is a very bad algorithm behavior. The results are
slightly better than random search, but also useless.

If the threads are left to parallel execution without any control, one of two threads can waste
some time on waiting for processor time. Then, one of two possibilities can happen:

A) The mutation thread works and the thread for selection and crossover waits.

This is completely random search, i.e. the mutation probability is set to one. If the elitism is
not applied, the best individual achieved in past iterations will be lost. So, in the mutation
thread the elitism must be added (Fig. 3).

Thread for mutation
forever

{

choose randomly one individual;
if (this individual is not the best) mutate it; //elitism

}

Fig. 3 Thread for mutation extended with elitism

B) The thread for selection and crossover works and the mutation thread waits.

The mutation probability is set to zero. In several hundred iterations genetic algorithm
produces a uniform population (the population consists of one individual with POP_SZE-1
copies). Even if we control the mutation probability, during the run of genetic algorithm about
half the chromosomes created are duplicates (Davis, 1991). If the population is more similar,
then the mutation probability must increase. The control of mutation probability can be easily
solved with some synchronisation techniques such as MUTual EXclusion locks (MUTEX),
condition variables or semaphore synchronisation, but, any of these synchronisation
mechanisms spends too much of CPU time. As the goal of parallelisation is speeding up the
algorithm, the synchronisation must be avoided if possible.

The other possibility is implementation of adaptive mutation probability. Before the crossover
is performed, the parents have to be checked. If the parents are equal, then mutate one of them
and produce their child completely randomly (Fig. 4).

Thread for tournament selection and crossover

forever

{
choose randomly three individuals; // tournament bad
delete the worst of three chosen individuals; // individual selection

if (survived individuals are equal)
{

mutate one of the equal individuals; // adaptive mutation probability

create new individual randomly; // and duplicate elimination
}
else
{

new individual = crossover (survived parents);

}

}

Fig. 4 Thread for tournament selection and crossover extended with duplicate elimination
and adaptive mutation probability

These two extended threads can be parallely executed without any synchronisation.
Experiments have shown that 69,4% of the optimisation time consumes the thread for
tournament selection and crossover and the rest of optimisation time (30,6%) spends the
mutation thread. On the two processor system, the whole optimisation time is about 30%
shorter than on one processor system.

Described extended parallel genetic algorithm (EPGA_1) divided into only two threads is
suitable for execution on the two processor system.

4. Parallel genetic algorithm with equal threads

If we want to make a good use of multiprocessor system with more than two processors, the
genetic algorithm has to be divided into more than two threads. The idea is in dividing genetic
algorithm into required number of equal and independent parts (Fig. 5).

This is the same algorithm like described EPGA_1, but it is divided in a different manner.

PARALLEL GENETIC ALGORI THM

{

initialize population;

create several equal evolution threads;
wait while termination criterion is not reached;
delete all threads;

Evolution thread
f orever

{

perform tournament selection and delete one individual; | « |
perform crossover and replace deleted individual;
perform mutation;

}

Fig. 5 The structure of parallel genetic algorithm with equal threads (EPGA_2)

Each thread performs all genetic operators over the whole population like nonparallel genetic
algorithm. In each iteration, one thread operates on only a part of the population, because the
tournament selection works over only three chromosomes. The other thread can work over the
same chromosomes (one, two or all three) at the same time without any synchronization. This
kind of parallel algorithm works the same with one or more threads.

5. Experimental results

The parallel genetic algorithm was tested on several multidimensional problems. Table 2
shows the results of the optimisation of 38 dimensional approximation problem
(Schoeneburg, 1995). The global minimum of that problem is equal or greater than O (the
smaller solution value is better solution). 100.000 iterations were made for each experiment
and for each algorithm 20 experiments were done. The size of population is set to 50.

Table 2 Random search and parallel genetic algorithm comparison

Random search SPGA EPGA_1 EPGA_2
Total CPU time in seconds 135 302 350 350
Optimization time for Np>2 135 212 245 _ 350
(Np - number of processors) Np Np
the worst solution 25019 19 455 109.0
average solution 21 798 16 881 49.1
the best solution 14 826 8 250 16.5

The optimisation time is equal to duration of longest thread, if the number of processors are
equal or greater than number of threads. The optimisation time for SPGA and EPGA_1 on a
two processor system is equal to duration of the thread for crossover and selection (that is
about 70% of total CPU time). On a three or more processor system the program isn’t faster
because the algorithm is divided into only two threads. The EPGA_2 is divided into Nr=Np
threads. The optimisation time for EPGA_2 is equal to optimisation time for the same non-
parallel genetic algorithm divided by number of processors.

6. Concluding remarks

By dividing the genetic algorithm into threads we achieved several benefits:

* the algorithm is faster (the optimisation time is shorter than for the nonparallel genetic
algorithm),

* the code can be easily adapted and extended with new genetic operators and

* we can simultaneously execute two or more methods and compare the results at the same
time.

It is desirable that the parts obtained by dividing the genetic algorithm are independent, i.e. the
critical sections must be avoided, because the synchronisation mechanisms slow down the
parallel program.

The simple parallel genetic algorithm (genetic algorithm without elitism, duplicate elimination
and adaptive mutation probability) is like a random search: the results of both algorithms are
useless (Table 2).

Steady-state genetic algorithm with tournament bad individual selection, elitism, duplicate
elimination, adaptive mutation probability and uniform crossover achieved the best results. It
is divided into threads in two ways:

1. genetic operators are implemented as threads (EPGA_1) and
2. genetic algorithm is divided into equal threads - each thread performs
all genetic operators (EPGA_2).

Table 3 shows positive and negative properties of parallel genetic algorithm with extended

threads.

Table 3 Advantages and disadvantages of EPGA

EPGA_1 EPGA 2

* there is no harm if one thread waits for

ecode can be easily adapted and CPU time because each thread has all

Advantages extended with new genetic operators elements of genetic algorithm

e optimisation time is Np times shorter
than for sequential genetic algorithm

*if we cannot avoid critical sections
when changing or adding new genetic
operators then some synchronisation
mechanisms must be implemented (it
slows down the algorithm)

* fixed number of threads
Disadvantages *if the number of processors is greater
than the number of threads, the
optimisation time is not shorter

Acknowledgement

This work was carried out within the project 036-014 Problem-Solving Environments in
Engineering, funded by Ministry of Science and Technology of the Republic of Croatia.

References:

1. Davis, L. (1991), Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York.

2. Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley

3. Golub M., “Evaluating The Use of Genetic Algorithms for Approximation Time Series”,
M.S. Thesis, Zagreb, 1996. (in Croatian)

4. Jelenkovie, L, Omréen-Eeko, Goran (1997), “Experiments with Multithreading in
Parallel Computing”, Proceedings of the 19™ International Conference ITI'97, Pula, pp-
451-456.

5. Michalewicz, Z. (1994), Genetic Algorithms + Data Structures = Evolution Programs,
Springer-Verlag, Berlin

6. Schoeneburg, E., Heinzmann, F., Feddersen. S., (1995) Genetische Algorithmen und
Evolutionsstrategien, Addison-Wesley

7. Srinivas, M., Patnaik, L.M. (1994), “Genetic Algorithms: A Survey”, Computer, Vol.
27-6, pp.17-26, June 1994.

8. SunSoft, (1994), Solaris 2.4: Multithreaded Programming Guide, Sun Microsystems,
Mountain View, California

