
On Evolutionary Computation Methods in

Cryptography

S. Picek*, M. Golub **

Faculty of Electrical Engineering and Computing, Zagreb, Croatia

*stjepan@computer.org, **marin.golub@fer.hr

Abstract - Evolutionary computation algorithms represent a

range of problem-solving techniques based on principles of

biological evolution, like natural selection and genetic

inheritance. Such algorithms can be used to solve a variety

of difficult problems, among which are those from the area

of cryptography. Examples of such an approach include the

evolving hash functions or creation of a new block cipher.

First results in this area have emerged over 30 years ago,

and in recent years there has been an increased interest in

this area. Still, some problems like problem formulation and

representation remain open. The purpose of this paper is to

give a survey of cryptographic applications that can be

developed with the help of evolutionary computation

methods, and to address their applicability to the real-world

scenarios.

I. INTRODUCTION

Computational intelligence represents a set of nature-
inspired computational methodologies and approaches to
address complex problems of the real world applications
to which traditional methodologies and approaches are
ineffective. These methods have found a variety of
applications in the field of optimization problems. Some
of those applications belong to the area of information
security. First research papers dealing with that subject
appeared in 1979 and presented cryptanalysis of simple
substitution cipher by means of relaxation algorithms [8].
Since then, as a problem solving techniques in information
security, several areas of biologically inspired
computation methods that belong to computational
intelligence gained attention. Although in this paper we
present only evolutionary computation methods, it is
justified to mention several others, like artificial neural
networks, DNA computing, and cellular automata as
possible alternatives. In this paper, we limit our attention
only to applications of evolutionary computation methods
to modern cryptography. For more details on evolutionary
computation methods in cryptanalysis refer to [13], and
for information about evolutionary computation methods
applied to classical cryptology refer to [2].

This paper is not intended as a detailed survey of
possible applications of evolutionary computation in
cryptography. Rather, it aims to give an introduction to the
possibilities of evolutionary computation methods when
applied to cryptography.

We begin this paper by discussing relevant theory in
Section 2. Section 3 describes the applications of the

evolutionary computation methods used in cryptography,
and finally, Section 4 draws a conclusion.

II. PRELIMINARY

A. Evolutionary Computation Methods

Evolutionary computation uses iterative progress, such
as growth or development in a population. This population
is then selected in a guided random search to achieve the
desired goal. Such processes are often inspired by
biological mechanisms of evolution.

In following paragraphs, we briefly explain genetic
algorithms (GAs), genetic programming (GP), tabu search
(TS), and simulated annealing (SA).

1) Genetic Algorithms
Genetic algorithm is a search heuristics that mimics

the process of natural evolution. Genetic algorithms are
based on the Darwinian theory of evolution. Genetic
algorithms have been invented by J. Holland in 1960s, and
since then they have been successfully applied to the
variety of problems in the field of combinatorial
optimization. Because of their popularity, numerous
variations of genetic algorithms arose since their
invention.

In genetic algorithms, the population of individuals
which represent possible solutions to an optimization
problem evolve toward a better solution. To measure the
quality of a solution, the fitness function is defined. A
fitness function is always problem dependant. The
evolution in genetic algorithm usually starts from a pool
of randomly selected individuals and then, by utilizing the
GA operators, a new and better population is generated.

Main genetic algorithm operators are selection,
crossover, and mutation. Selection is a process of selecting
individuals that will produce a new generation. Crossover
works by combining two or more parent solutions to form
one or more child solutions that have their good
characteristics. Mutation is a random change of individual
alleles in an individual [11] [18].

2) Genetic Programming
Genetic programming represents evolutionary

methodology inspired by biological evolution to find
computer programs. They are used to optimize a
population of computer programs according to a fitness
landscape. Genetic programming started to develop in
1950s, but it expanded in 1990s when J. Koza pioneered

the application of genetic programming in various search
problems. Genetic programming has also been applied to
evolvable hardware.

Computer programs that are developed by GP are
traditionally represented as a tree structure. Every tree
node has an operator function and every terminal node has
an operand. Main operators used in genetic programming
are crossover and mutation. Crossover is done by
switching one of the nodes of an individual with one node
from another individual. Mutation is used to replace a
whole node or node’s information of an individual [10]
[18].

3) Tabu Search
Tabu search is an optimization method that belongs to

the class of local search techniques. Tabu search works in
a way that enhances the performance of a local search
method. Tabu search uses memory structures where it
stores the solutions. The most important of memory
structures is a tabu list. Once the potential solution is
determined, it is put on a tabu list so the algorithm cannot
visit that possibility repeatedly.

A tabu search uses a local search procedure to
iteratively move from one solution to another which is in
the proximity of the first solution. To explore regions of
the search space that would be left unexplored, tabu
search modifies the local structure of each solution as the
search progresses.

Tabu search was invented by W. Glover [18].

4) Simulated Annealing
Simulated annealing is a generic probabilistic

metaheuristics inspired by the cooling processes of molten
metal. It was invented by S. Kirkpatrick as an adaptation
of the Metropolis-Hastings algorithm invented in 1950s.
Simulated annealing combines hill-climbing technique
with the probabilistic acceptance of non improving moves.

In simulated annealing, each point of search space is
analogous to a state of a physical system, and the function
that needs to be minimized is analogous to the internal
energy of the system in that state. The goal is to bring the
system from arbitrary state to the state with minimal
energy.

The search starts at some initial state with a control
parameter known as the temperature. The search tries to
avoid local minima by jumping out of them early in the
computation. Toward the end of the computation, when
the temperature, or probability of accepting a worse
solution, is nearly zero, the search simply seeks the
bottom of the local minimum. The chance of getting a
good solution can be traded off with computation time by
slowing down the cooling schedule. The slower the
cooling, the higher is the chance of finding the optimum
solution, but the run time is also longer [18].

B. Modern Cryptology

Modern cryptography designs cryptographic
algorithms that are assumed to be hard to break by an
adversary.

Modern cryptography can be divided into several
areas. Some of those areas that are relevant for this paper
are discussed in the following paragraphs [9] [14].

Modern cryptography can be informally divided into
symmetric key cryptography, public key cryptography,
and hash functions. Additionally, cryptographic primitives
and pseudorandom number generators can be singled out
as separate areas that have relevance to this paper.

1) Symmetric Key Cryptography
Symmetric-key cryptography refers to the encryption

methods in which both the sender and receiver share the
same key. In these algorithms encryption key can be
calculated from decryption key and vice versa. In these
algorithms as long as the communication needs to remain
secret, the key must remain secret. Symmetric key
cryptography’s main advantage over public key
cryptography is the fact that it is much faster. Symmetric
key cryptography can be generally divided into block
ciphers and stream ciphers [14].

a) Block Ciphers

Block ciphers take as an input a block of plaintext and
a key, and the output is a block of the ciphertext of the
same size.

b) Stream Ciphers

Those ciphers create an arbitrary long stream of key
material, which is combined with the plaintext bit by bit.
In a stream cipher, the output is created based on a hidden
internal state which changes as the cipher changes.

c) Hash Functions

Hash functions maps an arbitrary length input into a
fixed length output. Hash function to be cryptographically
secure needs to fulfill a number of prerequisites.

2) Public Key Cryptography
In these systems, the key used for encryption is

different from the key used for decryption. These
algorithms are called public key because the encryption
key can be made public. The system remains safe as long
as the private key remains secret. Public key cryptography
is most often based on the computational complexity of
the hard mathematical problems from the number theory.

a) RSA Cryptosystem

RSA is the first algorithm known to be suitable for
encryption, and digital signing. The security of the RSA
cryptosystems is based on the difficulty of the integer
factorization problem. In the process of encryption and
decryption, modular exponentiation is used, and
factorization problem is utilized to create the trapdoor
function. It is believed to be secure if sufficiently long
keys are used.

3) Cryptographic Primitives
Primitives are algorithms that have basic

cryptographic properties. Primitives provide fundamental
properties that are used to develop more complex
cryptographic protocols. Cryptographic primitives, on
their own, are quite limited, but when combined in
security protocols, then more than one security
requirement can be addressed.

4) Pseudorandom number generator
A pseudorandom number generator (PRNG) is an

algorithm for generating a sequence of numbers that have
the properties of random numbers. The sequence obtained
by the pseudorandom number generator is not truly
random because it is determined by small set of initial
values, called the state. Pseudorandom number generators
play important role in the area of cryptography. It is
necessary to conduct the mathematical analysis of a
sequence before it can be determined that is sufficiently
random for the intended use.

III. EVOLUTIONARY COMPUTATION IN CRYPTOGRAPHY

A. ICIGA system

ICIGA (Improved Cryptography Inspired by Genetic
Algorithms) system represents an improvement of a
system “Genetic Algorithms Inspired Cryptography” done
by the same authors [15]. ICIGA is a block cipher system
where secret key is generated during each session via
random process. The length of the key and the block size
are the parameters adjustable by the user of the system.
Based on the key length, plaintext is divided into the parts
of the same size. The first part is used to generate secret
key which will be used in ciphering of the message. The
difference between the two versions of the system is in
adding more transformation operations in the ICIGA
system.

The algorithm for encryption can be described
informally in the following way. First, break the binary
encoded plaintext into parts of equal size based on the
length of the key, and then break those parts in the blocks
of the same size. Next, crossover and mutation operations
based on the genetic algorithms are applied. Those
operations work on randomly selected blocks and
positions in those blocks. Based on the trace of those
operations a secret key is generated. Then mask the
position of the genetic algorithm operators by applying
left shift. Third, apply left shift on whole part to mask the
distribution of the blocks. Finally, apply same steps to the
rest of the plaintext but use secret key to choose genetic
algorithm operations and positions instead.

Decryption is composed of the right shift operation
and the same genetic algorithm operators since the inverse
of left shift is right shift, and the crossover and mutation
are involutions. The operations in deciphering process
should be done in reverse order.

The crossover operation is done by permuting the bits
between two blocks, and the mutation is done by applying
logical negation on the bits. Crossover operation can be
regarded CBC (Cipher Block Chaining) mode of
ciphering and mutation operation as ECB (Electronic
Code Book) mode of ciphering. It is necessary to mention
that no actual genetic algorithm is used, and because of
that, no selection scheme or fitness function is needed.
Crossover and mutation operations that draw inspiration
from genetic algorithms are used for encryption and
decryption.

Authors made some comparisons of the ICIGA system
with other symmetric key ciphers - DES, IDEA, and AES
algorithms.

Authors claim that their system is faster in encryption
and decryption then AES or IDEA [16]. To our
knowledge no further research of the security level of
ICIGA system has been done.

B. Evolving Hardware for RSA Systems

Modular exponentiation represents the most important
part in the RSA cryptosystems, and modular
multiplication is the most time consuming operation
within. When engineering hardware for those operations,
it is necessary to optimize the time consumed by a single
modular multiplication or reduce the total number of
modular multiplication performed (or both of those).
Many hardware designs using modular multiplication
have a drawback called side-channel leakage. As the
designs for modular exponentiation are regular and
repetitive it is possible to trace the data transfers between
operations, which can reveal the beginning of every long
integer operation. This allows an adversary to discover the
private key of the cryptosystem. Designing a hardware
that fulfils a certain function consists of deriving an
operational architecture within a set of constraints.

It is possible to develop new cryptographic circuits by
means of evolutionary computation methods.

Authors used genetic programming and evolvable
hardware to develop new cryptographic circuits in their
paper [12]. Evolvable hardware refers to the hardware that
can change its architecture and behavior dynamically and
autonomously by interacting with its environment.

They represented individuals as register-transfer level
specifications of the hardware. Each instruction in the
specification is an output signal assignment. A signal is
assigned the result of an expression wherein the operators
are those that represent basic gates in CMOS technology
of the VLSI circuit implementation and the operands are
the input signals of the design. Specifications are encoded
by using an array of parse trees corresponding to its signal
assignments. As recombination operators, crossover and
mutation are used. Fitness function adheres to the
following constraints: evolved specification must obey
input/output behavior, circuits must have reduced size,
and the circuits must reduce signal propagation time.
Authors compared the design obtained by genetic
programming with some other well known, human-made
designs and found that their solution is more efficient in
both required hardware area and encryption/decryption
throughput [12].

C. Finding Cryptographically Sound Boolean Functions

Significant work in this area was done by Clark in his
PhD Thesis [2]. Genetic algorithms are used there to
search for cryptographically sound Boolean functions.

A Boolean function describes how to determine a
Boolean value output based on some logical calculation
from Boolean inputs. The Boolean function is the linear
combinations of S-box columns, which is an important
cryptographic primitive for block and stream ciphers.
Because many cryptographic properties of Boolean
functions conflict with each other, the choice of functions
is usually a compromise between the desired properties of
the functions. High nonlinearity is one extremely

important property needed in order to reduce the
effectiveness of attacks such as linear cryptanalysis.

Clark introduced technique which enables the creation
of a complete list of Boolean function inputs in such way
that complementing any one of the corresponding truth
table positions will increase the nonlinearity of the
function. Each truth table position corresponds to a unique
function input. To find the list of truth table positions
Clark first found the values of Walsh-Hadamard transform
coefficients. First experiments were done by utilizing hill-
climbing techniques on the binary truth tables.

Further, Clark experimented with genetic algorithms in
attempt to find even better, more nonlinear solutions. He
used genetic algorithms with binary representation where
individuals are represented as binary strings. For an initial
population a pool of randomly created Boolean functions
was used. The fitness of the solutions is calculated based
on nonlinearity of the solutions. As a recombination
operator the “merge” operator is used, where it produces a
single offspring from two parents based on their Hamming
distance. The main idea behind that operator is to allow
two good parents that have small Hamming distance to
produce an offspring close to them. The mutation operator
is not used because it is likely to reduce the nonlinearity of
the solutions.

The results obtained in that work showed that genetic
algorithms on its own, or in the combination with hill-
climbing techniques, yield much better results then those
obtained by a random search.

D. Evolving Block Ciphers and Cryptographic Hash

Functions

Cryptographic hash functions represent important part
of many security protocols. Hash functions are usually
designed by experienced experts from the area of
cryptography, but it is also possible to develop them from
automatically obtained nonlinear functions.

It is possible to develop the compression function from
block cipher by utilizing Miyaguchi-Preenel construction.
For instance, that is the principle that is utilized in
obtaining Whirlpool hash function.

It is possible to develop new block cipher and then on
the basis of that cipher a new hash function like presented
in the paper [1] [5].

To develop a block cipher, it is necessary to decide on
highly-nonlinear functions that will be used in that
algorithm. As criteria for estimating nonlinearity of a
function avalanche effect is used. Informally, avalanche
effect can be defined as the effect that minimum change of
the input (one bit) changes on average, half of the output
bits.

The core of their work was to design functions with
nearly ideal amount of avalanche effect. As an
evolutionary computation method in developing functions
with that kind of properties, authors used genetic
programming. Experiments were conducted after an
adequate parameter set was chosen. For a function set,
efficient operations that are easy to implement in software
and hardware were chosen. To develop a block cipher that

follows a Feistel scheme it is necessary to find a key
schedule algorithm, and a round function.

After obtaining the two functions with desired
properties, they used these functions as a core component
of a new block cipher called Wheedham. Authors found
that that cipher is secure enough if it has eight rounds, but
they recommended that it has 16 rounds.

To produce a cryptographic hash function, they used a
Miyaguchi-Preenel construction on a modified Wheedham
cipher. Resulting hash functions was called MPW-512.
Furthermore, they found that four rounds would be
enough to ensure an appropriate security level of the
MPW-512 hash function. Some testing in the terms of
speed and security were performed and it was found that
resulting hash function is competitive to best hash
functions available in that time (SHA-512, and
Whirlpool). Still, authors remarked that further
experiments needed to be done before considering new
function as a secure enough [5].

E. Design of S-boxes

By following Feistel recommendations, design of a
new block cipher can be reduced to the design of S-boxes.
That kind of design is not optimal, but is robust enough,
and sufficient for many applications.

S-boxes or substitution boxes are generally n-input, m-
output functions. Additionally, that can be viewed as a
combination of m individual single output Boolean
functions. In some applications, substitution boxes are
formed by simple Boolean functions which take several
Boolean inputs and give a single output.

There exists many ways to construct S-boxes.
Generally, they can be divided the random way and wit
the mathematical methods. Mathematical methods provide
good cryptographic properties, but it can be vulnerable to
algebraic attack if the expression is too simple. The
random way can be to randomly generate S-boxes and test
whether they are good. Another possibility is to construct
S-boxes on the basis of some previously known S-boxes
that have good properties [3] [7] [17].

a) Simulated Annealing for S-boxes

A cost function can be developed for single output
Boolean function and generalize it for the use in S-boxes.
Cost function represents the condition that needs to be
satisfied, and that is the approach that authors adopted in
[3].

Formal criteria for the single output Boolean functions
are to have high nonlinearity and low autocorrelation.
Those criteria are selected because they provide some
level of protection against linear cryptanalysis, and
differential cryptanalysis.

In year 2000, a new cost function family was proposed
that offer significant improvement for the single output
Boolean function case. That cost function defined the cost
over the whole Walsh-Hadamard spectrum rather than on
extreme values as it was done prior to that. The single
output cost functions can be applied to each function
defined as a linear combination of the outputs.

The search starts with regular, but randomly chosen
function and moves around the search space. Simulated
annealing was chosen to found the best solution.
Annealing based search is used to minimize the value of
the new cost function, and then hill-climb from the best
solution with respect to nonlinearity to produce final
solution. At the end, it is necessary to measure the
nonlinearity, autocorrelation, and algebraic degree of the
final solution.

The results obtained by this method are better then the
results obtained in the case of human made S-boxes for
the case when functions have small number of inputs.
Furthermore, for some cases when number of inputs was
larger, the results were also better then those obtained by
human made S-boxes.

b) Genetic Algorithms for Bijective S-boxes

Authors constructed good bijective S-boxes that have
high nonlinearity and low difference uniformity. The goal
was to find good bijective S-boxes because they have been
adopted by many algorithms. To achieve that goal, authors
used genetic algorithms [6].

The solution candidates were represented by the truth
tables and the fitness function is a function that takes into
account nonlinearity and autocorrelation.

The genetic algorithm used can be described in the
following way: first, a pool of randomly generated
bijective S-boxes is generated. Each possible pair of S-
boxes is selected for crossover (in paper called breeding).
Apply mutation (hill climbing) on each of the offsprings.
Compute the fitness of the offsprings and from a
combined pool of parents and offsprings select best to
create a new population.

Authors reported that with this strategy much stronger
S-boxes can be obtained when compared to random ones.
However, they remarked that additional research should
be done to include avalanche effect and diffusion in the
fitness function.

c) Genetic Algorithms for Self-inverse S-boxes

The main advantage of a self inverse S-box is that it
needs less space in the implementation.

Authors continued their work from [6] which is
presented in section above and in paper [7] they also
considered self-inverse property of S-boxes. Additionally,
to prevent “inbreeding”– mating of parents that are to
similar they improved their selection strategy. As a way of
preventing “inbreeding”, an S-box distance was
considered. An S-box distance describes the similarities
between two S-boxes, i.e. the Hamming distance between
all component output functions. The algorithm used is the
same as described in section above, except for the
differences mentioned. Based on the results obtained,
authors concluded that it is possible to use genetic
algorithms to evolve good self inverse S-boxes.

d) Optimal Tabu-genetic algorithm for S-boxes

Recently, a tabu-genetic algorithm for evolving S-
boxes was presented [17].Author included a niche
technique to maintain population diversity and to avoid
premature convergence. Niche technique is used to enable

evolutionary algorithm to find more then one optimal
solution, but also to reduce redundant computations and
fasten convergence. Author considered avalanche criteria
and diffusion properties as evolution targets.

The Niche technique is added to the genetic algorithm
to avoid trapping in the local optimum. When the
convergence reaches the certain level, then tabu search as
a local search mechanism is applied to converge to the
global optimum.

The algorithm used can be described on the following
way: create a pool of random solutions and find their
fitness. Apply crossover and mutation to the individuals.
Find the Hamming distance of every two individuals,
compare the fitness degrees of those solutions and to the
one with lower fitness give penalty function. Evaluate
until optimal solution is obtained. Use the optimal solution
from genetic algorithm for the initial solution for tabu
search.

Results obtained by tabu-genetic algorithm showed
that it was feasible and efficient way of creating S-boxes.

F. Design of Pseudorandom Sequence

It is possible to use one method from the area of
evolutionary computation to evolve another method that
can be utilized to reach certain objective. In their paper
[4], authors presented a way of utilizing genetic algorithm
to find cellular automata rules. Those set of rules are then
used to make cellular automata to behave like a
pseudorandom number generators that produce
sufficiently random numbers for use in cryptography.

Although experiments with other computational
intelligence methods in the making of pseudorandom
number generators have been conducted, there are no
good enough results for the use of those generators in field
of cryptography.

Because of their simplicity, the cellular automata
showed to be a good alternative for a pseudorandom
number generation. Generators created on such a way, can
also be easily implemented in the hardware.

A cellular automaton is a computational device
composed of a uniform cell array and finite rules set that
are applied to each cell. Many cellular automata exhibit a
global chaotic and unpredictable behavior and, for that
reason, they have been proposed to be used as
pseudorandom sequence generators [4].

Authors used one-dimensional cellular automata with
non-homogeneous local rules, in which each cell has
between one and five arbitrary neighbors. Genetic
algorithms were used as a way of generating good rules.
The fitness function was computed based on statistical
tests, and the entropy in cellular programming. The
objective was to detect the rules that do not pass the tests.

The procedure was as follows: first, fitness function is
calculated for every cell. The fitness of the cell is
compared to the fitness of the neighbors and based on the
results a mutation and crossover operations are performed.
The rules that had best performance were used to generate
pseudorandom sequences, and those sequences are
compared with sequences obtained by other

pseudorandom number generators. The results done on a
relatively small set of samples showed that cellular
automata produced “more” random number than the Blum
Blum Shub generator or the linear congruential generator,
for example. Still, authors remarked that additional tests
with a larger set of samples are needed to confirm the
initial tests.

IV. CONLUSION

Evolutionary computation methods have been
successfully applied to cryptology. However, it is
necessary to notice that many of those implementations
have been either to classical systems that have no real
world application, or results obtained are difficult to
reproduce and verify. More thorough research in the
applications of state of the art cryptosystems is needed to
be done if this area wants to shift to more significant part
of cryptology. Applying more modern methods of
evolutionary computation would probably yield better
results in this area also.

REFERENCES

[1] J. C. Hernandez-Castro, J. M. Estevez-Tapiador, A. Ribagorda-
Garnacho, and B. Ramos-Alvarez, “Wheedham: An Automatically
Designed Block Cipher by means of Genetic Programming,” IEEE
Congress on Evolutionary Computation, CEC2006, Vancouver,
pp. 192–199, 2006.

[2] A. J. Clark, “Optimisation Heuristics for Cryptology,” PhD
Thesis, Faculty of Information Technology, Queensland, 1998.

[3] J. A. Clark, J. L. Jacob, and S. Stepney, “The Design of S-Boxes
by Simulated Annealing,” IEEE Congress on Evolutionary
Computation, CEC2004, Portland, vol 2., pp. 1533 – 1537, 2004.

[4] D. Delgado, D. Vidal, and G. Hernandez, “Evolutionary Design of
Pseudorandom Sequence Generators based on Cellular Automata
and Its Applicability in Current Cryptosystems,” Proceedings of
the 8th Annual Conference on Genetic and Evolutionary
Computation, GECCO '06, Seattle, pp. 1859-1860, 2006.

[5] J. M. Estevez - Tapiador, J. C. Hernandez - Castro, P. Peris-Lopez,
and D A. Ribagorda, “Automated Design of Cryptographic Hash
Schemes by Evolving Highly-Nonlinear Functions,” Journal of
Information Science and Engineering, vol. 24, pp. 1485-1504,
2008.

[6] C. Hua, and F. Deng-guo, “An Effective Evolutionary Strategy for
Bijective S-boxes,” IEEE Congress on Evolutionary Computation,
CEC2004, Portland, vol 2., pp. 2120 - 2123, 2004.

[7] C. Hua, and F. Deng-guo, “An Effective Genetic Algorithm for
Self-Inverse S-boxes,” International Conference on Computational
Intelligence and Security, Harbin, pp. 618-622, 2007.

[8] P. Isasi, and J. C. Hernandez, “Introduction to the Applications of
Evolutionary Computation in Computer Security and
Cryptography,” Computational Intelligence, vol. 20, num. 3, pp.
445-449, 2004.

[9] J. Katz, and Y. Lindell, “Introduction to Modern Cryptography:
Principles and Protocols,” Chapman and Hall/CRC, USA, 2007.

[10] J. Koza, “Genetic Programming: On the Programming of
Computers by Means of Natural Selection (Complex Adaptive
Systems),” The MIT Press, Cambridge, USA, 1992.

[11] M. Mitchell, “An Introduction to Genetic Algorithms,” The MIT
Press, Cambridge, USA, 1999.

[12] N. Nedjah and L. de Macedo Mourelle, “Multi-Objective
Evolutionary Hardware for RSA-Based Cryptosystems,”
Proceedings of the International Conference on Information
Technology: Coding and Computing (ITCC’04), vol. 2, pp. 503-
507, 2004.

[13] N. Nedjah, A. Abraham and L. de Macedo Mourelle (Eds.),
“Computational Intelligence in Information Assurance and
Security,” in Studies in Computational Intelligence, Volume 57,
Springer Berlin Heidelberg New York, 2007.

[14] B. Schneier, “Applied Cryptography: Protocols, Algorithms, and
Source Code in C,” 2nd edition, Wiley; USA, 1996.

[15] A. Tragha, F. Omary, A. Mouloudi, “Genetic Algorithms Inspired
Cryptography,” A.M.S.E Association for the Advancement of
Modeling & Simulation Techniques in Enterprises, Series D:
Computer Science and Statistics, 2005.

[16] A. Tragha, F. Omary, A. Mouloudi, “ICIGA: Improved
Cryptography Inspired by Genetic Algorithms,” Proceedings of
the International Conference on Hybrid Information Technology
(ICHIT'06), pp. 335-341, 2006.

[17] Y. Xiangdong, “S Box Construction and Result Analysis Based on
Optimal Tabu-genetic Algorithm,” 2nd International Conference
on Education Technology and Computer (ICETC), Shanghai , vol.
3, pp. 539-542, 2010.

[18] T. Weise, “Global Optimization Algorithms Theory and
Application,” 2009.

