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Abstract - Evolutionary computation algorithms represent a 

range of problem-solving techniques based on principles of 

biological evolution, like natural selection and genetic 

inheritance. Such algorithms can be used to solve a variety 

of difficult problems, among which are those from the area 

of cryptography. Examples of such an approach include the 

evolving hash functions or creation of a new block cipher. 

First results in this area have emerged over 30 years ago, 

and in recent years there has been an increased interest in 

this area. Still, some problems like problem formulation and 

representation remain open. The purpose of this paper is to 

give a survey of cryptographic applications that can be 

developed with the help of evolutionary computation 

methods, and to address their applicability to the real-world 

scenarios. 

I. INTRODUCTION 

Computational intelligence represents a set of nature-
inspired computational methodologies and approaches to 
address complex problems of the real world applications 
to which traditional methodologies and approaches are 
ineffective. These methods have found a variety of 
applications in the field of optimization problems. Some 
of those applications belong to the area of information 
security. First research papers dealing with that subject 
appeared in 1979 and presented cryptanalysis of simple 
substitution cipher by means of relaxation algorithms [8]. 
Since then, as a problem solving techniques in information 
security, several areas of biologically inspired 
computation methods that belong to computational 
intelligence gained attention. Although in this paper we 
present only evolutionary computation methods, it is 
justified to mention several others, like artificial neural 
networks, DNA computing, and cellular automata as 
possible alternatives. In this paper, we limit our attention 
only to applications of evolutionary computation methods 
to modern cryptography. For more details on evolutionary 
computation methods in cryptanalysis refer to [13], and 
for information about evolutionary computation methods 
applied to classical cryptology refer to [2]. 

This paper is not intended as a detailed survey of 
possible applications of evolutionary computation in 
cryptography. Rather, it aims to give an introduction to the 
possibilities of evolutionary computation methods when 
applied to cryptography. 

We begin this paper by discussing relevant theory in 
Section 2. Section 3 describes the applications of the 

evolutionary computation methods used in cryptography, 
and finally, Section 4 draws a conclusion. 

II. PRELIMINARY 

A. Evolutionary Computation Methods  

Evolutionary computation uses iterative progress, such 
as growth or development in a population. This population 
is then selected in a guided random search to achieve the 
desired goal. Such processes are often inspired by 
biological mechanisms of evolution. 

In following paragraphs, we briefly explain genetic 
algorithms (GAs), genetic programming (GP), tabu search 
(TS), and simulated annealing (SA). 

1) Genetic Algorithms 
Genetic algorithm is a search heuristics that mimics 

the process of natural evolution. Genetic algorithms are 
based on the Darwinian theory of evolution. Genetic 
algorithms have been invented by J. Holland in 1960s, and 
since then they have been successfully applied to the 
variety of problems in the field of combinatorial 
optimization. Because of their popularity, numerous 
variations of genetic algorithms arose since their 
invention. 

In genetic algorithms, the population of individuals 
which represent possible solutions to an optimization 
problem evolve toward a better solution. To measure the 
quality of a solution, the fitness function is defined. A 
fitness function is always problem dependant. The 
evolution in genetic algorithm usually starts from a pool 
of randomly selected individuals and then, by utilizing the 
GA operators, a new and better population is generated. 

Main genetic algorithm operators are selection, 
crossover, and mutation. Selection is a process of selecting 
individuals that will produce a new generation. Crossover 
works by combining two or more parent solutions to form 
one or more child solutions that have their good 
characteristics. Mutation is a random change of individual 
alleles in an individual [11] [18].  

2) Genetic Programming 
Genetic programming represents evolutionary 

methodology inspired by biological evolution to find 
computer programs. They are used to optimize a 
population of computer programs according to a fitness 
landscape. Genetic programming started to develop in 
1950s, but it expanded in 1990s when J. Koza pioneered 



the application of genetic programming in various search 
problems. Genetic programming has also been applied to 
evolvable hardware.  

Computer programs that are developed by GP are 
traditionally represented as a tree structure. Every tree 
node has an operator function and every terminal node has 
an operand. Main operators used in genetic programming 
are crossover and mutation. Crossover is done by 
switching one of the nodes of an individual with one node 
from another individual. Mutation is used to replace a 
whole node or node’s information of an individual [10] 
[18]. 

3) Tabu Search 
Tabu search is an optimization method that belongs to 

the class of local search techniques. Tabu search works in 
a way that enhances the performance of a local search 
method. Tabu search uses memory structures where it 
stores the solutions. The most important of memory 
structures is a tabu list. Once the potential solution is 
determined, it is put on a tabu list so the algorithm cannot 
visit that possibility repeatedly.  

A tabu search uses a local search procedure to 
iteratively move from one solution to another which is in 
the proximity of the first solution. To explore regions of 
the search space that would be left unexplored, tabu 
search modifies the local structure of each solution as the 
search progresses. 

Tabu search was invented by W. Glover [18].  

4) Simulated Annealing 
Simulated annealing is a generic probabilistic 

metaheuristics inspired by the cooling processes of molten 
metal. It was invented by S. Kirkpatrick as an adaptation 
of the Metropolis-Hastings algorithm invented in 1950s. 
Simulated annealing combines hill-climbing technique 
with the probabilistic acceptance of non improving moves. 

In simulated annealing, each point of search space is 
analogous to a state of a physical system, and the function 
that needs to be minimized is analogous to the internal 
energy of the system in that state. The goal is to bring the 
system from arbitrary state to the state with minimal 
energy.  

The search starts at some initial state with a control 
parameter known as the temperature. The search tries to 
avoid local minima by jumping out of them early in the 
computation. Toward the end of the computation, when 
the temperature, or probability of accepting a worse 
solution, is nearly zero, the search simply seeks the 
bottom of the local minimum. The chance of getting a 
good solution can be traded off with computation time by 
slowing down the cooling schedule. The slower the 
cooling, the higher is the chance of finding the optimum 
solution, but the run time is also longer [18].  

B. Modern Cryptology 

Modern cryptography designs cryptographic 
algorithms that are assumed to be hard to break by an 
adversary.  

Modern cryptography can be divided into several 
areas. Some of those areas that are relevant for this paper 
are discussed in the following paragraphs [9] [14].  

Modern cryptography can be informally divided into 
symmetric key cryptography, public key cryptography, 
and hash functions. Additionally, cryptographic primitives 
and pseudorandom number generators can be singled out 
as separate areas that have relevance to this paper. 

1) Symmetric Key Cryptography 
Symmetric-key cryptography refers to the encryption 

methods in which both the sender and receiver share the 
same key. In these algorithms encryption key can be 
calculated from decryption key and vice versa. In these 
algorithms as long as the communication needs to remain 
secret, the key must remain secret. Symmetric key 
cryptography’s main advantage over public key 
cryptography is the fact that it is much faster. Symmetric 
key cryptography can be generally divided into block 
ciphers and stream ciphers [14]. 

a) Block Ciphers 

Block ciphers take as an input a block of plaintext and 
a key, and the output is a block of the ciphertext of the 
same size. 

b) Stream Ciphers 

Those ciphers create an arbitrary long stream of key 
material, which is combined with the plaintext bit by bit. 
In a stream cipher, the output is created based on a hidden 
internal state which changes as the cipher changes. 

c) Hash Functions 

Hash functions maps an arbitrary length input into a 
fixed length output. Hash function to be cryptographically 
secure needs to fulfill a number of prerequisites.  

2) Public Key Cryptography 
In these systems, the key used for encryption is 

different from the key used for decryption. These 
algorithms are called public key because the encryption 
key can be made public. The system remains safe as long 
as the private key remains secret. Public key cryptography 
is most often based on the computational complexity of 
the hard mathematical problems from the number theory. 

a) RSA Cryptosystem 

RSA is the first algorithm known to be suitable for 
encryption, and digital signing. The security of the RSA 
cryptosystems is based on the difficulty of the integer 
factorization problem. In the process of encryption and 
decryption, modular exponentiation is used, and 
factorization problem is utilized to create the trapdoor 
function. It is believed to be secure if sufficiently long 
keys are used. 

3) Cryptographic Primitives 
Primitives are algorithms that have basic 

cryptographic properties. Primitives provide fundamental 
properties that are used to develop more complex 
cryptographic protocols. Cryptographic primitives, on 
their own, are quite limited, but when combined in 
security protocols, then more than one security 
requirement can be addressed. 



4) Pseudorandom number generator 
A pseudorandom number generator (PRNG) is an 

algorithm for generating a sequence of numbers that have 
the properties of random numbers. The sequence obtained 
by the pseudorandom number generator is not truly 
random because it is determined by small set of initial 
values, called the state. Pseudorandom number generators 
play important role in the area of cryptography. It is 
necessary to conduct the mathematical analysis of a 
sequence before it can be determined that is sufficiently 
random for the intended use. 

III. EVOLUTIONARY COMPUTATION IN CRYPTOGRAPHY 

A. ICIGA system 

ICIGA (Improved Cryptography Inspired by Genetic 
Algorithms) system represents an improvement of a 
system “Genetic Algorithms Inspired Cryptography” done 
by the same authors [15]. ICIGA is a block cipher system 
where secret key is generated during each session via 
random process. The length of the key and the block size 
are the parameters adjustable by the user of the system. 
Based on the key length, plaintext is divided into the parts 
of the same size. The first part is used to generate secret 
key which will be used in ciphering of the message. The 
difference between the two versions of the system is in 
adding more transformation operations in the ICIGA 
system.  

The algorithm for encryption can be described 
informally in the following way. First, break the binary 
encoded plaintext into parts of equal size based on the 
length of the key, and then break those parts in the blocks 
of the same size. Next, crossover and mutation operations 
based on the genetic algorithms are applied. Those 
operations work on randomly selected blocks and 
positions in those blocks. Based on the trace of those 
operations a secret key is generated. Then mask the 
position of the genetic algorithm operators by applying 
left shift. Third, apply left shift on whole part to mask the 
distribution of the blocks. Finally, apply same steps to the 
rest of the plaintext but use secret key to choose genetic 
algorithm operations and positions instead. 

Decryption is composed of the right shift operation 
and the same genetic algorithm operators since the inverse 
of left shift is right shift, and the crossover and mutation 
are involutions. The operations in deciphering process 
should be done in reverse order. 

The crossover operation is done by permuting the bits 
between two blocks, and the mutation is done by applying 
logical negation on the bits. Crossover operation can be 
regarded CBC (Cipher Block Chaining) mode of 
ciphering and mutation operation as ECB (Electronic 
Code Book) mode of ciphering. It is necessary to mention 
that no actual genetic algorithm is used, and because of 
that, no selection scheme or fitness function is needed. 
Crossover and mutation operations that draw inspiration 
from genetic algorithms are used for encryption and 
decryption.  

Authors made some comparisons of the ICIGA system 
with other symmetric key ciphers - DES, IDEA, and AES 
algorithms. 

Authors claim that their system is faster in encryption 
and decryption then AES or IDEA [16]. To our 
knowledge no further research of the security level of 
ICIGA system has been done. 

B. Evolving Hardware for RSA Systems 

Modular exponentiation represents the most important 
part in the RSA cryptosystems, and modular 
multiplication is the most time consuming operation 
within. When engineering hardware for those operations, 
it is necessary to optimize the time consumed by a single 
modular multiplication or reduce the total number of 
modular multiplication performed (or both of those). 
Many hardware designs using modular multiplication 
have a drawback called side-channel leakage. As the 
designs for modular exponentiation are regular and 
repetitive it is possible to trace the data transfers between 
operations, which can reveal the beginning of every long 
integer operation. This allows an adversary to discover the 
private key of the cryptosystem. Designing a hardware 
that fulfils a certain function consists of deriving an 
operational architecture within a set of constraints.  

It is possible to develop new cryptographic circuits by 
means of evolutionary computation methods.  

Authors used genetic programming and evolvable 
hardware to develop new cryptographic circuits in their 
paper [12]. Evolvable hardware refers to the hardware that 
can change its architecture and behavior dynamically and 
autonomously by interacting with its environment.  

They represented individuals as register-transfer level 
specifications of the hardware. Each instruction in the 
specification is an output signal assignment. A signal is 
assigned the result of an expression wherein the operators 
are those that represent basic gates in CMOS technology 
of the VLSI circuit implementation and the operands are 
the input signals of the design. Specifications are encoded 
by using an array of parse trees corresponding to its signal 
assignments. As recombination operators, crossover and 
mutation are used. Fitness function adheres to the 
following constraints: evolved specification must obey 
input/output behavior, circuits must have reduced size, 
and the circuits must reduce signal propagation time. 
Authors compared the design obtained by genetic 
programming with some other well known, human-made 
designs and found that their solution is more efficient in 
both required hardware area and encryption/decryption 
throughput [12].  

C. Finding Cryptographically Sound Boolean Functions  

Significant work in this area was done by Clark in his 
PhD Thesis [2]. Genetic algorithms are used there to 
search for cryptographically sound Boolean functions.  

A Boolean function describes how to determine a 
Boolean value output based on some logical calculation 
from Boolean inputs. The Boolean function is the linear 
combinations of S-box columns, which is an important 
cryptographic primitive for block and stream ciphers. 
Because many cryptographic properties of Boolean 
functions conflict with each other, the choice of functions 
is usually a compromise between the desired properties of 
the functions. High nonlinearity is one extremely 



important property needed in order to reduce the 
effectiveness of attacks such as linear cryptanalysis.  

Clark introduced technique which enables the creation 
of a complete list of Boolean function inputs in such way 
that complementing any one of the corresponding truth 
table positions will increase the nonlinearity of the 
function. Each truth table position corresponds to a unique 
function input. To find the list of truth table positions 
Clark first found the values of Walsh-Hadamard transform 
coefficients. First experiments were done by utilizing hill-
climbing techniques on the binary truth tables.  

Further, Clark experimented with genetic algorithms in 
attempt to find even better, more nonlinear solutions. He 
used genetic algorithms with binary representation where 
individuals are represented as binary strings. For an initial 
population a pool of randomly created Boolean functions 
was used. The fitness of the solutions is calculated based 
on nonlinearity of the solutions. As a recombination 
operator the “merge” operator is used, where it produces a 
single offspring from two parents based on their Hamming 
distance. The main idea behind that operator is to allow 
two good parents that have small Hamming distance to 
produce an offspring close to them. The mutation operator 
is not used because it is likely to reduce the nonlinearity of 
the solutions. 

The results obtained in that work showed that genetic 
algorithms on its own, or in the combination with hill-
climbing techniques, yield much better results then those 
obtained by a random search. 

D. Evolving Block Ciphers and Cryptographic Hash 

Functions 

Cryptographic hash functions represent important part 
of many security protocols. Hash functions are usually 
designed by experienced experts from the area of 
cryptography, but it is also possible to develop them from 
automatically obtained nonlinear functions. 

It is possible to develop the compression function from 
block cipher by utilizing Miyaguchi-Preenel construction. 
For instance, that is the principle that is utilized in 
obtaining Whirlpool hash function. 

It is possible to develop new block cipher and then on 
the basis of that cipher a new hash function like presented 
in the paper [1] [5]. 

To develop a block cipher, it is necessary to decide on 
highly-nonlinear functions that will be used in that 
algorithm. As criteria for estimating nonlinearity of a 
function avalanche effect is used. Informally, avalanche 
effect can be defined as the effect that minimum change of 
the input (one bit) changes on average, half of the output 
bits. 

The core of their work was to design functions with 
nearly ideal amount of avalanche effect. As an 
evolutionary computation method in developing functions 
with that kind of properties, authors used genetic 
programming. Experiments were conducted after an 
adequate parameter set was chosen. For a function set, 
efficient operations that are easy to implement in software 
and hardware were chosen. To develop a block cipher that 

follows a Feistel scheme it is necessary to find a key 
schedule algorithm, and a round function.  

After obtaining the two functions with desired 
properties, they used these functions as a core component 
of a new block cipher called Wheedham. Authors found 
that that cipher is secure enough if it has eight rounds, but 
they recommended that it has 16 rounds. 

To produce a cryptographic hash function, they used a 
Miyaguchi-Preenel construction on a modified Wheedham 
cipher. Resulting hash functions was called MPW-512. 
Furthermore, they found that four rounds would be 
enough to ensure an appropriate security level of the 
MPW-512 hash function. Some testing in the terms of 
speed and security were performed and it was found that 
resulting hash function is competitive to best hash 
functions available in that time (SHA-512, and 
Whirlpool). Still, authors remarked that further 
experiments needed to be done before considering new 
function as a secure enough [5].  

E. Design of S-boxes 

By following Feistel recommendations, design of a 
new block cipher can be reduced to the design of S-boxes. 
That kind of design is not optimal, but is robust enough, 
and sufficient for many applications.  

S-boxes or substitution boxes are generally n-input, m-
output functions. Additionally, that can be viewed as a 
combination of m individual single output Boolean 
functions. In some applications, substitution boxes are 
formed by simple Boolean functions which take several 
Boolean inputs and give a single output.  

There exists many ways to construct S-boxes. 
Generally, they can be divided the random way and wit 
the mathematical methods. Mathematical methods provide 
good cryptographic properties, but it can be vulnerable to 
algebraic attack if the expression is too simple. The 
random way can be to randomly generate S-boxes and test 
whether they are good. Another possibility is to construct 
S-boxes on the basis of some previously known S-boxes 
that have good properties [3] [7] [17]. 

a) Simulated Annealing for S-boxes 

A cost function can be developed for single output 
Boolean function and generalize it for the use in S-boxes. 
Cost function represents the condition that needs to be 
satisfied, and that is the approach that authors adopted in 
[3]. 

Formal criteria for the single output Boolean functions 
are to have high nonlinearity and low autocorrelation. 
Those criteria are selected because they provide some 
level of protection against linear cryptanalysis, and 
differential cryptanalysis.  

In year 2000, a new cost function family was proposed 
that offer significant improvement for the single output 
Boolean function case. That cost function defined the cost 
over the whole Walsh-Hadamard spectrum rather than on 
extreme values as it was done prior to that. The single 
output cost functions can be applied to each function 
defined as a linear combination of the outputs. 



The search starts with regular, but randomly chosen 
function and moves around the search space. Simulated 
annealing was chosen to found the best solution. 
Annealing based search is used to minimize the value of 
the new cost function, and then hill-climb from the best 
solution with respect to nonlinearity to produce final 
solution. At the end, it is necessary to measure the 
nonlinearity, autocorrelation, and algebraic degree of the 
final solution.  

The results obtained by this method are better then the 
results obtained in the case of human made S-boxes for 
the case when functions have small number of inputs. 
Furthermore, for some cases when number of inputs was 
larger, the results were also better then those obtained by 
human made S-boxes. 

b) Genetic Algorithms for Bijective S-boxes 

Authors constructed good bijective S-boxes that have 
high nonlinearity and low difference uniformity. The goal 
was to find good bijective S-boxes because they have been 
adopted by many algorithms. To achieve that goal, authors 
used genetic algorithms [6]. 

The solution candidates were represented by the truth 
tables and the fitness function is a function that takes into 
account nonlinearity and autocorrelation.  

The genetic algorithm used can be described in the 
following way: first, a pool of randomly generated 
bijective S-boxes is generated. Each possible pair of S-
boxes is selected for crossover (in paper called breeding). 
Apply mutation (hill climbing) on each of the offsprings. 
Compute the fitness of the offsprings and from a 
combined pool of parents and offsprings select best to 
create a new population. 

Authors reported that with this strategy much stronger 
S-boxes can be obtained when compared to random ones. 
However, they remarked that additional research should 
be done to include avalanche effect and diffusion in the 
fitness function. 

c) Genetic Algorithms for Self-inverse S-boxes 

The main advantage of a self inverse S-box is that it 
needs less space in the implementation.  

Authors continued their work from [6] which is 
presented in section above and in paper [7] they also 
considered self-inverse property of S-boxes. Additionally, 
to prevent “inbreeding”– mating of parents that are to 
similar they improved their selection strategy. As a way of 
preventing “inbreeding”, an S-box distance was 
considered. An S-box distance describes the similarities 
between two S-boxes, i.e. the Hamming distance between 
all component output functions. The algorithm used is the 
same as described in section above, except for the 
differences mentioned. Based on the results obtained, 
authors concluded that it is possible to use genetic 
algorithms to evolve good self inverse S-boxes. 

d) Optimal Tabu-genetic algorithm for S-boxes 

Recently, a tabu-genetic algorithm for evolving S-
boxes was presented [17].Author included a niche 
technique to maintain population diversity and to avoid 
premature convergence. Niche technique is used to enable 

evolutionary algorithm to find more then one optimal 
solution, but also to reduce redundant computations and 
fasten convergence. Author considered avalanche criteria 
and diffusion properties as evolution targets. 

The Niche technique is added to the genetic algorithm 
to avoid trapping in the local optimum. When the 
convergence reaches the certain level, then tabu search as 
a local search mechanism is applied to converge to the 
global optimum. 

The algorithm used can be described on the following 
way: create a pool of random solutions and find their 
fitness. Apply crossover and mutation to the individuals. 
Find the Hamming distance of every two individuals, 
compare the fitness degrees of those solutions and to the 
one with lower fitness give penalty function. Evaluate 
until optimal solution is obtained. Use the optimal solution 
from genetic algorithm for the initial solution for tabu 
search.  

Results obtained by tabu-genetic algorithm showed 
that it was feasible and efficient way of creating S-boxes. 

F. Design of Pseudorandom Sequence 

It is possible to use one method from the area of 
evolutionary computation to evolve another method that 
can be utilized to reach certain objective. In their paper 
[4], authors presented a way of utilizing genetic algorithm 
to find cellular automata rules. Those set of rules are then 
used to make cellular automata to behave like a 
pseudorandom number generators that produce 
sufficiently random numbers for use in cryptography. 

Although experiments with other computational 
intelligence methods in the making of pseudorandom 
number generators have been conducted, there are no 
good enough results for the use of those generators in field 
of cryptography.  

Because of their simplicity, the cellular automata 
showed to be a good alternative for a pseudorandom 
number generation. Generators created on such a way, can 
also be easily implemented in the hardware. 

A cellular automaton is a computational device 
composed of a uniform cell array and finite rules set that 
are applied to each cell. Many cellular automata exhibit a 
global chaotic and unpredictable behavior and, for that 
reason, they have been proposed to be used as 
pseudorandom sequence generators [4].  

Authors used one-dimensional cellular automata with 
non-homogeneous local rules, in which each cell has 
between one and five arbitrary neighbors. Genetic 
algorithms were used as a way of generating good rules. 
The fitness function was computed based on statistical 
tests, and the entropy in cellular programming. The 
objective was to detect the rules that do not pass the tests. 

The procedure was as follows: first, fitness function is 
calculated for every cell. The fitness of the cell is 
compared to the fitness of the neighbors and based on the 
results a mutation and crossover operations are performed. 
The rules that had best performance were used to generate 
pseudorandom sequences, and those sequences are 
compared with sequences obtained by other 



pseudorandom number generators. The results done on a 
relatively small set of samples showed that cellular 
automata produced “more” random number than the Blum 
Blum Shub generator or the linear congruential generator, 
for example. Still, authors remarked that additional tests 
with a larger set of samples are needed to confirm the 
initial tests. 

IV. CONLUSION 

Evolutionary computation methods have been 
successfully applied to cryptology. However, it is 
necessary to notice that many of those implementations 
have been either to classical systems that have no real 
world application, or results obtained are difficult to 
reproduce and verify. More thorough research in the 
applications of state of the art cryptosystems is needed to 
be done if this area wants to shift to more significant part 
of cryptology. Applying more modern methods of 
evolutionary computation would probably yield better 
results in this area also. 
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