
An Overview of Distributed Programming Techniques

M. Golub, D. Jakobović
Department of Electronics, Microelectronics, Computer and Intelligent Systems

Faculty of Electrical Engineering and Computing, University of Zagreb
Unska 3, HR-10000 Zagreb, Croatia

Phone: (+385-1)6129 967, E-mail: marin.golub@fer.hr, domagoj.jakobovic@fer.hr

I. Janeš
Technical support department

HEP - Transmission Ltd.
Ulica grada Vukovara 37, Zagreb, Croatia

Tel.: +385 1 6322 019 Fax: +385 1 6171 179, E-mail: ivan.janes@hep.hr

Abstract – In this paper we investigate the utilization of
several parallel programming paradigms for use in a
distributed programming environment. The implementations
presented here are Remote Procedure Call mechanism
(RPC), Message Passing Interface (MPI), Common object
request broker architecture (CORBA), Java Remote Method
Invocation (JAVA RMI), Distributed Component Object
Model (DCOM) and .NET Remoting. A distributed
application is implemented using each of the mentioned
methods and their efficiency is compared. We address the
issues of stability, portability and the amount of work needed
for implementation. Particular attention is paid to security
issues involved in distributed computing environment and the
ability of presented methods to support the development of
secure applications.

I. INTRODUCTION

Distributed computing has widened the object oriented and
component paradigms. Now, it is possible for objects and
components to exist on physically separated computers or
platforms and communicate with each other through
heterogeneous networks. The most important paradigms,
that have marked the distributed computing era, are Open
Network Computing Remote Procedure Call (ONC RPC),
Message Passing Interface (MPI), Common Object
Request Broker Architecture (CORBA), Java/Remote
Method Invocation (Java/RMI), Distributed Component
Object Model (DCOM) and successor to DCOM, .NET
Remoting.

Distributed programming paradigms can roughly be
divided into three models: remote procedure calls (ONC
RPC), message passing model (MPI) and distributed
objects (CORBA, Java/RMI, DCOM, .NET Remoting),
with each model suitable for its own domain.

Distributed application is such that broadens its area of
execution to more that a single computer. Goal of the
distributed application architecture is mainly the
improvement of performance and scalability. Ideally,
distributed application can be broadened to service
thousands of simultaneous clients by simply adding new
computers.

Furthermore, there are other reasons for utilizing
distributed architecture, such as:

- Code integration that is executing in different
environments, on different operating systems
and platforms.

- Providing synchronization and real-time
communication between numerous clients
(e.g. chat server). The implementation of
such design as a traditional server would
involve tremendous amount of database
usage and frequent polling which would deny
the possibility of serving a great number of
users.

- Supporting thin clients (e.g. software on
embedded devices) that do not posses enough
processing power to accommodate for their
data requirements.

This paper starts with a brief description of the evaluated
distributed programming techniques in Section II. The
distributed application used for the evaluation of the
different techniques is introduced in Section III. Efficiency
comparisons among the evaluated techniques are presented
in Section IV, while the conclusions are drawn in Section
V.

II. DISTRIBUTED PROGRAMMING TECHNIQUES

A. ONC RPC

Remote Procedure Call represents client/server
infrastructure which increases interoperability, portability
and flexibility of applications and thus enabling application
to be distributed over several heterogeneous platforms.
RPC decreases the complexity of application development
which includes several operating systems and network
protocols by isolating the application developer from the
details relevant to different operating systems and network
interfaces.

The concept of RPC is discussed in literature since 1976,
while complete implementations have emerged in the late
1970s and early 1980s, with ONC RPC being among the
most important ones.

RPC protocol enables users to work with remote
procedures in same way as with local procedures. Remote
procedure calls are defined through the routines contained
inside RPC protocol. Each call message is associated with
a corresponding reply message. RPC protocol is a message
exchange protocol that also supports callback procedures
on the server side.

With RPC, each server provides a program that represents
a set of remote procedures. A combination of server
address, program number and procedure number precisely
specifies a particular remote procedure. Inside RPC model,

client calls the procedure for sending the data packet to the
server. When the packet arrives, server calls the
dispatching routine, carries out the request and sends the
response back to the client. The procedure call then returns
the result to the client process.

RPC interface is usually used for the communication
between processes located on different computers on the
network. However, RPC functions equally successful
between different processes on the same computer. [1, 2]

B. MPI

MPI [9] is a standard which defines subroutines for
sending and receiving messages and performing collective
operations. Due to its widespread usage in the scientific
community, it has been recognized as a de facto standard
for message-passing programming paradigm (other
examples being PVM, p4, Express, etc). MPI's advantage
over older message passing libraries is that it is both
portable, because MPI has been implemented for almost
every distributed memory architecture, and fast, because
each implementation is optimized for the hardware it runs
on.

In the MPI programming model, a computation comprises
of one or more processes that communicate by calling
library routines to send and receive messages to other
processes. The number of processes participating in a
computation is fixed during the run, i.e. the standard, in its
original version, did not define methods for spawning new
processes. The newer version of the standard (MPI-2) now
allows dynamic process creation. The default programming
model for MPI programs is SPMD (single program,
multiple data), although there is support for more general
MIMD model.

The standard itself does not preclude creation of interfaces
or remote procedure access, so MPI cannot be used to
implement a dynamic client/server infrastructure, i.e. the
one where clients are executed independently of the server.
However, most of the developed applications employ some
form of client/server model in a constrained and dedicated
environment. Individual clients do not represent computer
users, but rather participants in a global computation
process.

C. CORBA

CORBA represents middleware that provides integration,
standardization and interoperability necessary in today's
heterogeneous world. Modern enterprise applications are
typically distributed in heterogeneous environments which
involve different hardware platforms, operating systems,
databases and network protocols. They consist of
components written in different programming languages
and often have to integrate many legacy applications that
would be too expensive to rewrite or port. The only way to
bypass these differences is to rely on the standardized
concepts. CORBA supports the software development for
these environments introducing the standard concept of
distributed objects, and separating the implementation of
these objects from their interfaces in a clear way by using a
well defined Interface Definition Language (IDL).

CORBA is a standard for object method call through the
network, and was developed by Object Management
Group (OMG), a large consortium of companies
determined to improve the aspects of remote object method
calls. From the beginning, CORBA was developed with
the goal of supporting a number of networks, operating
systems and programming languages.

While CORBA on its own is not a language, it introduces a
new language. CORBA services are described with a
scheme which represents a template for the methods that
an object exposes. Such schemes are expressed using IDL
language. Programming languages such as Java, which
support CORBA, can implement an IDL schema and in
that way enable other software to call methods. IDL is
language neutral which enables its use in every
programming language for which IDL mapping exists.
[3, 4]

D. Java/RMI

Java RMI is a robust and effective solution for developing
distributed applications in which all included programs are
written in Java. For that reason, RMI represents
surprisingly simple and easy framework for utilization.

Although RMI is relatively easy to use, it constitutes a
remarkably powerful technology. The primary objective
for RMI designers was to allow programmers a
development of distributed Java programs with the same
syntax and semantics used for the non-distributed
programs. To achieve this, they had to carefully map the
Java class and object model of the single Java Virtual
Machine (JVM) into new model in the distributed
environment (multiple JVMs). As RMI functions in a
homogeneous environment, there is no need for the use of
the standardized paradigms such as IDL. [5]

E. DCOM

Microsoft's Distributed COM extends the Component
Object Model (COM) to support the communication
between objects situated on different computers on the
LAN, WAN or the Internet. As DCOM is an unnoticed
evolution of COM, it is possible to reuse the existing
investment into COM-based applications, components,
tools and knowledge for the move into the world of
distributed computing based on standards.

DCOM is a high level network protocol which takes over
the job, from the user, of writing network code for the
control of the communication required for the interaction
of distributed components over network. DCOM is not a
programming language but a specification and service built
using (and on top of) COM, and uses COM object oriented
technology for providing its services.

By publishing DCOM, Microsoft has introduced a new set
of call interfaces at the low level called Object Remote
Procedure Call (ORPC). ORPC is located on top of the
standard Distributed Computing Environment RPC (DCE
RPC) environment and expands the procedural
programming model to accommodate distributed objects.
[6]

F. .NET Remoting

.NET Remoting provides a framework that enables
interaction between objects over the application domains.
The framework ensures many services, including a support
for the activation and object lifecycle, as well as
communication channels responsible for the delivery of
messages to remote applications and vice versa. Formatters
are used for encoding and decoding messages before their
transfer over the channel. In the situation where the
performance is of a critical nature, applications can use
binary encoding, while in the situation where the
interoperability with other distributed technologies is
essential, XML encoding will be adequate. XML encoding
uses Simple Object Access Protocol (SOAP) for the
transport of messages from one application domain into
another. .NET Remoting is designed with security in mind,
so there exists a number of ways in which channel sinks
can access the messages and serialized data stream before
this stream is transported through the channel.

Lifecycle management of remote objects without the
support of the inherent framework is often very difficult.
.NET Remoting provides several activation models to be
chosen from. These models belong to the following two
categories:

- Client Activated Objects (CAOs)

- Server Activated Objects (SAOs)

Client activated objects are under control of a lifecycle
manager based on leases, which ensures that an object is
destroyed when its lease expires. In the case of server
activated objects, developers can choose either single call
or singleton model. The lifecycle of a singleton object is
also controlled by a lease. [7, 8]

III. DISTRIBUTED APPLICATION EXAMPLE

A. Problem definition

Certain aspects of distributed programming techniques
presented in this paper will be compared on a simple
example which involves a simplified model of Internet
Relay Chat (IRC) client/server program system.

The main method which server implements is
send_message() that is used by client for sending its
textual message. At the moment when server receives a
message from client, server uses a callback mechanism and
notifies all registered clients with the received message by
calling a remote method message_callback()
implemented by each client. For that purpose, some
technologies (RPC, CORBA and Java/RMI) require server
to implement methods register_callback() and
unregister_callback(). DCOM provides an
indirect support for events via Active Template Library
(ATL), while .NET Remoting provides a direct support for
events with which a two-way communication problem is
solved. In the MPI implementation no interface or remote
procedures are defined, so the IRC program is run as a
simulation of the chat environment.

B. Tools used

- RPC – A trial version of RPC protocol
implementation in .NET environment was
used, called Distinct ONC RPC / XDR for
.NET together with the Microsoft Visual
Studio .NET 2003 development environment.

- MPI – An MPI library MPICH [10] was
used, which is a free and portable
implementation of the standard for both
UNIX/Linux and Windows platforms.

- CORBA – An ORB implementation in Java 2
Standard Edition was used together with the
Sun ONE Studio 5 Standard Edition
development environment.

- Java RMI – Sun ONE Studio 5 Standard
Edition development environment was used.

- DCOM – Server was developed in Microsoft
Visual C++ 6.0, while the client was
developed in Microsoft Visual Studio .NET
2003 development environment.

- .NET Remoting – Microsoft Visual Studio
.NET 2003 development environment was
used.

Microsoft Windows XP Professional was used as a
platform.

IV. COMPARISONS

A. Stability

Stability, i.e. maturity of a technology can effectively be
measured by a time period that a particular technology has
been an active participant of the market.

TABLE I
Stability of each distributed technique

Technique Year of appearance

RPC 1988

CORBA 1991

MPI 1994

Java/RMI 1996

DCOM 1996

.NET Remoting 2002

B. Portability

The portability of a programming technique reflects the
amount of work needed to transport an application from
one programming language or computing platform to
another. Some properties of the described methods
regarding portability are given in Table II.

TABLE II
Portability of each distributed technique

Technique Portability

RPC

RPC represents a specification that is referred in
several RFCs which means that it can execute on
each platform for which exists an RPC support, but
it is mainly confined to UNIX platforms. It is
possible to use any programming language for
which a development version of RPC protocol
exists.

MPI

MPI is a standard that defines communication
subroutines and as such can be used with virtually
any platform and programming language. Current
implementations support C/C++ and Fortran
languages on UNIX/Linux or Windows operating
systems.

CORBA

As CORBA represents a specification, it can be used
on any platform for which an ORB implementation
is developed. The same is valid also for the choice
of programming language since this choice is
dependent on the existence of ORB libraries for that
particular language.

Java/RMI

It can be executed on every platform for which a
Java Virtual Machine exists. Since it greatly uses
Java Object Serialization, only Java programming
language can be used.

DCOM

It can be executed on each platform for which an
implementation of COM run-time environment
exists. Since it is a specification on a binary level, a
whole array of programming languages can be used.

.NET
Remoting

Since .NET Remoting requires the existence of
.NET Framework on the platform on which it is
executing, currently only Microsoft Windows
operating system supports it. It is possible to use any
programming language capable of translating to
Common Intermediate Language (CIL).

C. Amount of work for implementation

In Table III we show the minimal amount of code needed
for each of the techniques to implement a simple
communication mechanism.

TABLE III
Comparison of implementation code

Technique Implementation code

RPC

Interface definition

program RPCIRC_PROG {
 version RPCIRC_VERS {
 void register_callback(int)=1;
 void send_message(string,string)=2;
 void unregister_callback(void)=3;
 }=1;
}=0x20021016;

Instantiating remote object

server=new
rpcirc(System.Net.Dns.Resolve(serverTB.Text)
 .AddressList[0],true);

Registering callback procedure

int progNo=Pmap.getTransient(1,0,false);
callbackServer=new RPCIRCCallback(progNo);
server. register _callback_1(progNo);

Sending message to server

server.send_message_1(nickTB.Text,
 messageTB.Text);

MPI

Identifying processes

MPI_Comm_size(MPI_COMM_WORLD,
&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,
&myrank);

Sending message to server

MPI_Send(message, LEN, MPI_CHAR, n, 99,
MPI_COMM_WORLD);

Sending message to clients

MPI_Bcast(message, 255, MPI_CHAR, 0,
MPI_COMM_WORLD);

CORBA

Interface definition

module CORBAIRC {
 interface CORBAIRCCallback {
 void message_callback(in string message);
 };
 interface CORBAIRCServerI {
 void register_callback(in CORBAIRCCallback
 callbackClient);
 void send_message(in string message);
 void unregister_callback(in CORBAIRCCallback
 callbackClient);
 };
};

Instantiating remote object

java.util.Properties props=new java.util.Properties();
props.put("org.omg.CORBA.ORBInitialPort","900"
);
props.put("org.omg.CORBA.ORBInitialHost",
 serverTF.getText());
orb=ORB.init(new String[] {},props);
POA rootpoa=POAHelper.narrow
 (orb.resolve_initial_references("RootPOA"));
NamingContextExt
 root=NamingContextExtHelper.narrow
 (orb.resolve_initial_references("NameService"));
NameComponent[] name=new NameComponent[1];
name[0]=new
 NameComponent("CORBAIRCServer","");
server=CORBAIRC.CORBAIRCServerHelper.narr
ow
 (root.resolve(name));

Registering callback procedure

callbackServer=new
 CORBAIRCCallbackImpl(this,orb);
rootpoa.activate_object(callbackServer);
callbackServerRef=
 CORBAIRC.CORBAIRCCallbackHelper.
 narrow(rootpoa.servant_to_reference(
 callbackServer));
server.register_callback(callbackServerRef);
rootpoa.the_POAManager().activate();
Thread callbackServerThread=new
 Thread(callbackServer);
callbackServerThread.start();

Sending message to server

server.send_message(nickTF.getText()+":
 "+messageTA.getText());

Java/RMI

Interface definition

Server

package JRMIIRC;
import java.rmi.*;

public interface JRMIIRCServerI extends
 java.rmi.Remote {
 void register_callback(JRMIIRCCallback
 callbackClient) throws RemoteException;
 void send_message(String message) throws
 RemoteException;
 void unregister_callback(JRMIIRCCallback
 callbackClient) throws RemoteException;
}

Client

package JRMIIRC;
import java.rmi.*;

public interface JRMIIRCCallback extends
 java.rmi.Remote {
 void message_callback(String message) throws
 RemoteException;
}

Instantiating remote object

server=(JRMIIRC.JRMIIRCServerI)
 Naming.lookup("rmi://"+serverTF.getText()+
 "/JRMIIRCServer");

Registering callback procedure

callbackServer=(JRMIIRC.JRMIIRCCallback) new
 JRMIIRCCallbackImpl("JRMIIRCCallback",this);
server.registriraj_callback(callbackServer);

Sending message to server

server.send_message(nickTF.getText()+":
"+messageTA.getText());

DCOM

Interface definition

import "oaidl.idl";
import "ocidl.idl";
 [
 object,
 uuid(4ED9E6AD-AB0F-4F93-B911-
 515A0EB19609),
 dual,
 helpstring("IDCOMIRCServerImpl
 Interface"),
 pointer_default(unique)
]
 interface IDCOMIRCServerImpl : IDispatch
 {
 [id(1), helpstring("method send_message")]
 HRESULT send_message([string] wchar_t
 *message);
 };
 [
 uuid(43CCE165-2922-4583-B502-
 D042391552F7),
 version(1.0),
 helpstring("DCOMIRCServer 1.0 Type
 Library")
]
library DCOMIRCSERVERLib
{
 importlib("stdole32.tlb");
 importlib("stdole2.tlb");
 [
 uuid(3A3A8AA6-8DBF-4AF1-8E0F-
 CAA645D545F0),
 helpstring("_IDCOMIRCServerImplEvents
 Interface")
]
 dispinterface _IDCOMIRCServerImplEvents
 {
 properties:
 methods:
 [id(1), helpstring("method message_callback")]
 HRESULT message_callback([string] wchar_t
 *message);
 };
 [
 uuid(9A64C80B-C8A9-461D-BA75-
 7507D3528565),
 helpstring("DCOMIRCServerImpl Class")
]
 coclass DCOMIRCServerImpl
 {
 [default] interface IDCOMIRCServerImpl;
 [default, source] dispinterface
 _IDCOMIRCServerImplEvents;
 };
};

Instantiating remote object

server=new DCOMIRCSERVERLib.
 DCOMIRCServerImplClass();

Registering callback procedure

server.message_callback+=new

 DCOMIRCSERVERLib.
 _IDCOMIRCServerImplEvents_message_

callbackEventHandler(server_message_callback);
Sending message to server

server.send_message(nickTB.Text+":
 "+messageTB.Text);

.NET
Remoting

Interface definition

namespace General
{
 public delegate void messageEventDelegate
 (string message);
 public interface IREMOTIRCServer
 {
 event messageEventDelegate messageEvent;
 void send_message(string message);
 }
}

Instantiating remote object

RemotingConfiguration.Configure
 ("REMOTIRCClient.exe.config");
RemoteHelper remoteHelper=new RemoteHelper();
server=(IREMOTIRCServer)
 remoteHelper.getObject(
 typeof(IREMOTIRCServer));

Registering callback procedure

server.messageEvent+=new messageEventDelegate(
 new MessageEvent(new
 messageEventDelegate(server_messageEvent)).
 server_messageEvent);

Sending message to server

server.send_message(nickTB.Text+":
 "+messageTB.Text);

D. Security issues

RPC protocol defines only authentication. Authorization
has to be solved by user.

MPI standard does not define any authorization methods,
so security issues are left to the authors of a particular
implementation to resolve. Since MPI applications are
meant to execute in a closed and dedicated environment,
there is usually no ready-made support for secure
communication.

CORBA Security Service provides a complete framework
for the security of distributed objects. It supports
authentication, authorization and non-repudiation.

Java Authentication and Authorization Service (JAAS)
provides a powerful mechanism for authentication and
authorization that supports many security systems such as
Windows NT, UNIX, Kerberos and Keystore.

DCOM provides one of the most advanced and complex
security models applied in distributed systems. DCOM
security is tightly coupled with Windows NT security
which offers many advantages over other operating

systems since NT security is a fundamental part of the
operating system. Authentication and authorization are, of
course, supported.

With .NET Remoting, authentication and authorization are
indirectly solved when using IIS as activation agent, while
in other cases there is a need for an implementation of
custom sinks and sink providers with adequate security
functionality.

V. CONCLUSION

We derive our conclusions based on implementations of
the example application described in Section III. All of the
programming techniques can be used on all the computing
platforms where matching implementation is available,
except for .NET which is currently supported only for
Windows. Considering that .NET technology is the newest
one, we can expect its portability to improve over the next
few years.

The 'easiest to implement' techniques were shown to be
Java RMI and MPI, while only the former is capable of
creating open server/client infrastructures. Java RMI and
DCOM incorporate the most sophisticated secure
application development tools, whereas MPI has none of
those features. CORBA, as a specification, does not define
secure methods - rather, it offers CORBA Security Service,
which is as yet available in a smaller number of
implementations.

REFERENCES

[1] Cory Vondrak, Remote Procedure Call, December
2004, (http://www.sei.cmu.edu/str/descriptions/rpc.html)

[2] AIX Version 4.3 Communications Programming
Concepts, Chapter 8 Remote Procedure Call, December
2004,
(http://www.unet.univie.ac.at/aix/aixprggd/progcomc/toc.h
tm)

[3] Suhail Ahmed, CORBA Programming Unleashed,
Macmillan Computer Publishing, 1998

[4] Gerald Brose, Andreas Vogel, Keith Duddy, Java
Programming with CORBA – Advanced Techniques for
Building Distributed Applications, Third Edition, Wiley
Computer Publishing, 2001

[5] David Reilly, Michael Reilly, Java Network
Programming and Distributed Computing, Addison
Wesley, 2002

[6] Brian Hoang, DCOM: Overview and Architecture,
December 2004,
(http://sern.ucalgary.ca/Courses/CPSC/547/F98/Slides/Hoa
ng/DCOM.html)

[7] Ingo Rammer, Advanced .NET Remoting (C# Edition),
Apress, 2002

[8] Scott McLean, James Naftel, Kim Williams, Microsoft
.NET Remoting, Microsoft Press, 2003

[9] MPI Standard (http://www.mpi-forum.org/)

[10] MPICH (http://www.mcs.anl.gov/mpi/mpich/)

