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Abstract—Evolutionary computation methods are successfully
applied in solving of combinatorial optimization problems. Since
the “No Free Lunch” theorem states that there is no single best
algorithm to solve all possible problems, throughout the years
many algorithms and their modifications have emerged. When a
new algorithm is developed, one question that naturally arises is
how it compares to other algorithms, whether for some specific
problem or in general performance. Because of the stochastic
nature of systems involved, usually the only possible way of
deriving the answer is to perform extensive experimental analysis.
In this paper we provide an overview of possible approaches
in the experimental analysis, and describe statistical methods
that could be used. Furthermore, we outline similarities and
differences between these methods, which lead to a discussion
of important issues that need to be resolved when using these
methods.

I. INTRODUCTION

Evolutionary computation forms a subfield of computational
intelligence that involves combinatorial optimization
problems. Even broadly speaking, this field has a multitude
of methods and their variations. Among those algorithms and
theirs modifications it is often hard to single out the more
successful ones. To single out the best overall algorithm would
be impossible as is stated in the “No Free Lunch” theorem.
Wolpert stated that, when averaged over all test problems,
all search algorithms perform equally. This means that if
algorithm A is better than algorithm B on some problems,
then the algorithm B will be better than the algorithm A
in exactly as many different problems [1]. However, it is
important to state that“No Free Lunch” theorem assumes no
knowledge of the problems. Since almost always we have at
least partial knowledge of the problems at hand, it is possible
to sort out the better algorithms for particular classes of
problems.

If it is possible to find better, more suitable algorithms for
a particular problem, the next question is how to recognize
which of those algorithms are better. Due to the fact that the
theory of evolutionary computation is often not developed
enough, one way to do it is to perform an experimental
analysis.

It is necessary to realize that the experimental analysis is
usually not a trivial task. When we have algorithms that we

want to compare, then it is first necessary to decide on the
test problems that should be used. Deciding about the test
problems is often more difficult then it seems. If the problems
are too easy, then the algorithms will always find the global
optimum. From the other side, if the problems are too hard,
algorithms will typically get stuck in local optima. Optimal
parameters must also be found for those problems (this alone
can be a very difficult task where approaches range from
guessing to complex parameter tuning methods). After these
preparation steps have been done, the experiments can be
made.

The next step is the analysis of experimental results which
requires the usage of statistical methods. However, there are
different possibilities regarding statistical procedures that can
be used. Although often different statistical methods can
reach the same or very similar results, the wrong choice of
a method can lead to a misleading result [2]. Even if the
analysis is properly conducted, there is still the question
whether the results are more depending on the algorithm
design or the problem design.

Our aim is to discuss statistical methods, with an accent on
the nonparametric statistical procedures since those methods
are rarely used, but are often a needed tool for conducting a
proper statistical analysis.
In Section 2 we present relevant theory needed for the
understanding of the experimental models and the statistics
employed in the analysis of the results. In Section 3 a review
of nonparametric statistical methods is done, in Section 4 we
give a hypothetical test case where nonparametric statistic pro-
cedures should be used, and finally, in Section 5 a conclusion
is given.

II. PRELIMINARY

A. Experimental Analysis Models

When performing experiments, several options exist regard-
ing the algorithms and problems choice. Regarding the chosen
model, the appropriate statistical analysis should be chosen as
well.
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1) Single Algorithm Single Problem analysis: This ap-
proach is best when some real-world setting is investigated. It
also brings the benefit of thorough investigation of dedicated
algorithm on some particular problem which is often not
possible when there are more algorithms or problems.

2) Single Algorithm Multiple Problem analysis: Main ben-
efit of this approach is that it can help in better understanding
of the algorithm and its parameters.

3) Multiple Algorithm Single Problem analysis: This ap-
proach can help in understanding of the algorithms and their
similarities.

4) Multiple Algorithm Multiple Problem analysis: This
approach usually gives the biggest mass of data but smallest
actual insight in the inner mechanisms of algorithms or
understanding of problems. This is because of the complexity
of this approach.
Among the approaches mentioned above, the last one is
the most common one, since that approach usually suggests
(although that is not necessarily true) a serious research paper.

When the model of the analysis is a single problem scenario,
it should be safe to use parametric statistical tests, however,
when the model has a multiple problem scenario, an analysis
should be done regarding the choice of appropriate statistical
methods.

B. Statistical Analysis

1) Descriptive Statistics: Descriptive statistics represents
statistics that allows us to present data in a way that is easier
when interpreting the results. This kind of statistics does not
allow making any conclusions beyond the data that have been
analyzed.

2) Inferential Statistics: Inferential statistics represents
techniques that allow us to make generalizations about the
populations on the basis of the samples that are evaluated.
Inferential statistics employs two methodologies: hypothesis
testing, and estimation of population parameters.

a) Hypothesis Testing: Hypothesis represents a
prediction about a population or relationship between
two or more populations. Hypothesis testing is a procedure in
which sample data is employed to evaluate a hypothesis. There
is also a research hypothesis which represents a statement of
what the research predicts, and statistical hypotheses which
represent restatement of the research hypothesis.

Statistical hypotheses are null hypothesis which is a
statement of no difference, e.g. a hypothesis that researcher
expects to be rejected. Second statistical hypothesis is
alternative hypothesis and it represents a statement of
difference, e.g. a hypothesis that researcher expects to be
supported [3].

The more conventional hypothesis testing model used in
inferential statistics assumes a priori stating at what level
of significance , the null hypothesis will be evaluated. Other
approach is that instead of a priori setting of a level of

significance, one calculates the smallest level of significance
that results in rejection of null hypothesis where that is
represented by p-value [3]. P-value is the probability of
obtaining a test statistic at least as extreme as the one that
was observed, assuming that the null hypothesis is true.

b) Estimation of Population Parameters: This framework
is employed for estimating the value of one or more population
parameters. There can be point estimation where a value is
estimated from the computed value of statistics, and interval
estimation where a range of values are computed and in which
a true value of a parameter falls with a high degree of certainty
[3].

C. Parametric and Nonparametric Statistics

Statistical procedure employed in inferential statistics can
be divided in parametric statistical methods and nonparametric
statistical methods. The distinction between parametric and
nonparametric statistical methods can be on the basis
that parametric tests make specific assumptions regarding
population parameters that characterize the underlying
distribution whereas nonparametric tests make no such
assumptions. Because of that, the nonparametric statistical
tests are also sometimes called distribution free statistical
methods.

The second distinction that can be used is that parametric
statistical methods work with categorical/nominal data and
nonparametric methods work with ordinal/rank-order data [3].

In an analysis, it is necessary to decide whether to use
parametric or nonparametric tests. Parametric tests present
a more powerful option when testing alternative hypothesis
than nonparametric tests, but if some assumptions for using
parametric tests are violated then that advantage can be lost.
If no assumptions of a parametric tests have been violated,
and when the level of measurement for a set of data is interval
or ratio then the data should be evaluated with parametric
tests. If one or more assumptions are violated then it could be
prudent to transform the data into format that is compatible
with nonparametric tests. However, not all researchers agree
on this approach because in the transformation of the data
from interval/ratio data to the ordinal/rank-order format
some of the information is lost. This is due to the fact that
interval/ratio data contain more information. Because of
that, some researchers advocate the usage of parametric test
with some adjustments when assumptions for parametric
test are violated [3]. Finally, usual conclusion is that in
the end, parametric or nonparametric tests give the same or
very similar results and so there is no real consequence in
choosing the wrong tests. When there are conflicting results
between these two approaches, often it could be enough to
conduct multiple experiments [3].

However, as displayed in [2], it can be seen that wrong
choice of statistical tests can lead to a misleading conclusion.
Additionally, conducting multiple experiments may not be

1246 MIPRO 2012/CIS



always possible due to the complexity of the problems and
often limited time frame on disposal.

To decide on the choice of nonparametric or parametric
statistical tests, it is necessary to check all the conditions to
see if it is allowed to use parametric tests. These conditions
are independence, normality, and homoscedasticity. For details
about the necessary conditions or tests check [2] [3].

1) Independence
Two events are independent if the occurrence of one of
the events gives no information about whether or not the
other event will occur.

2) Normality
Normal or Gaussian distribution is a continuous prob-
ability distribution that has a bell-shaped probability
density function. An observation is normal if it follows
normal distribution. Tests that can be used to indicate
the presence of normality in a sample are:

• Kolmogorov-Smirnov test
• Shapiro-Wilk test
• D’Agostino-Pearson test

3) Homoscedasticity
Homoscedasticity is also called homogeneity of vari-
ance. It is a property which shows that all of the samples
have the same variances. The tests that can be used to
check homoscedasticity are:

• Bartlett test
• Levene test

For every parametric statistical test, there exists a nonpara-
metric statistical equivalent as shown in Table IV.

TABLE I
PARAMETRIC VERSUS NONPARAMETRIC TESTS

Parametric test Nonparametric test

Pairwise t-test Sign test
Wilcoxon signed rank test

Multiple
ANOVA Friedman

Tukey, Tamhane Holm, Hochberg, Rom, Li,...

III. NONPARAMETRIC STATISTICAL PROCEDURES

Once we decide to use nonparametric statistical methods,
the first step is to decide whether to use pairwise or multiple
comparison tests. Pairwise tests are a good option when
two methods are compared. If more than two methods are
compared, multiple comparison tests should be used because
pairwise tests do not control error propagation of making
more than one comparison.

As we stated before, since most of the research work
today compare more than two methods (multiple algorithms
multiple problem scenario), we will put an emphasis on the
use of multiple comparison tests.

A. Discovering Global Differences

The simplest tests for multiple comparisons are Friedman
test and its extension Iman-Davenport test. The purpose of
those tests is to answer whether there are global differences
between related samples obtained.

These tests do not give the answer which algorithm is better:
they only show if the null hypothesis is rejected, i.e. if there are
differences between algorithms. More details about Friedman
and Iman-Davenport tests can be found in [3] [4] . The
Friedman two-way analysis of variances by ranks test is a
nonparametric analogue of the parametric two-way analysis
of variance. Ranking of the data is the transformation that
enables the usage of nonparametric statistical methods on the
real data. There are several possibilities how to conduct that
transformation, and depending on that, it is possible to improve
the standard Friedman test.

B. Post-hoc Procedures

When we determine that the null hypothesis is rejected
through the use of tests mentioned above, then we can use
post-hoc procedures to find where those differences exactly
are. Those tests can be done in the way that control method
(usually one that is suggested by researchers) is tested against
other methods (1 x N comparison) or to conduct multiple
comparisons (N x N comparisons) among all methods.

With the post-hoc procedures we can obtain the p-values
which determine the degree of rejection of each hypothesis.
P-value gives information whether some statistical hypothesis
is significant, and if it is, then how significant it is. The
smaller the p-value is, the more strongly the null hypothesis
is rejected. However, p-values obtained directly from the
formulas are not suitable for multiple comparisons case.
When a p-value is considered in a multiple comparison test,
it reflects the probability error of a certain comparison, but it
does not take into account the remaining comparisons.

This problem is possible to solve with the usage of adjusted
p-values. Adjusted p-values can solve that problem since they
take into account the accumulated error [3]. When a p-
value is found, then it can be compared with desired level
of significance α to see if the null hypothesis is rejected.
In regards how the level of significance α can be adjusted
to compensate for multiple comparisons there are following
procedures and examples of tests:

• One-step: Bonferroni-Dunn test
• Step-down: Holm, Holland, Finner tests
• Step-up: Hochberg, Hommel, Rom tests
• Two-step: Li test

C. Contrast Estimation Procedure

A contrast estimation procedure based on medians can be
used to estimate the differences between each two crossover
operators. In this test the performance of the algorithms is
reflected by the magnitudes of the differences in error rates
[4].
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TABLE II
BENCHMARK FUNCTIONS

Test function Abbreviation
f (x) =

∑D

i=1
x2
i P1

f (x) =
∑D

i=1
i · x2

i P2

f (x) =
∑D

i=1
5 · i · x2

i P3

f (x) =
∑D

i=1

(∑i

j=1
x2
j

)
P4

f (x) =
∑D−1

i=1
100 ·

(
xi+1 − x2

i

)2
+ (1− xi)

2 P5

f (x) = 10 ·D +
∑D

i=1

(
x2
i − 10 · cos (2 ·Π · xi)

)
P6

f (x) =
∑D

i=1
−xi · sin

(√
|xi|
)

P7

f (x) =
∑D

i=1
x2
i /4000−

∏D

i=1
cos
(
xi/
√
i
)

+ 1 P8

f (x) = −20 · e
−0.2

√∑D

i=1
x2
i
/D

− P9

−e
∑D

i=1
cos(2Πxi)/D + 20 + e

f (x) = −
∑D

i=1
sin (xi) ·

(
sin
(
i · x2

i /Π
))20

P10

IV. AN EXAMPLE APPLICATION OF NONPARAMETRIC
STATISTICAL ANALYSIS

The purpose of this section is to go through one simple
example of statistical analysis for a genetic algorithm (GA)
case (of course, these steps are valid in general case). We com-
pare four different crossover operators (single-point crossover
- Alg. 1, uniform crossover - Alg. 2, shuffle crossover - Alg.
3, non-geometric crossover - Alg. 4) in a binary-coded genetic
algorithm with a roulette-wheel selection. GAs with different
crossover operators can be regarded as different algorithms.
The comparison is made on a set of 10 standard benchmark
functions. The formulas for these benchmark functions are
given in Table II.

More details on the benchmark functions and the algorithms
can be found in [5]. As a performance measure the error rate
obtained for every operator (algorithm) is used. For all the
test functions, the objective is to find global minimum. For
each algorithm 30 independent runs are made.
From the each run of the algorithm, the individual with the
smallest error rate is chosen as the best one from that run.
Then, the mean value is taken from those 30 values for
each algorithm and problem. Those mean values for all the
algorithms and problems are displayed in Table III.

TABLE III
MEAN ERROR RATES FOR EVERY ALGORITHM AND PROBLEM

Problem Alg. 1 Alg. 2 Alg. 3 Alg. 4
P1 0.056 0.065 0.112 0.139
P2 233.41 434.133 1197.863 1799.66
P3 36.53 36.404 28.432 36.74
P4 0.201 0.201 0.675 0.953
P5 1.003 1.003 1.008 1.007
P6 0.012 0.009 0.035 0.024
P7 7.547 7.445 8.21 8.603
P8 0.055 0.038 0.269 0.283
P9 93.47 91.876 100.342 102.24
P10 2.243 2.230 2.349 2.365

Fig. 1. Histogram for the uniform crossover case

First it is necessary to decide whether to use parametric
or nonparametric tests so we test indenpendence, normality
and homoscedasticity assumptions. Independence condition
is easily checked since there are independent runs of the
algorithms.

Normality and homoscedasticity conditions are estimated at
the level of significance α of 0.01.
For normality condition we use Shapiro-Wilk test that can be
easily conducted in SPSS tool [6]. Shapiro-Wilk is used in-
stead of Kolmogorov-Smirnov because the number of samples
is smaller than 50. The obtained values are smaller than 0.01,
so we can conclude that normality condition is not satisfied. In
Fig. 1 a histogram is displayed for the uniform crossover case
where it can be seen that the solutions do not follow normal
distribution.

For the homoscedasticity test we can use Levene test that
can also be done in SPSS tool. However, since the normality
assumption is not satisfied we do not need to conduct the
homoscedasticity test.

Next, we can start with the nonparametric statistical tests.
We use KEEL tool for conducting nonparametric statistical
analysis [7]. There are many possible choices of the statistical
packages that can be used, but we decided on KEEL since it
is very easy to use and free. First we conduct Friedman and
Iman-Davenport test. Table V gives the results for a Friedman
two-way analysis of variances by ranks.

The transformation to rank data is done in the following
way: for each row in Table III a rank of 1 is assigned to the
lowest score in that row, a rank of 2 is assigned to the second
smallest value in that row and so on until the rank 4. If two
algorithms have the same value for a problem (row), then the
average value of the ranks that are involved is assigned to all
algorithms tied for a given rank. In Table IV are displayed all
the ranked values and the scores for the each column.

To compute the chi-square approximation of the Friedman
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TABLE IV
RANKED VALUES FOR ALL THE ALGORITHMS AND PROBLEMS

Problem Alg. 1 Alg. 2 Alg. 3 Alg. 4
P1 1 2 3 4
P2 1 2 3 4
P3 3 2 1 4
P4 1.5 1.5 3 4
P5 1.5 1.5 4 3
P6 2 1 4 3
P7 2 1 3 4
P8 2 1 3 4
P9 2 1 3 4
P10 2 1 3 4

R1 = 18 R2 = 14 R3 = 30 R4 = 38

TABLE V
AVERAGE RANKINGS OF THE ALGORITHMS (FRIEDMAN)

Algorithm Ranking
Single-point 1.8

Uniform 1.4
Shuffle 3

Non-geometric 3.8

test statistic we use 1:

χ2
r =

12

n ∗ k(k + 1)

 k∑
j=1

(
Rj
n

)2
− 3 ∗ n (k + 1) (1)

Here n represents the number of problems, k the number of
algorithms, and Rj are column scores from the Table IV.

With the level of significance α of 0.01 both the Friedman
and Iman-Davenport statistic show significant differences on
operators with test values of 21.84 and 24.08, respectively,
and p < 0.001.

The next test that can be done is the Bonferroni-Dunn test.
This procedure does not have a great resolution in distinguish-
ing differences but is appropriate for graphical display. For the
Bonferroni-Dunn test, first the critical difference (CD) must be
found [2]. The equation for calculating critical difference is as
follows:

CD = qα

√
k ∗ (k + 1)

6 ∗ n
(2)

where qα is the critical value for two-tailed Bonferroni-
Dunn test.
Critical difference computed according to 2 has a value
of 1.38. The interpretation of this measure is that the
performance of two algorithms is significantly different only
if the corresponding mean ranks differ by at least a critical
difference, which is depicted in Fig. 2. A cut line is drawn
at height equal to the sum of critical difference and ranking
of the control algorithm. The bars that exceed this line are
associated with the algorithms that have worse performance
than the control algorithm.

Now, post-hoc procedures can be applied. We use one
procedure from every class mentioned previously: Bonferroni-
Dunn, Holm, Hochberg, and Li test. For the control algorithm,

Fig. 2. Bonferroni-Dunn’s test, critical difference = 1.38, control operator:
uniform crossover

uniform crossover is selected as the best one from Friedman
test. Results obtained from the post-hoc analysis are presented
in Table VI.

TABLE VI
POST-HOC COMPARISON (CONTROL OPERATOR: UNIFORM CROSSOVER)

Algorithm pLi pBonf pHolm pHochberg

Non-geometric 0.000063 0.000097 0.000097 0.000097
Shuffle 0.010797 0.016751 0.011167 0.011167

Single-point 0.488422 1.465267 0.488422 0.488422

From the Table VI it is obvious that the Bonferroni-Dunn
results are confirmed; and that the uniform crossover is better
than the shuffle and the non-geometric crossover. However,
we still can not answer the question whether the uniform or
single-point crossover are better. Because of that, now we use
the contrast estimation method.

TABLE VII
CONTRAST ESTIMATION

Single-point Uniform Shuffle Non-geometric
Single-point 0 0.026 -0.138 -0.258

Uniform -0.026 0 -0.164 -0.284
Shuffle 0.138 0.164 0 -0.12

Non-geometric 0.258 0.284 0.12 0

A negative value for the operator in a given row indicates
that the operator performs better than the operator in a
given column. From the Table VII we can see that uniform
crossover is the best operator for the selected benchmark
functions.

This simple example should be regarded just as a roadmap
through the nonparametric statistical tests, and not as some
representative case. Often, we can not get the definitive answer
which algorithm is the best one, but a set of better algorithms.

V. CONCLUSION

Experimental analysis often represents the only method
of evaluating the performance in evolutionary computation.
Because of that, it is important to use as appropriate statistical
methods as possible. It may also be advisable to perform para-
metric statistical tests together with nonparametric statistical
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tests.
Only by applying a rigorous statistical analysis on a set of well
defined benchmark functions a proper performance evaluation
can be made.
Only then can we properly evaluate not only existing algo-
rithms but also the future ones. Some of those algorithms
proved to be very successful and now are widely used. Some
other algorithms were presented as successful (even better than
the more common ones) but they soon disappeared from usage.
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