
Parallel Adaptive Genetic Algorithm

Leo Budin, Marin Golub, Domagoj Jakobovic
Faculty of Electrical Engineering and Computing

Unska 3, HR-10000 Zagreb, Croatia
phone: +385 1 61 29 935, fax: +385 1 61 29 653

e-mail: {leo.budin, marin.golub, domagoj.jakobovic}@fer.hr

Abstract

In this paper we introduce an efficient implementation
of asynchronously parallel genetic algorithm with
adaptive genetic operators. The classic genetic
algorithm paradigm is extended with parallelization on
one hand and an adaptive operators method on the
other. The parallelization of the algorithm is achieved
through multithreading mechanism, a very effective and
easy to implement technique. With parallelization we
can get a better program structure and a significant
decrease in computational time on a multiprocessor
system. The adaptive method presented here determines
the way in which the genetic operators are applied, not
interfering with the operators themselves. It uses certain
population characteristic values to estimate the
diversity of the solutions in problem space and acts
accordingly either to prevent premature convergence or
to exploit the promising areas. The improvement we
achieve with adaptation is twofold: the designed
algorithm performs better over a range of domains and
the user is also relieved of the task of defining its
parameters. The described parallel adaptive genetic
algorithm (PAGA) is applied to optimization of several
multimodal functions with various degrees of
complexity, employed earlier for comparative studies.
Furthermore, a non-uniform mutation operator is
introduced in this work and its influence on algorithm's
performance is recognized.

1. Introduction

Genetic algorithm is a representative of a class of
methods based on heuristic random search techniques
[13]. It was proposed by John H. Holland in the early
seventies and has found application in a number of
practical problems since. Genetic algorithm requires a
considerable amount of computational time. The
parallelization of GA is an attempt primarily to speed up
the algorithm without interfering with its properties. In
this work, the multithreading technique is recognized as
an efficient tool for transforming the genetic algorithm
into parallel form. Multiple threads are reasonably
simple to implement, they are supported by more and
more operating systems and they require less
preparation and handling than processes. The key for

getting high performance in parallel computing is to
reduce the communication between processes (or in our
case between threads). That is why the asynchronous
approach has been favored both in this paper and in
similar research projects [12]. It has to be said that there
is not any standard methodology for incorporating
parallel ideas into genetic algorithms. Our version does
not include several distinct subpopulations; there exists
only a single mating pool, but a number of threads can
operate on the population at the same time, each one
acting independently.

The strength of GAs lies mainly in their capability to
locate the global optimum in a multimodal surrounding.
Unfortunately, no matter how robust and efficient a
genetic algorithm may be, the solution it provides
always bears a certain measure of unreliability. The
genetic algorithm can only locate the global optimum
with some probability of success and a considerable
attention has been paid to the efforts to increase that
probability. In achieving this goal, two major
approaches can be recognized: the first one is to design
a GA for a class of problems that we are dealing with.
This includes creating data structures and genetic
operators characteristic to a problem at hand, creating
an evolutionary program. The method is, however,
problem specific and requires a lot of modeling for each
purpose. The second approach acts on the algorithm
directly and tries to increase the efficiency by changing
its internal structure. This method is not problem
dependent and it does not restrict the applicability at all.
The adaptive method presented here is an example of
this approach.

The engineers utilizing GAs in everyday practice in
most cases do not need the genetic algorithm to be
robust and applicable to a wide range of problems. They
need it to solve their specific problem, and for that
purpose they usually have to create a specialized
algorithm that, in general, will not perform well (or will
not work at all) when used for other optimization
problems. On the other hand, if the algorithm is adapted
using the second approach, it can still be, in most cases,
transformed into an adequate evolutionary

program. That is why every progress in internal GA
structure can be reflected to a variety of applications.
Another good thing we obtain from adapting the genetic
algorithm is that we can bypass the task of defining its
parameter values, which is in most cases left to the user.
Those values are known to significantly affect the
algorithm's performance; poorly chosen parameters can
cause the algorithm not to produce any relevant
solutions at all. Moreover, the optimal parameter
configuration is often problem dependent. This can
make an inexperienced user's utilization of the genetic
algorithm very difficult.

2. Parallel genetic algorithm

Genetic algorithm is a heuristic random search method
based on natural evolution which requires considerable
amount of CPU time. Since the optimization problem
has to be solved in given computing and time
constraints, parallel genetic algorithm is an attempt to
speed up the program without interfering with other
properties of the algorithm.

Existing parallel implementations of genetic algorithm
can be classified into following categories:
• distributed GAs (parallel island models). Such

algorithms assume that several subpopulations
evolve in parallel. The models include a concept of
migration (movement of an individual string from
one subpopulation to another)[12,13].

• parallel GAs. In that case several parallel processes
work over one common population.

Figure 1 Parallel genetic algorithm realised with
multiple threads

The parallel genetic algorithm (PGA) can be
implemented using several threads. The main benefits
that arise from multithreading are: better program
structure (any program in which many activities do not
depend upon each other can be redesigned so that each
activity is executed as a thread) and efficient use of
multiple processors (numerical algorithms and
applications with a high degree of parallelism, such as
matrix multiplication or, in this case, genetic algorithm,

can run much faster when implemented with threads on
a multiprocessor) [17].

For every algorithm that we want to execute in multiple
threads, first we have to identify independent parts and
assign to each a thread. One or more threads can be
assigned to each genetic operator (selection, crossover
and mutation - Figure 1). Additionally, we can assign a
thread for user interface, a thread for parameter control,
a thread for results comparison with other methods (e.g.
we can implement a completely random search
mechanism and compare its results with the genetic
algorithm), etc.

The choice of selection. The steady-state selection has
one parameter M - the number of new chromosomes to
create. Generational replacement is the special case of
steady-state selection in which parameter M equals the
size of the population [2]. Similarly, the tournament
selection is the special case of steady-state selection too,
in which parameter M equals 1 (Table 1).

Table 1 Steady-state reproduction and parameter M

Parameter M Type of
selection

Description

M=POP_SIZE Generational
selection

replaces whole population

1≤M≤POP_SIZ
E

Steady-state
selection

replaces M individuals

M=1 Tournament
selection

replaces only one individual
(the worst of three chosen)

The steady state reproduction replaces M individuals in
each iteration of the evolution process. Let us divide
that algorithm into three independent parts and assign to
each one a thread. The first thread executes only the
crossover and creates new individuals. The second
thread performs the selection and deletes selected
individuals. The third thread does only the mutation. In
that case, without any synchronization, the population
size will not be constant. If the thread for deletion is
faster then the thread for creation, after some time, the
population will consist of one individual (the last
individual can’t be deleted because it is the best one at
the same time). The crossover operator needs two
individuals to create a child and it waits for the other
individual creation forever, because nobody will create
it. That is the deadlock. The other possibility is memory
overflow if the creation thread is faster than elimination.

That problem can be solved by a simple synchronization
mechanism: if the population size is too small, the
elimination thread waits; if the population size is too big
the creation thread waits. The change of variable
POP_SIZE must be assigned to a critical section to
prevent multiple threads from

thread
for
selection

 MATING POOL CHROMOSOMES

thread for
user inte-
rface (prints
out the
results)

threads for

threads for mutation

thread for
paramete
r control

simultaneously changing it. Few experiments showed
that the parallel genetic algorithm described above
spends more computation time for synchronization than
for optimization, and the parallel program is even
slower than the sequential one.

For steady-state selection with parameter M=1 the
roulette-wheel bad individual selection is not a good
choice. As for the each turn the selection probabilities
for the whole population have to be calculated, roulette-
wheel selection slows down the algorithm. In that case
the solution is tournament bad individual selection. The
tournament bad individual selection in each step of the
evolution chooses with equal probability three
individuals from the mating pool. Then, it eliminates the
weakest one of those three individuals. The survived
two individuals are parents of a child which will replace
the eliminated one.

Genetic operators as independent parts of GA. The
parallel steady-state genetic algorithm with tournament
bad individual selection was implemented. In this
implementation, the genetic algorithm consists of two
threads: one performs tournament selection and
crossover and the other mutation (Fig. 2).

SIMPLE PARALLEL GENETIC ALGORITHM{
 initialize population;
 create thread for tournament selection and
 crossover;
 create thread for mutation;
 wait while termination criterion is not
 reached;
 delete all threads;
}

Thread for mutation
forever{
 choose randomly one individual and mutate it;
}

Thread for tournament selection and crossover
forever{
 choose randomly three individuals;
 delete the worst of three chosen individuals;
 new individual = crossover(survived parents);
}

Figure 2 The structure of simple parallel genetic
algorithm (SPGA)

The major problem of that simple parallel
implementation is that it has no control over mutation
probability. The consequence is a very bad algorithm
behavior. The results are slightly better than random
search, but also useless.

If the threads are left to parallel execution without any
control, one of two threads can waste some time on
waiting for processor time. Then, one of two
possibilities can happen:

A) The mutation thread works and the thread for
selection and crossover waits.

This is completely random search, i.e. the mutation
probability is set to one. If the elitism is not applied, the
best individual achieved in past iterations will be lost.
So, in the mutation thread the elitism must be added
(Figure 3).

Thread for mutation
forever{
 choose randomly one individual;
 if(this individual isn’t the best) mutate it;
}

Figure 3 Thread for mutation extended with elitism

B) The thread for selection and crossover works and the
mutation thread waits.

The mutation probability is set to zero. In several
hundred iterations the genetic algorithm produces a
uniform population (the population consists of one
individual with POP_SIZE-1 copies). Even if we
control the mutation probability, during the run of the
genetic algorithm about half the chromosomes created
are duplicates [2]. If the population is more
homogenous, then the mutation probability must
increase. The control of mutation probability can be
easily solved with some synchronization techniques
such as MUTual EXclusion locks (MUTEX), condition
variables or semaphore synchronization, but, any of
these synchronization mechanisms spends too much
CPU time. As the goal of parallelisation is speeding up
the algorithm, the synchronization must be avoided if
possible.

The other possibility is the implementation of adaptive
mutation probability. Before the crossover is performed,
the parents have to be checked. If the parents are equal,
then mutate one of them and produce their child
completely randomly (Fig. 4).

Thread for tournament selection and crossover
forever{
 choose randomly three individuals;
 delete the worst of three chosen individuals;
 if(survived individuals are equal){
 mutate one of the equal individuals;
 create new individual randomly;
 }else{
 new individual=crossover(survived parents);
 }
}

Fig. 4 Thread for tournament selection and crossover
extended with duplicate elimination and adaptive

mutation probability

These two extended threads can be parallely executed
without any synchronization. Experiments have shown
that 69,4% of the optimization time is consumed by the
thread for tournament selection and crossover and the
mutation thread spends the rest of optimization time
(30,6%). On a two processor system, the whole
optimization time is about 30% shorter than on a one
processor system.

The described extended parallel genetic algorithm
(EPGA_1) divided into only two threads is suitable for
execution on the two processor system.

Parallel genetic algorithm with equal threads. If we
want to make a good use of multiprocessor system with
more than two processors, the genetic algorithm has to
be divided into more than two threads. The idea is in
dividing the genetic algorithm into required number of
equal and independent parts (Fig. 5).

This is the same algorithm like the described EPGA_1,
but it is divided in a different manner. Each thread
performs all genetic operators like the nonparallel
genetic algorithm. One thread operates on only a part of
the population, because the tournament selection works
over only three chromosomes in each iteration. The
other thread can work over the same chromosomes
(one, two or all three) at the same time without any
synchronization. This kind of parallel algorithm works
the same with one or more threads.

EXTENDED PARALLEL GENETIC ALGORITHM 2{
 initialize population;
 create several equal evolution threads;
 wait while termination criterion is not
 reached;
 delete all threads;
}

Evolution thread
forever{
 perform tournament selection;
 delete selected individual;
 perform crossover;
 replace deleted individual;
 perform mutation;
}

Figure 5 The structure of parallel genetic algorithm
with equal threads (EPGA_2)

The parallel genetic algorithm was tested on several
multidimensional problems. Table 2 shows the results
of the optimization of 38 dimensional approximation
problem [14]. The global minimum of that problem is
equal or greater than 0 (the smaller solution value is a
better solution). 100.000 iterations were made for each
experiment and for each algorithm 20 experiments were
done. The size of population is set to 50.

Table 2 Random search and parallel genetic algorithm
comparison

 Random
search

SPGA EPGA_1 EPGA_2

Total CPU time in seconds 135 302 350 350

Optimization time for NP≥2
(NP - number of

processors)
PN

135≈ 212 245
PN

350≈

the worst solution 25 019 19 455 109.0
average solution 21 798 16 881 49.1
the best solution 14 826 8 250 16.5

The optimization time is equal to the duration of the
longest thread, if the number of processors is equal or
greater than the number of threads. The optimization
time for SPGA and EPGA_1 on a two processor system
is equal to duration of the thread for crossover and
selection (that is about 70% of total CPU time). On a
three or more processor system the program isn’t faster
because the algorithm is divided into only two threads.
The EPGA_2 is divided into NT=NP threads. The
optimization time for EPGA_2 is equal to the
optimization time for the same non-parallel genetic
algorithm divided by the number of processors.

3. Adaptive genetic operators

Two characteristics are held to be essential in genetic
algorithms for optimizing multimodal functions. The
first one is the capability to converge to an optimum,
local or global, after locating the region containing it.
The second characteristic is the capacity to explore new
regions of the solution space in search of the global
optimum. It is with genetic operators, crossover and
mutation, that we achieve those properties. The
crossover operator is mainly responsible for the first
characteristic, while the latter is made possible with
mutation. The balance between these characteristics can
be achieved by affecting the way the genetic operators
are performed.

The essence of successful multimodal search is to keep
the population dispersed in the problem space. We do
not need the whole population to converge to an
optimum, but we need to preserve the premature
convergence at a local one. At the same time we should
allow the algorithm to exploit the promising areas and
locate the optimum with desired accuracy. It is possible
to maintain the diversity of the population by increasing
the mutation rate, while the speed of the convergence
can be increased by favoring better individuals to
participate in crossover. Prior to applying the actual
adaptation techniques, we have to be able to estimate
the degree of diversity of the population.

We can get a rather good picture of the state the
population is in by observing two of its characteristic

values: fmax - fitness value of the best member, and f

- average fitness of the set of solutions, both assigned to

a current generation. The expression f fmax − is likely

to be less for a population that has converged than for a
population scattered in the solution space. The above
property has already been recognized earlier in
literature [16] and it has proven itself in all experiments
accompanying this work. A normalized expression has
been used here in determining the degree of population
diversity:

 () / ()max max minf f f f− − (1)

where fmin represents the worst fitness value. If the value
is low, the population is homogenous; if it gets higher
the population is more diversed. However, in
optimizing problems with a large solution space (long
binary strings) this value tends to be very low in the
beginning and to raise slowly over the process. This is
due to the functions that have approximately average
values in most of the defined search space, whereas the
higher function values are located in a considerably
smaller area. To effectively exploit the above
expression (1), a correction technique is performed in
each generation. In the beginning of the process the
expression is evaluated and its value stored in a static
variable. It is calculated in each generation and
compared to that stored in the variable. If the new value
is greater than the old one, the value of the variable is
then replaced with the new one. If it is smaller, the
variable is unchanged. Let us name the value of (1) in
current generation with curr_val and the static variable
with prev_val.

The value of the following expression is calculated and
named as w:

 w
curr val

prev val
=

_

_

2

 (2)

The logic behind w is as follows: if the population
becomes more homogenous, which we want to avoid,
curr_val is smaller than prev_val and w consequently
decreases. The 2nd power is added for increased
sensitivity. Before calculating w, the algorithm
compares the variables and replaces prev_val with the
new value if prev_val < curr_val. If that is the case, the
population has become more diversed, which is
desirable, and w equals one.

The adaptive technique affects the way the
chromosomes are picked up for crossover. For every
solution a characteristic value v is calculated as follows:

 v f f w f f w= − ⋅ − − − ⋅ −() () () ()min max min2 1 1 (3)

where f stands for the fitness value of a chromosome.
The roulette-wheel method is used to select the
chromosomes for crossover, regarding their
characteristic values. A previously selected individual is
then replaced by the crossover product, while the
parents are left intact. A chromosome can participate in
crossover more then once, depending on its fitness
value. If a population is scattered in problem space the
value of w will be higher, so according to (3), the
solutions with better fitness values get a higher chance
to mate and produce offspring. If w is lower, the
selection becomes more uniform, and for w < 0.5 the
algorithm even favors worse solutions.

When applied to a steady-state algorithm with
elimination selection, as in previous work [10], the
adaptive method calculates the expression (2) in the
beginning of every generation. If the algorithm uses
tournament selection, as described in section 2, we have
to determine when to calculate the new value of w. The
interval of POP_SIZE (the size of the population)
crossovers has proven to be efficient in this
implementation as the step size.

Finally, the adaptive technique varies the number of
mutations in each generation. The number of mutations
is calculated as:

 ()[]1.012_ +−⋅⋅= wSIZEPOPn (4)

The number of mutations increases linearly with the
decrease of (1) in current generation. Again, if we
employ tournament selection, the mutations are
performed in each step of the adaptation process.

The adaptive strategy increases the exploitation of good
solutions thus speeding up the convergence and also
prevents the population, in most cases, from getting
stuck at a local optimum. Each one of these techniques
can be applied independently, which further increases
their configurability.

We also propose a modified, non-uniform mutation
operator to accompany this work. The non-uniform
mutation takes into consideration the fitness value of a
solution and selects the scope in which the solution will
be changed. This is done in practice by restricting the
number of bits which the mutation operator can affect in
a single chromosome. In binary representation, only a
set number of rightmost (i.e. less significant) bits can be
mutated. The changeable bits form a rightmost substring
of a chromosome, the length of which is defined with:

 bits chrom length
f f

f f
f f= + ⋅ − −

−

 >1 1_

max

 , (5)

where chrom_length is the total number of bits in a
chromosome and f is the fitness value of the selected
individual. This restriction is only made for solutions
whose fitness value is greater than the population
average. The same technique for floating-point
representation is easily implemented by defining the
greatest difference between the old solution and the new
one after mutation. For problems where the Euclidean
distance between chromosomes cannot be defined, this
operator is meaningless.

The non-uniform mutation operator has significantly
improved the algorithm's 'fine tuning' capabilities.
However, the best results, in overall, are achieved when
both types (uniform and non-uniform) of operators are
included. In all of the GA implementations following
this work, there is a 50% chance that either of the
operators will be applied when a chromosome is
mutated.

4. An implementation of parallel adaptive
genetic algorithm

In this section we describe the implementation of a
parallel genetic algorithm incorporating the adaptive
techniques. The parallel model used is the parallel
genetic algorithm with equal threads (EPGA_2). Each
thread performs independently and operates on the
whole population, though no more than three
individuals at the same time. A thread performs the
tournament selection and deletes the selected individual.
Then it performs roulette wheel selection to determine
two parents to participate in crossover. The product of
the crossover replaces the deleted individual. After
POP_SIZE crossovers, the algorithm calculates the
population diversity (3) and updates the chromosomes'
characteristic values. The mutation phase is then
performed and a generational cycle is concluded. The
structure of the parallel adaptive genetic algorithm
(hereafter reffered to as PAGA) is shown in Fig. 6.

PARALLEL ADAPTIVE GENETIC ALGORITHM{
 initialize population;
 create several equal evolution threads;
 wait while termination criterion is not
 reached;
 delete all threads;
}

Evolution thread
forever{
 perform tournament selection;
 delete selected individual;
 perform roulette wheel parent selection
 perform crossover;
 replace deleted individual;
 every POP_SIZE evaluations calculate w & vi;
 perform mutation;
}

Figure 6 The structure of parallel adaptive genetic
algorithm with equal threads (PAGA)

The PAGA can be executed on a one or multi-processor
system, with one or more threads. The termination
criterion used in this work is a set number of function
evaluations made by the algorithm.

5. Experimental results

For the experiments, five test functions have been taken
from a number of sources and are shown in Fig. 7. The
evaluations were undertaken for 5, 10 and 30
dimensional instances of the test functions.

f
x

x
x

i

i
i1

2 2

2 205
05

10 0 001
100 100= +

−

+ ⋅
∈ −

∑

∑
.

sin .

[. .]
, [,]

f x xi i2
2 0 25 2 2 0 11 10= + ⋅ +∑ ∑() [sin (50()) .]. .

]100,100[−∈ix

()f x x xi i i3
2 10 2 100 100= − ⋅ ∈ −∑ cos() , [,]π

()()f
x

x i xi
i i4

2

4000
20 1 100 100= − ⋅ + ∈ −∑ ∏ cos , [,]

f x x xi i i5 512 512= ∈ −∑ sin(), [,]

Figure 7 Test functions

The performance of PAGA is evaluated and compared
with standard roulette wheel genetic algorithm (denoted
as GA-rw) and steady state algorithm with elimination
selection (GA-eli). The fitness value of the best member
at the end of a run is considered in the results. The
common features of all the algorithms are binary
encoding, precision of 1e-5, uniform crossover
operator, both uniform and non-uniform mutation and
50 individuals as the size of the population. The
parameters of GA-rw and GA-eli are shown in Table 3.

Table 3 Parameter settings

 GA-rw GA-eli PAGA
crossover rate 0.7 - -

generation gap - 0.8 -
mutation rate 0.01 0.01 -

selection method roulette wheel elimination tournament

The genetic algorithms were allowed to execute 200000
evaluations for 5 and 10 dimensional problems and
500000 evaluations for 30 dimensional problems. The
results are produced by averaging the results from
twenty trials on each of the function instances and are
presented in Table 4.

Table 4. Experimental results

 GA-rw GA-eli PAGA
5dim f1 0.01424 0.01796 0.00971

10dim f1 0.03172 0.14543 0.02347

30dim f1 0.21629 0.49963 0.17725

5dim f2 0.08343 0.14285 0.01288

10dim f2 0.66908 0.41222 0.49651

30dim f2 5.30848 8.78713 6.14411

5dim f3 0.94420 1.69862 0.01346

10dim f3 19.8973 2.02005 5.89022

30dim f3 185.182 251.085 56.0275

5dim f4 0.00167 0.00237 0.00146

10dim f4 0.00169 0.00979 0.00145

30dim f4 0.03358 0.02479 0.01781

5dim f5 48.225 109.324 2.853

10dim f5 159.242 300.893 152.0605

30dim f5 1230.44 1854.3 1142.321

The entries in the table show the average deviation from
the global optimum normalized to the range from zero
to one for functions f1 and f4. A smaller value indicates

better performance and the best results are in bold face.
It can be perceived from the results that the PAGA
managed to perform reasonably good in optimizing a
number of problems, while the standard algorithms with
fixed parameters were able to find the best solution only
when those parameter values fit the problem at hand.

6. Concluding remarks

In most of the test cases, the PAGA outperformed the
standard versions. The adaptive technique makes it
possible for the algorithm to perform similarly to the
one whose parameters are 'well tuned' for a specific
problem, which is the main reason for adaptation.

By dividing the genetic algorithm into threads we
achieved several benefits: the algorithm is faster (the
optimization time is shorter than for the nonparallel
genetic algorithm), the code can be easily adapted and
extended with new genetic operators and we can
simultaneously execute two or more methods and
compare the results at the same time. The parts obtained
by dividing the genetic algorithm are independent. The
critical sections are avoided, because the
synchronization mechanisms would significantly slow
down the parallel program.

Some questions still remain to be answered, such as the
choice for population size. That problem is dealt with in
the paper [8] by Hinterding and the results shown there
are promising. The choice of the type of genetic
operators is also a difficult task, and it has been
effectively solved in an exceptional work [9] by Houck
and Kay. The mentioned adaptations are solely
independent and can also be incorporated in PAGA,
which further increases its usability and can lead to a
significant performance enhancement.

References:

[1] Alippi, C., Filho, J.L.R., Treleaven, P.C. (1994),
"Genetic-Algorithm Programming Environments",
IEEE Trans. Computer, June 1994.

[2] Davis, L. (1991) Handbook of Genetic Algorithms,
Van Nostrand Reinhold, New York.

[3] Goldberg, D.E. (1989), Genetic Algorithms in
Search, Optimization and Machine Learning,
Addison-Wesley.

[4] Golub M., “Evaluating The Use of Genetic
Algorithms for Approximation Time Series”, M.S.
Thesis, Zagreb, 1996. (in Croatian).

[5] Hinterding, R. (1995), "Representation and Self-
adaption in Genetic Algorithms", Proc. of the First
Korea-Australia Joint Workshop on Evolutionary
Computation, Sept. 1995, Taejon, Korea.

[6] Hinterding, R. (1997), "Self-adaptation using
Multi-chromosomes", Proc. 4th IEEE Int.
Conference on Evolutionary Computation.

[7] Hinterding, R., Michalewicz, Z., and Eiben, A.E.
(1997), "Adaptation in Evolutioary Computation:
A Survey", Proc. 4th IEEE Int. Conference on
Evolutionary Computation.

[8] Hinterding, R., Michalewicz, Z., and Peachey, T.C.
(1996), "Self-Adaptive Genetic Algorithm for
Numeric Functions", Proc. of the Fourth Int.
Conference on Parallel Problem Solving from
Nature, Berlin, Sept 1996.

[9] Houck, Ch. R., Kay, M. G. (1996), "Adapting the
Order and Frequency of Genetic Operators through
Co-Evolving Populations", N. Carolina State
University - IE, Technical Report 96-03.

[10] Jakobovic, D. (1997) "Adaptive Genetic Operators
in Elimination Genetic Algorithm", Proc. 19th
International Conference ITI'97, Pula, 17-20 June
1997, pp.351-356.

[11] Jelenkovic, L, Omrcen-Ceko, Goran (1997),
“Experiments with Multithreading in Parallel
Computing”, Proceedings of the 19th International.
Conference ITI'97, Pula, pp. 451-456.

[12] Munetomo, M., Takai, Y., Sato, Y. (1993), "An
Efficient Migration Scheme for Subpopulation-
Based Asynchronously Parallel Genetic
Algorithms", Hokkaido University Information
Engineeering Technical Report, Sapporo, July
1993.

[13] Michalewicz, Z. (1992), Genetic Algorithms +
Data Structures = Evolutionary Programs,
Springer-Verlag, Berlin.

[14] Schoenenburg, E., Heinzmann, F., Feddersen, S.
(1995) Genetische Algorithmen und
Evolutionsstrategien, Addison-Wesley.

[15] Srinivas, M., Patnaik, L. M. (1994), "Genetic
Algorithms: A Survey", IEEE Trans. Computer,
June 1994.

[16] Srinivas, M., Patnaik, L. M. (1994), "Adaptive
Probabilities of Crossover and Mutation in Genetic
Algorithms", IEEE Trans. Systems, Man and
Cybernetics, Apr. 1994.

[17] SunSoft, (1994), Solaris 2.4: Multithreaded
Programming Guide, Sun Microsystems, Mountain
View, California.

