
On the Efficiency of Crossover Operators in Genetic Algorithms
with Binary Representation

STJEPAN PICEK
Faculty of Electrical Engineering

and Computing
Unska 3, 10000 Zagreb

CROATIA
stjepan@computer.org

MARIN GOLUB
Faculty of Electrical Engineering

and Computing
Unska 3, 10000 Zagreb

CROATIA
marin.golub@fer.hr

Abstract: Genetic Algorithm (GA) represents robust, adaptive method successfully applied to various optimization
problems. To evaluate the performance of the genetic algorithm, it is common to use some kind of test functions.
However, the ”no free lunch”’ theorem states it is not possible to find the perfect, universal solver algorithm. To
evaluate the algorithm, it is necessary to characterize the type of problems for which that algorithm is suitable. That
would allow conclusions about the performance of the algorithm based on the class of a problem. In performance
of a genetic algorithm, crossover operator has an invaluable role. To better understand performance of a genetic
algorithm in a whole, it is necessary to understand the role of the crossover operator. The purpose of this paper
is to compare larger set of crossover operators on the same test problems and evaluate their’s efficiency. Results
presented here confirm that uniform and two-point crossover operators give the best results but also show some
interesting comparisons between less used crossover operators like segmented or half-uniform crossover.

Key–Words: Evolutionary computation, Genetic algorithms, Crossover operator, Efficiency, Binary representation,
Test functions

1 Introduction
Genetic algorithms (GAs) represent powerful general
purpose search method based on evolutionary ideas
of natural selection and genetics. They simulate nat-
ural processes based on principles of Lamarck and
Darwin. Genetic algorithms were invented by John
Holland and later developed by Holland and his stu-
dents and colleagues in the 1960s and 1970s. Con-
trary to evolution strategies or evolutionary program-
ming, Holland’s original goal was to formally study
the phenomenon of adaptation as it occurs in nature
and to develop ways in which the mechanisms of nat-
ural adaptation might be imported into computer sys-
tems. Holland’s introduction of a population based al-
gorithm with operators crossover, inversion, and mu-
tation was a important innovation. Today, there exists
many variations on genetic algorithms and term ”ge-
netic algorithm” is used to describe concepts some-
times very far from Holland’s original idea [6]. The
two most commonly employed genetic search opera-
tors are crossover and mutation. Crossover produces
offspring by recombining the information from two
parents. It is the major exploratory mechanism of the
genetic algorithms. Mutation prevents convergence
of the population by flipping a small number of ran-
domly selected bits to continuously introduce varia-

tion. The driving force behind genetic algorithms is
the unique cooperation between selection, crossover
and mutation operator. [8]
The main goal of this article is to parallely present
the performance of crossover operators that are not in
wide use. Results present in current literature usually
display the performance of one less commonly used
operator to the other, more widely used crossover op-
erator like uniform or single-point crossover. In sec-
tion 2 the necessary background informations are pre-
sented, section 3 defines the parameters used in the ex-
periments, results obtained from the experiments and
presents a discussion about results, and finally, section
4 draws a conclusion.

2 Background
2.1 Test Functions

Test functions used in this article have two important
features: modality and separability.
Unimodal function is a function with only one global
optimum.
Function is multimodal if it has two or more local op-
tima. Multimodal functions are more difficult to opti-
mize compared to unimodal functions.

Function with n variables is separable if it can be writ-
ten as n functions of one variable e.g. it can be broken
down into functions with fewer independent variables.
The notion of separability is related to the epistasis,
where epistasis represent coupling between different
parameters of a cost function.
Functions that cannot be separated are more difficult
to solve as the correct search direction depends on two
or more genes.
All functions used for experiments are functions of
one variable. [11][12]

2.1.1 Sphere Function - F1.

Sphere function is a test function proposed by De
Jong. It has been widely used in evaluation of
genetic algorithms and development of the theory
of evolutionary strategies. Sphere function is uni-
modal and additively separable. Boundaries are set
at [−5.12, 5.12]. Sphere function’s global minimum
is in point x=0 with value f(x)=0. [11][12]

2.1.2 Axis Parallel Hyper-Ellipsoid Function -
F2.

This function is similar to Sphere function. It is also
known as weighted sphere model. It is also uni-
modal and additively separable. Boundaries are set at
[−5.12, 5.12]. Function’s global minimum is in point
x=0 with value f(x)=0. [11][12]

2.1.3 Rotated Hyper-Ellipsoid Function - F3.

This function represents an extension of the axis par-
allel hyper-ellipsoid function. With respect to the co-
ordinate axes, this function produces rotated hyper-
ellipsoids. It is continuos, convex and unimodal.
Boundaries are set at [−65.536, 65.536]. Function’s
global minimum is in point x=0 with value f(x)=0.
[11][12]

2.1.4 Normalized Schwefel Function - F4.

The surface of Schwefel function is composed of a
great number of peaks and valleys. The function has a
second best minimum far from the global minimum
where many search algorithms are trapped. More-
over, the global minimum is near the bounds of the
domain. Schwefel’s function is deceptive in that the
global minimum is geometrically distant, over the pa-
rameter space, from the next best local minimum.
Schwefel function is multimodal and additively sep-
arable. Boundaries are set at [−500, 500]. Function’s
global minimum is in point x=420.968 with value
f(x)=-418.9829. [11][12]

2.1.5 Generalized Rastrigin Function - F5.

Rastrigin function was constructed from Sphere
adding a cosine modular term. Its contour is made
up of a large number of local minima whose value
increases with the distance to the global minimum.
Thus, the test function is highly multimodal. How-
ever, the location of the local minima’s are regularly
distributed. Rastrigin function is additively separable.
Boundaries are set at [−5.12, 5.12]. Function’s global
minimum is found in point x=0 with value f(x)=0.
[11][12]

2.1.6 Salomon Function - F6.

Salomon function is multimodal, additively separable
function. Boundaries are set at [−5.12, 5.12]. Func-
tion’s global minimum is found in point x=0 with
value f(x)=0. [11][12]

2.1.7 Ackley’s Path Function - F7.

Ackley Path function, originally proposed by Ackley
and generalized by Baeck has an exponential term that
produces numerous local minima. The complexity of
this function is moderated. An algorithm that only
uses the gradient steepest descent will be trapped in
local optima, but any search strategy that analyzes a
wider region will be able to cross the valley among the
optima and achieve better results. In order to obtain
good results for this function, the search strategy must
combine the exploratory and exploitative components
efficiently. This function is multimodal and not sepa-
rable. Boundaries are set at [−32.768, 32.768]. Func-
tion’s global minimum is found in point x=0 with
value f(x)=0. [11][12]

2.1.8 Michalewicz Function - F8.

The Michalewicz function is a multimodal test func-
tion with n! local optima. The parameter m defines the
”steepness” of the valleys or edges. Larger m leads
to more difficult search. For very large m the func-
tion behaves like a needle in the haystack - the func-
tion values for points in the space outside the narrow
peaks give very little information on the location of
the global optimum. In experiments the size of pa-
rameter m was 10. Boundaries are set at [0, Π]. Opti-
mal fitness value for this function has value f(x)=-9.66.
[11][12]

2.1.9 Griewangk Function - F9.

Griewangk’s function is similar to Rastrigin’s func-
tion. It has many widespread local minima. However,

the location of the local minima’s are regularly dis-
tributed. Boundaries are set at [−600, 600]. Func-
tion’s global minimum is found in point x=0 with
value f(x)=1. [11][12]

2.2 Position-Dependent Bias

In binary-coded GAs possible solutions are rep-
resented as strings of bits called chromosomes.
Crossover operator will more likely disrupt bits that
are relatively far apart. Position-dependent bias states
that interacting bits which are relatively far apart on
string are more likely to be separated than bits that
are relatively close together. Analogous to this, non-
interacting bits that are close together will more likely
be preserved than bits which are far apart. [2] [8]

2.3 Deception

Based on the works of Bethke (1980) and Goldberg
(1987), the term ’deception’ has been introduced in
order to better understand the situations when genetic
algorithm might fail. These deceptive functions create
a problem for the genetic algorithm when performing
optimization tasks. Deceptive functions are a family
of fitness landscapes developed to challenge the build-
ing block hypothesis. The building block hypothe-
sis is a direct result of schema theorem and it states
that genetic algorithms work by combining low-order
building blocks to form higher order ones. One exam-
ple of a deceptive function is Schwefel function.

2.4 Various Crossover Operators

Amongst all evolutionary algorithms, genetic algo-
rithms have a recombination operation which is prob-
ably closest to the natural paragon. The crossover
operator is used to mimic biological recombination
between two single chromosome organisms. Rough
definition of crossover can be that it represents vari-
ously chosen rules of exchange. In his work, Holland
also used mutation, but in that scheme it is generally
treated as subordinate to crossover. Thus, in Holland’s
GA, instead of the search moving from point to point
as in neighborhood search approaches, the whole set
of strings undergoes ’reproduction’ in order to gen-
erate a new population. For fixed-length strings, the
crossover points for both parents are always identical.
[3][4]
For purpose of this work, only crossover operators that
operate on two parents and have no self-adaptation
properties will be considered. In first set of experi-
ments there is no crossover operator - C0.

2.4.1 Single-Point Crossover - C1.

When performing crossover, both parental chromo-
somes are split at a randomly determined crossover
point. Subsequently, a new child genotype is created
by appending the first part of the first parent with the
second part of the second parent. [3][4]

2.4.2 Two-Point Crossover - C2.

In two-point crossover, both parental genotypes are
split at two points, constructing a new offspring by
using parts number one and three from the first, and
the middle part from the second ancestor. When us-
ing two-point crossover we can expect poorer perfor-
mance results because building blocks are more likely
to be disrupted. From other point of view using two-
point crossover will enable searching problem space
more thoroughly. Using single-point and two-point
crossover operator prevents schema to be disrupted,
but when population becomes homogeneous, search
space becomes smaller. Those kinds of crossover op-
erators should be used with larger population’s size
because then the diversity is greater. [3][4]

2.4.3 Uniform Crossover - C3.

Single and multi-point crossover defines cross points
as places between loci where an individual can be
split. Uniform crossover generalizes this scheme to
make every locus a potential crossover point. A
crossover mask, the same length as the individual
structure is created at random and the parity of the bits
in the mask indicate which parent will supply the off-
spring with which bits. To avoid problems with genes
locus, it is good to use uniform crossover. Uniform
crossover disrupts schema with great probability but
searches larger problem space. For uniform crossover,
the number of effective crossing points is not fixed,
but will average to l/2 where l represents string length.
That kind of crossover operator should be used with
smaller population size. [3][4][5][12]

2.4.4 Half-Uniform Crossover - C4.

Half-Uniform crossover is similar to uniform
crossover. Only difference is that only half of
differing bits between parents will be swapped.

2.4.5 Reduced Surrogate Crossover - C5.

To reduce the chance of producing clones Booker sug-
gested examining the selected parents to define suit-
able crossover points. A reduced surrogate crossover
operator reduces parent strings to a skeletal form

in which only those bits that differ in two parents
are represented. Recombination is then limited only
to positions of bits in reduced surrogates. Single-
point crossover was used for recombination of skeletal
forms of parents. Single-point crossover operator can
produce parents’ clones; to avoid that reduced surro-
gate crossover should be used. If at least one crossover
point occurs between the first and last bits in reduced
surrogate, then the offspring will never duplicate the
parents. Also, reduced surrogate will cause that re-
combination process equally weight the probability
of generating each offspring which can potentially be
produced by an operator. Single-point crossover in
any continuous region of matching bits in parents pro-
duces same offspring, and thus introducing bias for
some offspring. Reduced surrogate removes that kind
of potential bias. [1][3][12]

2.4.6 Shuffle Crossover - C6.

Shuffle crossover is similar to one-point crossover.
First, a single crossover position is selected. Before
the variables are exchanged, they are randomly shuf-
fled in both parents. After recombination, the vari-
ables in the offspring are unshuffled in reverse. This
removes positional bias as the variables are randomly
reassigned each time crossover is performed. In a
way, shuffle crossover is similar to uniform crossover.
Difference is that uniform crossover exchanges bits
and not segments like shuffle crossover. Further, in
uniform crossover bits exchanged follow a binary dis-
tribution and in shuffle crossover bits follow uniform
distribution, as in single-point crossover. [2][3]

2.4.7 Segmented Crossover - C7.

Segmented crossover represent a variant of N-point
crossover. In this crossover the number of crossover
points is not constant. Fixed number of crossover
points is replaced by segment switch rate s, which
specifies the probability that segment will end at any
point in the string. Starting from first position in a
string, one real-valued number q and one natural num-
ber j are generated. The number q represents the prob-
ability that j will be crossover point. In experiments
value 0.2 was used as a segment switch rate s. [3][7]

3 Main Results
In all experiments generational binary-coded GA with
binary tournament selection was used. Parameters of
genetic algorithm for the first two rounds of experi-
ments were as following: bit-wise mutation with pm

mutation coefficient of 0.01 and crossover rate pc of

0.8 were used, number of independent runs for each
experiment was 30, initial population N of size 30,
50 and 100 was randomly created and used in experi-
ments. String length l of 15 bits was used. Every solu-
tion in search space has the same precision but for the
functions with smaller domain size the scale for pos-
sible solutions is larger. Dimensionality of the search
space D for all test function was set to 30. Number
of overall evaluations H was set to 10000. Number
of generations was obtained by dividing number of
overall evalations H with population size N. For all
test functions finding global minimum is the objective.
For purpose of this article, three sets of experiments
were conducted. In first set, overall perfomance of all
crossover operators on all test functions were evalu-
ated. In second set, two test functions that displayed
the most interesting behaviour were tested more rig-
orously. Finally, in third set, two crossover opera-
tors that displayed best perfomance in second set were
tested with various values of crossover coefficient. In
first set of experiments all crossover operators was
tested against all test functions. Test case when no
crossover operator was used, e.g. operator C0 has con-
tinuously showed the worst performance. That kind of
result was somewhat expected because for many prob-
lems, especially more difficult ones, only mutation op-
erator don’t have enough exploration strength to reach
to the optimum. The successfulness of C0 operator
was largely due to distribution of solutions in initial
population. Other crossover operators showed similar
results, at least in reaching optimum, for test functions
F1, F2, F3, F6, F7 and F9. Single-point crossover per-
formed poorer than two-point crossover in every test
case. Uniform crossover outperformed half-uniform
crossover for all test cases except F8. Reduced sur-
rogate crossover displayed poorer results when com-
paring to all, except to single-point crossover. Seg-
mented crossover had slightly better results than shuf-
fle crossover. Uniform crossover produces best results
in majority of the cases, however, there are problems,
like Michalewicz function where two-point crossover
outperforms uniform crossover. When evaluating the
speed of a convergence, where convergence repre-
sents evolving of the solutions towards global opti-
mum, best results had achieved uniform and two-point
crossover. In all of the test functions shuffle crossover
showed the slowest convergence. GA that used shuffle
crossover succeeded in reaching the optimum, but the
average value of the solutions was by far the worst of
all tested crossover operators. Test functions F4 and
F8 (Schwefel and Michalewicz function) were then
selected for more in-depth analysis.

Figure 1: (a) Fitness values for crossover operators 0 to 3 and Schwefel function, (b) Fitness values for crossover
operators 4 to 7 and Schwefel function

Figure 2: (a) Fitness values for crossover operators 0 to 3 and Michalewicz function, (b) Fitness values for crossover
operators 4 to 7 and Michalewicz function

Figure 3: (a) Fitness values for Schwefel function with crossover operators C3 and various population sizes, (b)
Fitness values for Michalewicz function with crossover operators C2 and various population sizes

In second round of the experiments the accent
was set to the varying size of the initial population,
so three population sizes were used: small of 30 in-
dividuals, medium of 50 individuals and large of 100
individuals. Although smaller populations had more
generations, results obtained were not as good as for
larger populations. A conclusion can be developed
that large populations make better results for test func-
tions that were used. It is considered as general rec-
ommendation for uniform crossover that it should be
used with smaller population sizes, but results ob-
tained here suggest that, at least for problems with
similar properties to those of F4 and F8 functions,
larger populations achieves better results. [1][3]
In third set of experiments tests were conducted for 5
different pc coefficients and most successful crossover
operators from second set of experiments - C2 and C3.
Better results were achieved for larger pc, especially
for coefficient of 0.9. Conclusion can be made that
for difficult problems, by varying the crossover co-
efficient some improvement can by observed, but in
general, that would not be enough to reach global op-
timum. Rather, some other technique that utilize more
exploitation properties should be used at that moment.

4 Conclusion

Every good (as broad as that notion can be) defined
crossover operator should achieve satisfying results
for some class of the problems. Experiments con-
ducted for the purpose of this article showed that all
crossover operators tested here achieve good results.
It is much more difficult to declare the winners in this
experiments than the losers. The losers are definitely
genetic algorithms that use no crossover operator or
single-point crossover operator. The winners, at least
in majority of the cases, are uniform and two-point
crossover. All other crossover operators belongs to
the ”gray” area in-between. Depending of the prop-
erties of a problem one or another crossover operator
will have better results.
Every crossover operator has its advantages and
downfalls, so choosing one ultimately represents the
question of someone’s requirements and experiments
undergone. Further studies should include experi-
ments with more advanced crossover methods, like
those based on statistical methods, implementing
more difficult test problems, and conducting experi-
ments with larger set of crossover rates and mutation
coefficients.

References:

[1] T. Baeck, D. B. Fogel and Z. Michalewicz:
Handbook of Evolutionary Computation. New
York, USA: Taylor & Francis Group, 1997

[2] R. A. Caruana, L.J. Eshelman and J.D. Schaf-
fer: Representation and Hidden Bias II : Elim-
inating Defining Length Bias in Genetic Search
via Shuffle Crossover, Proceedings of the 11th
international joint conference on Artificial intel-
ligence - Volume 1, Detroit, Michigan, USA,
1989, pp. 750–755

[3] D. Dumitrescu, B. Lazzerini, L. C. Jain and
A. Dumitrescu: Evolutionary Computation.
Florida, USA: CRC Press, 2000

[4] M. Golub: Genetski algoritam: Prvi dio. Uni-
versity of Zagreb, Croatia: Faculty of Electrical
Engineering and Computing, 2004

[5] R. L. Haupt and S. E. Haupt: Practical genetic
algorithms, second edition. New Jersey, USA:
Wiley-Interscience, A John Wiley & Sons, 2004

[6] J. H. Holland: Adaptation in Natural and Arti-
ficial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial
Intelligence. Cambridge, USA: The MIT Press,
1992

[7] Z. Michalewitz: Genetic Algorithms + Data
Structures = Evolution Programs, third edition.
Berlin Heidelberg New York, USA: Springer-
Verlag, 1996

[8] M. Mitchell: An Introduction to Genetic Algo-
rithms. Cambridge, USA: The MIT Press, 1999

[9] S. Rana: The Distributional Biases of Crossover
Operators, Proceedings of the Genetic and
Evolutionary Computation Conference, Morgan
Kaufmann Publishers, 1999, pp. 549–556

[10] L. D. Whitley: An Executable Model of a Sim-
ple Genetic Algorithm. Foundations of Genetic
Algorithms 2, 1992

[11] Genetic and Evolutionary Algorithm Tool-
box for use with MATLAB Documenta-
tion, http://www.geatbx.com/docu/
fcnindex-01.html$#$P86_3059

[12] CIXL2: A Crossover Operator for Evolu-
tionary Algorithms Based on Population Fea-
tures, http://www.cs.cmu.edu/afs/
cs/project/jair/pub/volume24/
ortizboyer05a-html/node6.html

