An Overview of Distributed Programming Techniques

M. Golub, D. Jakoboyvi

Department of Electronics, Microelectronics, Compatet Intelligent Systems
Faculty of Electrical Engineering and Computingj\émsity of Zagreb
Unska 3, HR-10000 Zagreb, Croatia
Phone: (+385-1)6129 967, E-maitarin.golub@fer.hrdomagoj.jakobovic@fer.hr

[. Janes
Technical support department
HEP - Transmission Ltd.
Ulica grada Vukovara 37, Zagreb, Croatia
Tel.: +385 1 6322 019 Fax: +385 1 6171 179, E-nadh.janes@hep.hr

Abstract — In this paper we investigate the utilizéion of - Providing synchronization and real-time
several parallel programming paradigms for use in a communication between numerous clients
distributed programming environment. The implementaions (e.g. chat server). The implementation of
presented here are Remote Procedure Call mechanism such design as a traditional server would
(RPC), Message Passing Interface (MPI), Common olije involve tremendous amount of database
request broker architecture (CORBA), Java Remote Méhod usage and frequent polling which would deny
Invocation (JAVA RMI), Distributed Component Object the possibility of serving a great number of
Model (DCOM) and .NET Remoting. A distributed users.

application is implemented using each of the mentied
methods and their efficiency is compared. We addresthe
issues of stability, portability and the amount ofwork needed
for implementation. Particular attention is paid to security
issues involved in distributed computing environmehand the
ability of presented methods to support the develapent of ~ This paper starts with a brief description of the eatdd
secure applications. distributed programming techniques in Section Il. The
distributed application used for the evaluation bkt
different techniques is introduced in Section Bificiency
I. INTRODUCTION comparisons among the evaluated techniques are fedsen

o .]) . in Section IV, while the conclusions are drawn irct®e
Distributed computing has widened the object orieatedi /.

component paradigms. Now, it is possible for objects and

components to exist on physically separated computers or

platforms and communicate with each other throughll. DISTRIBUTED PROGRAMMING TECHNIQUES
heterogeneous networks. The most important paradigms,

that have marked the distributed computing eraCpen A. ONC RPC

Network Computing Remote Procedure Call (ONC RPC),)

Message Passing Interface (MPI), Common ObjedRemote Procedure Call represents client/server
Request Broker Architecture (CORBA), Java/Remotdnfrastructure which increases interoperability, tability
Method Invocation (Java/RMI), Distributed Componentand flexibility of applications and thus enabling bggtion

Object Model (DCOM) and successor to DCOM, .NETt0o be distributed over several heterogeneous piatfo
Remoting. RPC decreases the complexity of application developme

Distributed programming paradigms can roughly b%hlch includes several operating systems and network

- Supporting thin clients (e.g. software on
embedded devices) that do not posses enough
processing power to accommodate for their
data requirements.

.) rotocols by isolating the application developer frim
divided into three models: remote procedure calls (ONGe s relevant to different operating systems andiart
RPC), message passing model (MPI) and distribute

objects (CORBA, Java/RMI, DCOM, .NET Remoting), ""cHaces:

with each model suitable for its own domain. The concept of RPC is discussed in literature sinceé,197
while complete implementations have emerged in the late
1970s and early 1980s, with ONC RPC being among the
Fhost important ones.

Distributed application is such that broadens its aka
execution to more that a single computer. Goal of th
distributed application architecture is mainly the)
improvement of performance and scalability. Ideally,RPC protocol enables users to work with remote
distributed application can be broadened to servicBrocedures in same way as with local procedures. Remote
thousands of simultaneous clients by simply adding nefrocedure calls are defined through the routinesagoed
computers. inside RPC protocol. Each call message is associated wi

a corresponding reply message. RPC protocol is a message
%xchange protocol that also supports callback praesdu

on the server side.

Furthermore, there are other reasons for utilizin
distributed architecture, such as:

- Code integration that is executing in different
environments, on different operating system
and platforms.

With RPC, each server provides a program that repiesen
S3 set of remote procedures. A combination of server
address, program number and procedure number precisely
specifies a particular remote procedure. Inside Rf®Gel,

client calls the procedure for sending the data packine CORBA is a standard for object method call through the
server. When the packet arrives, server calls theetwork, and was developed by Object Management
dispatching routine, carries out the request and sdmds tGroup (OMG), a large consortium of companies
response back to the client. The procedure calltbeemns determined to improve the aspects of remote objediadet
the result to the client process. calls. From the beginning, CORBA was developed with
rlihe goal of supporting a number of networks, opegatin

RPC interface is usually used for the communicatio .
Rystems and programming languages.

between processes located on different computers on t

network. However, RPC functions equally successfuWhile CORBA on its own is not a language, it introdsi@

between different processes on the same computel. [1, 2 new language. CORBA services are described with a
scheme which represents a template for the methods that
an object exposes. Such schemes are expressed using IDL

B. MPI language. Programming languages such as Java, which

)) .) support CORBA, can implement an IDL schema and in

MPI [9] is a standard which defines subroutines fothat way enable other software to call methods. IBL i

sending and receiving messages and performing cokectianguage neutral which enables its use in every

operations. Due to its W|despread usage In the sfgenti programming language for which IDL mapping exists.

community, it has been recognized adeafactostandard [3, 4]

for message-passing programming paradigm (other

examples being PVM, p4, Express, etc). MPI's advantage

over older message passing libraries is that it is both. Java/RMI

portable, because MPI has been implemented for almost

every distributed memory architecture, and fastabse Java RMI is a robust and effective solution for devielgp

each implementation is optimized for the hardwanmis distributed applications in which all included prams are

on. written in Java. For that reason, RMI represents

In the MPI programming model, a computation comprise§urpr's'ngly simple and easy framework for utilizatio

of one or more processes that communicate by callinglthough RMI is relatively easy to use, it constitutes a
library routines to send and receive messages to othemarkably powerful technology. The primary objeetiv
processes. The number of processes participating infar RMI designers was to allow programmers a
computation is fixed during the run, i.e. the staddan its development of distributed Java programs with thmesa
original version, did not define methods for spawmniegv ~ syntax and semantics used for the non-distributed
processes. The newer version of the standard (MPI-2) noggrograms. To achieve this, they had to carefully ritegp
allows dynamic process creation. The default programminJava class and object model of the single Java Virtual
model for MPI programs is SPMD (single program,Machine (JVM) into new model in the distributed
multiple data), although there is support for moraegal environment (multiple JVMs). As RMI functions in a
MIMD model. homogeneous environment, there is no need for thefuse

The standard itself does not preclude creation effiates the standardized paradigms such as IDL. [3]

or remote procedure access, so MPI cannot be used to

implement a dynamic client/server infrastructure, ites E. DCOM

one where clients are executed independently cfdheer. '

However, most of the developed applications employesomjicrosoft's Distributed COM extends the Component
form of client/server model in a constrained and ckeéid Object Model (COM) to support the communication

environment. Individual clients do not represent CofP penyeen objects situated on different computers on the
users, but rather participants in a global computatiop AN \WAN or the Internet. As DCOM is an unnoticed

process. evolution of COM, it is possible to reuse the existing
investment into COM-based applications, components,
C. CORBA tools and knowledge for the move into the world of

distributed computing based on standards.

CORBA represents middleware that provides integnatio DCOM is a high level network protocol which takespv
standardization and interoperability necessary inytsda the job, from the user, of writing network code fbet
heterogeneous world. Modern enterprise applicatioas acontrol of the communication required for the intgi@an
typically distributed in heterogeneous environmentschvh of distributed components over network. DCOM is not a
involve different hardware platforms, operating systemsprogramming language but a specification and servide b
databases and network protocols. They consist afsing (and on top of) COM, and uses COM object ogignt
components written in different programming languagesechnology for providing its services.

and Igftbenthave to in.tegrtate me}tr1y Iegacty _?rp])plicatmtat By publishing DCOM, Microsoft has introduced a new set
would be too expensive to rewrite or port. The OBy 10 ¢ oo interfaces at the low level called Objectniode

bypass these differences is to rely on the standatdiz Procedure Call (ORPC). ORPC is located on top of the
concepts. CORBA supports the software development fQfi, 4214 pistributed Computing Environment RPC (DCE
these environments introducing the standard concept PC) envionment and expands the procedural

Gbed obects, s Septaing (e DTN i model o csorimadats SIS et

well defined Interface Definition Language (IDL).

F. .NET Remoting B. Tools used

.NET Remoting provides a framework that enables - RPC - Atrial version of RPC protocol
interaction between objects over the application @om implementation in .NET environment was
The framework ensures many services, including a support used, called Distinct ONC RPC / XDR for
for the activation and object lifecycle, as well as .NET together with the Microsoft Visual
communication channels responsible for the delivery of Studio .NET 2003 development environment.
messages to remote applications and vice versa. Fermatt - MPI — An MPI library MPICH [10] was

are used for encoding and decoding messages betore th
transfer over the channel. In the situation where th
performance is of a critical nature, applications cae

binary encoding, while in the situation where the

used, which is a free and portable
implementation of the standard for both
UNIX/Linux and Windows platforms.

interoperability with other distributed technologjies - CORBA - An ORB implementation in Java 2
essential, XML encoding will be adequate. XML enaoggi Standard Edition was used together with the
uses Simple Object Access Protocol (SOAP) for the Sun ONE Studio 5 Standard Edition
transport of messages from one application domain into development environment.

another. .NET Remoting is designed with security indn . Java RMI — Sun ONE Studio 5 Standard

so there exists a number of ways in which channelssink
can access the messages and serialized data stream before

this stream is transported through the channel. - DCOM - Server was developed in Microsoft
Visual C++ 6.0, while the client was

developed in Microsoft Visual Studio .NET
2003 development environment.

Edition development environment was used.

Lifecycle management of remote objects without the
support of the inherent framework is often very difft.
.NET Remoting provides several activation models to be

chosen from. These models belong to the following two - .NET Remoting — Microsoft Visual Studio
categories: .NET 2003 development environment was
used.

- Client Activated Objects (CAQOs)
- Server Activated Objects (SAOs)

Client activated objects are under control of aclifde
manager based on leases, which ensures that an @bject

destroyed when its lease expires. In the case of server IV. COMPARISONS
activated objects, developers can choose etimgile call .

or singletonmodel. The lifecycle of a singleton object is A Stability
also controlled by a lease. [7, 8]

Microsoft Windows XP Professional was used as a
platform.

Stability, i.e. maturity of a technology can effeety be
measured by a time period that a particular teclyyolas

IIl. DISTRIBUTED APPLICATION EXAMPLE been an active participant of the market.

A. Problem definition
TABLE |

Certain aspects of distributed programming techniques Stability of each distributed technique
presented in this paper will be compared on a simple
example which involves a simplified model of Internet .
Relay Chat (IRC) client/server program system. Technique Year of appearance
The main method which server implements is RPC 1988
send_nessage() that is used by client for sending its
textual message. At the moment when server receives a CORBA 1991
message from client, server uses a callback mechanism and
notifies all registered clients with the received mesdag MPI 1994
caling a remote methodnessage_cal | back()
implemented by each client. For that purpose, some Java/RMI 1996
technologies (RPC, CORBA and Java/RMI) require server
to implement methods egi ster_cal | back() and DCOM 1996
unregi ster_cal | back(). DCOM provides an
indirect support for events via Active Template Lityra .NET Remoting 2002
(ATL), while .NET Remoting provides a direct suppfamnt

events with which a two-way communication problem is

solved. In the MPI implementation no interface oro&n B, Portability

procedures are defined, so the IRC program is run as a

simulation of the chat environment. The portability of a programming technique refleths
amount of work needed to transport an applicatiemfr
one programming language or computing platform to
another. Some properties of the described methods
regarding portability are given in Table II.

TABLE Il
Portability of each distributed technique

Technique

Portability

RPC represents a specification that is referred in
several RFCs which means that it can execute o
each platform for which exists an RPC support,

ut

server=new
rpcirc(System.Net.Dns.Resolve(serverTB.Text)
.AddressList[0],true);

Registering callback procedure
int progNo=Pmap.getTransient(1,0,false);

callbackServer=new RPCIRCCallback(progNo);
server. register _callback_1(progNo);

RPC it is mainly confined to UNIX platforms. It is
possible to use any programming language for Sendi
which a development version of RPC protocol Ing message to server
exists.)
MPI is a standard that defines communication server.send_messe}ge_l(mckTB.Text,
. o messageTB.Text);
subroutines and as such can be used with virtually dentifvi
VP any platform and programming language. Currerjt | dentifying processes
implementations support C/C++ and Fortran)
languages on UNIX/Linux or Windows operating MPI_Comm_size(MPI_COMM_WORLD,
systems. &numprocs);
As CORBA represents a specification, it can be (I;L/InF:I_rgr?lgm_rank(MPl_COMM_WORLD,
on any platform for which an ORB implementatign Y ’
is developed. The same is valid also for the choige '
CORBA of programming language since this choice is MPI Sending message to server
dzﬁ?ecrlcliae?ltacr)]n S;e gxstence of ORB libraries for fha MPI_Send(message, LEN, MPI_CHAR, n, 99,
P guage. : MP|_COMM_WORLD):
It can be executed on every platform for which a
Java/RMI Java Virt_ual Ma(?hi_ne gxists. Since it greatly uses Sending message to clients
Java Object Serialization, only Java programming
language can be used. MPI_Bcast(message, 255, MPI_CHAR, 0,
It can be executed on each platform for which arj MPI_COMM_WORLD);
DCOM im_pleme_ntati(_)n_ of COM _r_un-t_ime envirc_)nment I nterface definition
exists. Since it is a specification on a binanelea
whole array of programming languages can be used. module CORBAIRC {
Since .NET Remoting requires the existence of interface CORBAIRCCallback {
.NET Framework on the platform on which it is void message_callback(in string message);
.NET executing, currently only Microsoft Windows k
Remoting | operating system supports it. It is possible toarsg interface CORBAIRCServerl {
programming language capable of translating to void register_callback(in CORBAIRCCallback
Common Intermediate Language (CIL). callbackClient);
void send_message(in string message);
C. Amount of work for implementation void unregls_ter_callback(m CORBAIRCCallbal
callbackClient);
In Table Il we show the minimal amount of code resd _};
for each of the techniques to implement a simple g
communication mechanism. -)
Instantiating remote object
CORBA |java.util.Properties props=new java.util.Propef)ie

TABLE IlI
Comparison of implementation code

Technique

Implementation code

RPC

Interface definition

program RPCIRC_PROG {
version RPCIRC_VERS {
void register_callback(int)=1;
void send_message(string,string)=2;
void unregister_callback(void)=3;
=1
}=0x20021016;

I nstantiating remote object

props.put(“org.omg.CORBA.ORBInitialPort","90(
props.put("org.omg.CORBA.ORBInitialHost",
serverTF.getText());
orb=0ORB.init(new String[] {},props);
POA rootpoa=POAHelper.narrow
(orb.resolve_initial_references("RootPOA"));
NamingContextExt
root=NamingContextExtHelper.narrow
(orb.resolve_initial_references("NameService|
NameComponent[] name=new NameComponen
name[O]=new
NameComponent("CORBAIRCServer","");
server=CORBAIRC.CORBAIRCServerHelper.ng
ow
(root.resolve(name));

Uy

D)
[1];

=

Registering callback procedure

callbackServer=new
CORBAIRCCallbacklmpl(this,orb);
rootpoa.activate_object(callbackServer);
callbackServerRef=
CORBAIRC.CORBAIRCCallbackHelper.
narrow(rootpoa.servant_to_reference(
callbackServer));
server.register_callback(callbackServerRef);
rootpoa.the_ POAManager().activate();
Thread callbackServerThread=new
Thread(callbackServer);
callbackServerThread.start();

Sending message to server

server.send_message(nickTF.getText()+":
"+messageTA.getText());

Java/RMI

Interface definition
Server

package JRMIIRC;
import java.rmi.x;

public interface JRMIIRCServerl extends

java.rmi.Remote {

void register_callback(JRMIIRCCallback
callbackClient) throws RemoteException;

void send_message(String message) throws
RemoteException;

void unregister_callback(JRMIIRCCallback
callbackClient) throws RemoteException;

}

Client

package JRMIIRC;
import java.rmi.x;

public interface JRMIIRCCallback extends
java.rmi.Remote {
void message_callback(String message) throw
RemoteException;

}

I nstantiating remote object

server=(JRMIIRC.JRMIIRCServerl)
Naming.lookup("rmi://"+serverTF.getText()+
"/JRMIIRCServer");

Registering callback procedure

callbackServer=(JRMIIRC.JRMIIRCCallback) new

JRMIIRCCallbacklmpl("JRMIIRCCallback" this
server.registriraj_callback(callbackServer);

Sending message to server

server.send_message(nickTF.getText()+":
"+messageTA.getText());

DCOM

Interface definition

import "oaidl.idl";
import "ocidl.idl";
[
object,
uuid(4ED9E6AD-ABOF-4F93-B911-
515A0EB19609),
dual,
helpstring("IDCOMIRCServerimpl
Interface"),
pointer_default(unique)

]
interface IDCOMIRCServerlmpl : IDispatch

[id(1), helpstring("method send_message")]
HRESULT send_message([string] wchar_t
*message);
¥
[
uuid(43CCE165-2922-4583-B502-
D042391552F7),
version(1.0),
helpstring("DCOMIRCServer 1.0 Type
Library")
]
library DCOMIRCSERVERLIib
{
importlib("stdole32.tIb");
importlib("stdole2.tlb");

uuid(3A3A8AA6-8DBF-4AF1-8EOF-
CAA645D545F0),
helpstring("_IDCOMIRCServerlmplEve
Interface")
]
dispinterface _IDCOMIRCServerlmplEvents
{
properties:
methods:
[id(2), helpstring("method message_callbakck|
HRESULT message_callback([string] wchar |
*message);
h
[
uuid(9A64C80B-C8A9-461D-BA75-
7507D3528565),
helpstring("DCOMIRCServerlmpl Class

]
coclass DCOMIRCServerimpl

[default] interface IDCOMIRCServerimpl;
[default, source] dispinterface
_IDCOMIRCServerlmplEvents;
J3
h

Instantiating remote object

server=new DCOMIRCSERVERLIb.
DCOMIRCServerimplClass();

Registering callback procedure

ts

— —

server.message_callback+=new

DCOMIRCSERVERLIb. systems since NT security is a fundamental part of the
IDCOMIRCServerimplEvents_message operating system. Authentication and authorizatia af
h - h course, supported.

callbackEventHandler(server_message_callbacK); \vjith .NET Remoting, authentication and authorizative

Sending message to server indirectly solved when using IIS as activation ageuttile
) . in other cases there is a need for an implementation of
server.send_message(nickTB. Text+": custom sinks and sink providers with adequate security
+messageTB.Text); functionality.
I nterface definition
namespace General V. CONCLUSION
public delegate void messageEventDelegate We derive our cc_)ncl_usions based_on im_plementations of
(string message); the example application described in Section Ill.<he
public interface IREMOTIRCServer programming techniques can be used on all the computing
{ platforms where matching implementation is available,
event messageEventDelegate messageEvent; ~ €xcept for .NET which is currently supported onlyr f
void send_message(string message); Windows. ConS|der|r)g that NET tec_hnology is the newest
one, we can expect its portability to improve o ex
} L it tability t \rer hext
} few years.
o) The 'easiest to implement' techniques were shown to be
Instantiating remote object Java RMI and MPI, while only the former is capabfe o
)))) creating open server/client infrastructures. Java Rkd
NET R?motmgConﬂgu_ranon.Conﬁg_ulr'e. DCOM incorporate the most sophisticated secure
Remoting | _{ REMOTIRCClient.exe.config"); application development tools, whereas MPI has none of
RemoteHelper remoteHelper=new RemoteHelp&r(); those features. CORBA, as a specification, does rintede
server=(IREMOTIRCServer) secure methods - rather, it offers CORBA Security $ervi
remoteHelper.getObject(which is as yet available in a smaller number of
typeof(IREMOTIRCServer)); implementations.

Registering callback procedure
REFERENCES
server.messageEvent+=new messageEventDelggate(
new MessageEvent(new [1] Cory Vondrak, Remote Procedure CallDecember
messageEventDelegate(server_messageEvet)). 2004, http://www.sei.cmu.edu/str/descriptions/rpc.itml
server_messageEvent);

[2] AIX Version 4.3 Communications Programming
Concepts, Chapter 8 Remote Procedure CBkcember
2004,
(http://www.unet.univie.ac.at/aix/aixprggd/progcotoncih
tm)

Sending message to server

server.send_message(nickTB.Text+":
"+messageTB.Text);

[3] Suhail Ahmed, CORBA Programming Unleashed
Macmillan Computer Publishing, 1998

[4] Gerald Brose, Andreas Vogel, Keith Duddyava
RPC protocol defines only authentication. Authoimat Programming with CORBA — Advanced Techniques for
has to be solved by user. Building Distributed Applications, Third Editionwiley

MPI standard does not define any authorization nuktho Computer Publishing, 2001

S0 security issues are left to the authors of a paaticul[5] David Reilly, Michael Reilly, Java Network
implementation to resolve. Since MPI applications ard’rogramming and Distributed ComputingAddison
meant to execute in a closed and dedicated envinatame Wesley, 2002

there is usually no ready-made support for SecurRs prian Hoang, DCOM: Overview and Architecture
communication. December 2004
CORBA Security Service provides a complete frameworkhttp://sern.ucalgary.ca/Courses/CPSC/547/F98/Slides/Ho
for the security of distributed objects. It supportsng/DCOM.htm)

authentication, authorization and non-repudiation. [7] Ingo RammerAdvanced .NET Remoting (C# Edition)
Java Authentication and Authorization Service (JAAS)Apress, 2002

provides a powerful mechanism for authentication an Scott McLean, James Naftel. Kim Williamislicrosoft
authorization that supports many security systems such 43T Remotin Mi’ r Pr 2

Windows NT, UNIX, Kerberos and Keystore.) emotingMicrosoft Press, 2003

DCOM provides one of the most advanced and compIeL?] MP1 Standarditp:/fwww.mpi-forum.orgy
security models applied in distributed systems. DCOM10] MPICH (http://www.mcs.anl.gov/mpi/mpicj/
security is tightly coupled with Windows NT security

which offers many advantages over other operating

D. Security issues

