
Implementation of EAP authentication into IKEv2 protocol 
 

Jelena Vučak, Leonardo Jelenković, Marin Golub 
Department of Electronics, Microelectronics, Computer and Intelligent Systems 

Faculty of Electrical Engineering and Computing 
Address: Unska 3, 10000 Zagreb, Croatia 

Tel: +385 1 6129-935, {jelena.vucak, leonardo.jelenkovic, marin.golub}@fer.hr 

 

 

Abstract - IKEv2 is a protocol for exchanging keys in the 
IPsec architecture. In it's specification, EAP was proposed as 
one of the authentication mechanisms. EAP is extensible 
authentication protocol based on client/server architecture 
and allows introduction of additional EAP methods. 
Implementation of this protocol is complex and in our project 
it was decided to include one of the existing implementations 
of EAP into IKEv2 protocol. WPA_supplicant 
implementation is chosen for peer and this article mainly 
describes how it was included. IKEv2 responder, on the other 
side, will rely on RADIUS server for EAP. Therefore it 
should provide protocol traverse between IKEv2 and 
RADIUS, both encapsulating EAP packets. 

 
 

I. INTRODUCTION 
 

Development of EAP methods for IKEv2 project [6] from 
scratch is long process, as with any other network 
protocol. To simplify and speedup development we choose 
to reuse some existing EAP implementation. After 
considering all available options WPA_supplicant [8] was 
found as the best solution: it has the most complete EAP 
implementation, it is well documented and very common 
among various Linux distributions. WPA_supplicant is a 
component that is running on the clients' stations. Its main 
purpose is to authenticate clients to the server who will 
grant them access to the network. This component uses 
EAP as an authentication method. Whole environment in 
which WPA_supplicant runs is shown on the Figure 1. 
 
 

 

 
Figure 1: Environment of the WPA_supplicant 

 
 
Process of the authentication consists of three parts: 
supplicant, authenticator and the server. Client and 
authenticator are connected trough the same network 
(wired/wireless). WPA_supplicant is running on the client. 
Supplicant and authenticator exchange EAP packets 

(sometimes encapsulated in some network layer packets). 
Authenticator communicates with authentication server, 
which in our implementation is RADIUS [1] server. 
Authenticator and RADIUS server exchange RADIUS 
packets containing EAP packets [2, 3]. 
Since we only need EAP methods, only EAP components 
from WPA_supplicant will be reused in the 
implementation in IKEv2 project. 

 
 

II. EXSTENSIBLE AUTHENTICATION PROTOCOL 
 

Extensible authentication protocol (EAP) [4] supports 
many EAP methods but all of them have similar behavior. 
Basically, EAP packets can be divided into two types: 
Requests from EAP authenticator and Responses from 
EAP supplicant. Generally, first message in EAP 
authentication is sent by authenticator and requires EAP 
authentication from the supplicant (Request message). In 
the second message supplicant sends it's response in which 
he introduces himself by sending his ID (Response 
message). After that authenticator may, according to 
method used, send additional requests on which supplicant 
should reply. Exchanging of EAP messages continues until 
supplicant is not authenticated or is rejected. In the case of 
successful authentication authenticator sends Success 
message, otherwise, in case of unsuccessful authentication, 
Failure message is sent. Messages flow is shown on the 
Figure 2. 
 
 

 
Figure 2: EAP messages exchange 

 
 
EAP packets format, specified in [4], consists of four 
fields: Code, Identifier, Length and Data. Code contains 
the Type of the EAP packet and can be:  Request (1), 
Response (2), Success (3) or Failure (4). Identifier is the 
number used for matching Responses with Requests. 
Length is the length of the whole EAP packet. Field Data 
is specifically defined for each packet type. 

 

 

 

 

 

Request 

Response 

Additional Request/Response 

Success/Failure 

 

Supplicant 
(client) Authenticator 

 

Authentication 
Server 

(RADIUS server) 
 

EAP 

LAN (wired/wireless) 

RADIUS 
packets 

 
 
 

Supplicant 
 

 
 
 
Authenticator 
 



Different EAP methods in Data field transport method 
specific data. Some of the EAP methods often used are: 
EAP-MD5, EAP-OTP (One time password), EAP-TLS 
(Transport Level Security), LEAP (Lightweight EAP), 
EAP-SIM (Subscriber Identity Module), EAP-PEAP 
(Protected Extensible Authentication Protocol), EAP-
MSCHAPv2 (Microsoft Challenge Handshake 
Authentication Protocol version 2), EAP-PSK (Pre Shared 
Key), EAP-PAX (Password Authenticated Exchange) etc. 
EAP implementation in WPA_supplicant consists of 
several modules. The main module is EAP state machine, 
described in [2]. Other modules include implementations of 
various EAP methods and necessary crypto functions. EAP 
state machine changes its state depending on received 
messages during the process of the authentication. On the 
initiator's side authentication starts with initializing EAP 
state machine. That state machine communicates with state 
machines of each EAP method supported by the 
implementation. At the end of the authentication EAP state 
machine enter into state Success or Failure, depending on 
the last message received from the authenticator.  

 
 

III. I KEv2 PROTOCOL 
 

Internet Key Exchange protocol version 2 [6] is used for 
exchanging shared keys between two sides that need to 
communicate (initiator and responder). When two parts 
want to communicate they have to establish security 
association - SA, with which they will define the 
protection of their communications. At the beginning, 
there were problems with exchanging shared keys because 
the keys had to be exchanged upon insecure network, 
vulnerable to different attacks. With IKEv2 protocol keys 
are exchanged automatically. Daemon, which runs IKEv2 
protocol, randomly generates symmetric keys using shared 
secret and some source of randomness. Also, daemon does 
rekeying after some period of time and reestablishes IKE 
SA between initiator and responder. 
IKE messages are being exchanged in pairs and can be 
divided in two phases: IKE_SA_INIT and IKE_AUTH 
[7]. First phase consists of one pair of messages, with 
which initiator and responder define cryptographic suite, 
exchange nonce numbers and perform Diffie-Helman 
exchange (shared secret exchange with asymmetric 
algorithm). Messages in second phase are used for the 
authentication of the previous exchanged messages. In 
these crypted messages initiator and responder introduce to 
each other by sending IDs and certificates (if required). 
With these messages first IKE SA is created and traffic 
between initiator and responder is protected. 
In some cases second phase require more than one pair of 
messages, as for example, when EAP is used for 
authentication. EAP messages exchanges are additional 
IKE_AUTH exchanges and must be done before IKE SA 
is created. By protocol, initiator (EAP peer) requires EAP 
authentication by leaving out AUTH payload from 
IKE_AUTH message it sent to responder, as 3rd message 
in IKEv2 message exchange. Responder (EAP server) then 
sends EAP payload but leaves out parameters needed to 
create IKE SA. Following messages contain only EAP 
payload. When authentication is finished and initiator is 

successfully authenticated IKE_AUTH messages exchange 
can be finished and IKE SA is created. In the case when 
the authentication fails, responder terminates further IKE 
SA and CHILD SA establishment. Some EAP methods 
create shared key during authentication, called Master 
Session Key (MSK). When using these methods for 
authentication, MSK must be used for creating AUTH 
payload in the IKE_AUTH messages. IKE_AUTH 
exchange with EAP as authentication method is shown on 
Figure 3 from [6].  
 
 

 
Figure 3: IKE_AUTH exchange when EAP is included 

 
 

IKEv2 protocol defines its own state machine. Actually, 
there are state machines for the initiator and the responder. 
In our implementation of EAP into IKEv2 protocol the 
most important state machines are the first level state 
machines – state machines that describe behavior of IKE 
SA. All states of these machines can be divided into three 
groups: states that are specific for the initiator, the one 
specific for the responder and the states common to both. 
States specific for the initiator are:  

• IKE_SMI_INIT 
• IKE_SMI_INVALIDKE 
• IKE_SMI_COOKIE 
• IKE_SMI_AUTH 
• IKE_SMI_INSTALLCSA 

States specific for the responder are: 
• IKE_SMR_INIT 
• IKE_SMR_AUTH 

States common for both, initiator and responder, are: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initiator Responder 

HDR, SAi1, KEi, Ni 

HDR, SAr1, KEr, Nr, 
[CERTREQ] 

HDR, SK {IDi, 
[CERTREQ,] [IDr,] 

SAi2, TSi, TSr} 

HDR, SK {IDr, 
[CERT,] AUTH, 

EAP} 

HDR, SK {EAP} 

HDR, SK 
{EAP(success)} 

HDR, SK {AUTH}  

HDR, SK {AUTH. 
SAr2, TSi, TSr} 



• IKE_SM_MATURE 
• IKE_SM_REAUTH 
• IKE_SM_DYING 

Second level state machines are used for rekeying IKE SA, 
creating new CHILD SAs, rekeying existing CHILD SAs 
and won't be considered here because they are not 
important for the implementation of EAP into IKEv2 
protocol. In the next chapter it is described what changes 
have been made on the IKE state machine on the initiator. 

 
 

IV. IKEv2 DAEMON AND WPA_SUPPLICANT 
MODIFICATION 

 
While implementing EAP into IKEv2 protocol some 
changes have been made into IKEv2 initiator state 
machine. One new state is introduced: IKE_SMI_EAP. 
Also, IKEv2 daemon now includes EAP state machine 
whose purpose is to generate EAP responses to the 
responder. In the following paragraphs, transitions of 
modified IKEv2 daemon state machine, starting from the 
initial state are described. 
When initiator has to establish new CHILD SA (e.g. 
receives kernel request) it creates new state machine, 
initially in state IKE_SMI_INIT (as always). In that state 
daemon creates and sends IKE_SA_INIT request to 
responder and changes its state into IKE_SMI_AUTH, 
where it waits for IKE_SA_INIT response. 
After receiving IKE_SA_INIT response, IKEv2 daemon 
on initiator, processes response, creates IKE_AUTH 
request and sends it. In sent IKE_AUTH request there is 
no AUTH payload, since IKEv2 daemon on initiator wants 
to authenticate with EAP. Immediately after sending 
IKE_AUTH request initiator commences into 
IKE_SMI_EAP. This is a new state, introduced to allow 
for EAP authentication in IKEv2 daemon. In this state 
initiator remain until response is received.  
First response from responder should contain initial EAP 
packet - EAP identity request, if responder agrees on EAP 
authentication. On that response, IKEv2 daemon initializes 
EAP state machines which process EAP request and 
generate EAP response packet. Initiator forwards EAP 
packet to responder and waits for next request. After 
receiving next response from responder, it is processed and 
the EAP payload is passed to EAP state machine [5]. 
Response of EAP state machine is then sent to responder. 
This exchange is repeated until responder sends either 
EAP SUCCESS or FAILURE message. 
In case SUCCESS message is received, IKEv2 initiator 
state machine sends final IKE_AUTH request, and 
transitions into IKE_SMI_INSTALLCSA state where it 
waits for final IKE_AUTH response from responder. 
If initiator receives FAILURE message, then it transitions 
into IKE_SM_DEAD state where session structure for that 
peer is removed from memory. 
Except on the IKEv2 initiator state machine, code changes 
were necessary also on the WPA_supplicant. From 
WPA_supplicant only EAP state machine, crypto 
functions and EAP methods were taken into IKEv2 
daemon. WPA_supplicant has to be compiled as a library 
whose parts are then used in IKEv2. Besides original code 
form it,  some new “glue” functions were written. Their 

purpose is to set and get values of control variables when 
EAP state machine changes it's states, i.e. it is processing 
requests and generating responses. These functions need to 
communicate with supplicant code - allow transfer of EAP 
messages between IKEv2 daemon and the EAP state 
machines. We consider EAP state machines as a black box 
and to control them we use callback functions. Callback 
functions are listed in table 1.  
 
 

TABLE 1.  
CALLBACK FUNCTIONS USED BY EAP STATE 

MACHINES 
 

Function Description 

get_config (…) 
Called by EAP state machines to 
retrieve configuration structure. 

get_bool (…) Get value of boolean variable. 

set_bool (…) Set value of boolean variable. 

get_int (…) Get value of integer variable. 

set_int (…) Set value of integer variable. 

get_eapReqData (…) 
Called by EAP state machines to 
retrieve received request. 

 
 
Except those changes that were made on the initiators side 
(EAP state machine changes and additional callback 
functions for supplicant), changes were made on the 
responder’s side.  

 

V. IKEv2 DAEMON AND RADIUS RELATED 
MODIFICATION 

 
Our IKEv2 responder doesn’t implement EAP methods 
locally, instead we use RADIUS server as EAP 
authentication server. Responder has to extract EAP packet 
from IKEv2 messages, forward them to RADIUS, using 
RADIUS packets, get responses from RADIUS, extract 
EAP packet from received packet and forward them to 
initiator in next IKEv2 message. Responder should also be 
aware of EAP packet transmitted, it should detect 
successful and unsuccessful authentication. 
IKEv2 daemon source is composed of several modules 
with well defined structure. As successor to IKEv1 
daemon project it inherited most characteristic form it. 
New modules, such as EAP had to be designed to fit into 
rest of code. Interaction with RADIUS server, however, 
can not be easily achieved with old modules. New module, 
called RADIUS subsystem is designed, which purpose is 
to serve as a stub for sending and receiving RADIUS 
packets to and from RADIUS server. A few other 
functionalities are also included in module, like packet 
composition, parsing and information extraction. RADIUS 
module relies on network module for UDP connectivity. 



Sockets are dynamically created and reused, depending on 
actual module demands. Module has its own thread 
waiting on packets from RADIUS server(s). Its job is to 
perform only minimal processing, and then push received 
packet as part of a new message in main message queue. 
Further processing is to be done in message subsystem. 
Message subsystem has to match received packet with 
existing session. Packets that can’t be matched with some 
session are silently discarded. After matching packet with 
session a new message is created and pushed for further 
processing by thread pool. At this point, state machine 
module that got a new state, takes next actions. In other 
direction, from IKEv2 daemon to RADIUS server, packet 
is directly sent by using functions from RADIUS module. 

 
 

VI. CONCLUSION 
 
Most of open source projects in their development reuse 
some existing libraries from other open source projects 
aiming at shorter development time and better 
interoperability. The same scenario was used in this IKEv2 
project, when EAP and other functionalities have been 
introduced into IKEv2 protocol. IKEv2 protocol is 
complex protocol and to achieve its functionality while 
preserving some degree of modularity we have to be 
careful when importing foreign code. When it was decided 
that EAP for peer functionality would be implemented by 
reusing existing EAP implementations, a suitable module 
had to be found. WPA_supplicant was chosen, as most 
advanced and modular at that time. Since this module will 
be used only on peer performance, issues are not critical. 
However, since after successful EAP authentication some 
data has to be extracted from WPA_supplicant state 
machines, a comprehensive knowledge of its code and data 
structure must be obtained. On the other side, on 
responder, RADIUS module’s difficulties are in design not 
coding. Responder is to be built for heavy loads and 
performance must always be high priority. Hopefully, EAP 
implementation design presented in this paper will be 
successfully fully integrated into IKEv2 daemon project 

contributing with a sophisticated authentication method to 
protocol that strive to achieve better network security. 
 

ACKNOWLEDGMENT 

 
This work has been carried out within projects 036-
0361994-1995 Universal Middleware Platform for 
Intelligent e-Learning Systems funded by the Ministry of 
Science and Technology of the Republic Croatia, and 
IKEv2 Step2 project funded by Siemens Networks. 
 
 

LITERATURE 
[1] C. Rigney, et all, Remote Authentication Dial In 

User Service (RADIUS),  
URL: http://www.ietf.org/rfc/rfc2865.txt 

[2] C. Rigney, et all, RADIUS Extensions,  
URL: http://www.ietf.org/rfc/rfc2869.txt 

[3] B. Aboba, P. Calhoun, RADIUS support for EAP,  
URL: http://www.ietf.org/rfc/rfc3579.txt 

 [4]  B. Aboba,  et all, Extensible Authentication Protocol 
(EAP), 2004., URL:www.ietf.org/rfc/rfc3748.txt 

 [5] J. Vollbrecht, P. Eronen, N. Petroni, Y. Ohba, State 
Machines for Extensible Authentication Protocol 
(EAP) - Peer and Authenticator, 2005.,  
URL: www.ietf.org/rfc/rfc4137 

 [6] C. Kaufman, Ed., Internet Key Exchange Key 
(IKEv2) Protocol, 2005.,  
URL: www.ietf.org/rfc/rfc4306.txt 

 [7] P. Eronen, P. Hoffman, IKEv2 Clarifications and 
Implementation Guidelines, 2006.,  
URL: www.ietf.org/rfc/rfc4718.txt 

 [8]   Jouni Malinen, Linux WPA/WPA2/IEEE 802.1X 
Supplicant,  
URL: http://hostap.epitest.fi/wpa_supplicant/  

 [9]   S. Groš, J.Vučak, Supplicant design document, 
2006., unpublished work 

   
   
  

 


