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Abstract. The dial-a-ride problem (DARP) deals with the transporta-
tion of people from source to destination locations. One of the most
common use cases is in the transportation of elderly or sick people, and
as such it represents an important problem to consider. Since DARP is
NP-hard, it most often has to be solved using various heuristic meth-
ods. Previous studies demonstrated that metaheuristics are suitable for
solving this kind of problem. However, in most cases, basic metaheuris-
tics have been considered without any adaptation to the problem, which
could potentially limit their performance. Therefore, in this study a GA
is proposed and several of its elements adapted for solving DARP. The
obtained results show that the proposed algorithm can achieve better
results than similar methods from previous studies. Moreover, the ex-
periments demonstrate that the results can be improved by considering
some constraints as soft constraints and including them in the cost func-
tion to give the algorithm more flexibility in the search.

Keywords: Genetic algorithm · Dial a ride problem · Optimisation.

1 Introduction

The dial-a-ride problem (DARP) is a special form of the vehicle routing problem
(VRP) that involves the transportation of people rather than goods. In DARP,
users make requests to be picked up from a specific location at a specific time
and taken to another location by a specific time. The goal of the problem is to
schedule a fleet of vehicles to meet the user’s needs as much as possible, but also
to minimise the duration of the route. DARP has many practical applications
in the real world, including door-to-door transportation of elderly or disabled
people [5], cab services [13], emergency services [13], and demand-responsive
mass transit [11]. Since DARP is a special case of VRP, it also belongs to the
category of NP-hard problems. Therefore, there is no known algorithm that
provides optimal solutions in a reasonable amount of time. Most of the time,
one has to resort to metaheuristics that have proven their strength in many
areas such as scheduling [16], cryptography [14], rostering [2], transportation [1],
and similar.
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DARP has already received considerable attention in the literature. One of
the first studies dealing with DARP, in which a sequential insertion heuristic is
proposed, was done by Jaw et al. [8]. The problem was also addressed in [10]
using simulated annealing. Tabu search (TS) was applied in [4] to a problem
where travel time must be minimised by considering all user requests. A genetic
algorithm (GA) for DARP was proposed in [9] that solves the problem of [4].
The main difference between these works is that several strict constraints are
modelled as cost functions that are optimised, which gives some flexibility to
GA. Another GA was used in [6], in which the authors test different algorithm
configurations. An overview of different DARP models and solution methods
can be found in [5]. An extension of DARP that allows users to change vehicles
during their trip is solved in [12] using an adaptive large neighbourhood search
algorithm. A hyperheuristic approach to solving DARP is proposed in [15]. This
method finds the best heuristic strategy for applying simple operators that can
be applied to new problems. In [11], an online version of DARP was considered
where the optimisation routine runs continuously during system execution. A
parallel extension of the TS method for DARP was proposed in [13]. A variant
of the problem, where different trip types are studied, is investigated in [7]. In
[3], the authors consider a flexible DARP variant in which only a portion of the
user requests are predetermined.

The above overview shows that this problem is still intensively researched
and many new DARP variants are proposed and investigated. In this paper we
consider the original DARP variant described in [4] and [9]. The problem is
solved using an adapted GA that incorporates some domain-specific information
in its evolutionary process by adapting the solution initialisation procedure and
the applied crossover operator. The goal of this research is to gain initial insights
that can be used in subsequent studies to further improve the results and that
can also be applied to solve the extended DARP variants.

The rest of the paper is organised as follows: Section 2 gives an introduction
to DARP. The GA adapted for DARP is described in Section 3. The experimental
setup and the results obtained by the proposed GA are described in Section 4.
Finally, the conclusion of the paper and future research directions are outlined
in Section 5.

2 Dial-a-ride problem

The DARP under consideration is modelled based on the problem defined in [4,
9]. In this problem, there are n customer requests for transportation, given as
a list of 2n locations. Each request has a pickup location, denoted with item
i in the list, and a delivery location (item n + i). The locations are modelled
as a fully connected graph in which a travel distance dij is defined between all
locations i and j. For each location, there is a time window [bi, ei] that defines
the service of the request at that location, either for pickup or delivery. Ideally,
the service at locations should only occur within these time windows. A service
time si required at each location is also defined. Each customer request has a
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specific number of places that the user takes in the vehicle, which are taken at
the pickup location and released at the delivery location. Customers also specify
a maximum amount of time they would like to spend in the vehicle. To meet
user requests, a fleet of m vehicles is available. Each vehicle k starts at the depot
location D and returns there after completing all requests. Each vehicle has a
constant capacity of C and a maximum route duration. Since it is assumed that
all vehicles are identical, both values are the same for all vehicles.

Usually several objectives are considered in DARP, out of which a single
cost function is defined as a weighted linear combination of the individual cost
functions. The cost functions considered in this study are:

– f1 - total route duration - the total duration of the routes for all vehicles
– f2 - total ride time - the total time that the customers spent riding in the

vehicles
– f3 - total wait time - the time that the vehicles spent idle while waiting to

service a request
– f4 - total late time - the total time that the vehicle was late, meaning that

it arrived at a location after its defined time window
– f5 - total amount of ride time violation - the excess amount of time that the

customer spend driving in the vehicle above their requested ride time
– f6 - total maximum route violation - the excess amount of time that the cars

spent driving over their given maximum route duration

In [4] only the functions f1−f3 were minimised, while the remaining functions
were not used because they were modelled as hard constraints (i.e., no lateness
was allowed). However, in [9], the authors modelled some constraints as cost
functions, which allowed them to obtain better results. The total cost function
to be minimised is defined as f = w1 ·f1+w2 ·f2+w3 ·f3+w4 ·f4w5 ·f5+w6 ·f6. The
weights w1, . . . , w6 can be freely chosen to determine the significance of each cost
function. The magnitudes of the functions f1 and f2 are usually similar, while
f3 is usually one order of magnitude smaller. However, the weights have been set
as w1 = w2 = w3 = 1, since initial experiments have shown that the algorithm
nevertheless focuses quite well on optimising the cost function f3 with such a
setting. The cost functions f4 and f5 were usually about 5 times smaller than
f1 and f2, while the cost function f6 was usually equal to 0. Therefore, their
weights were set to w4 = w5 = w6 = 5 to focus equally on the cost functions
modelling more stricter requirements such as lateness.

3 Genetic algorithm for DARP

To find solutions to the considered DARP problem, a GA is adapted for it. The
solutions are represented by two chromosomes, an integer and a permutation
chromosome. The integer chromosome specifies which vehicle each user request
is associated with. The permutation chromosome represents the order in which
customer requests are processed. Figure 1 represents an example of a problem
with 2 vehicles and 5 requests. Since there are 10 requests, this means that
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values 1-5 in the permutation vector represent pickup requests, while values 6-
10 represent delivery requests. In this example, vehicle 0 will first handle the
pickup of request 4 and then immediately handle its delivery (request 9). Then
the vehicle will handle the second request. Vehicle 1, on the other hand, will
first process three pickup requests (requests 2, 3, and 1) and then perform their
delivery (requests 8, 7, and 6). The order of the delivery requests does not have
to be the same as the order of the pickup requests. This is also clear in the
example, because delivery request 7, which corresponds to the pickup request 2,
is handled after the delivery request 8, which corresponds to the pickup request
3.

Fig. 1. Solution representation used by the GA

Instead of generating the initial population completely at random, a simple
heuristic initialisation was used to construct the initial solutions. The outline
of this procedure is shown in Algorithm 1. First, a permutation of requests is
randomly generated by ensuring that each pickup request appears before the
corresponding delivery request in the solution. Then, the following process is
repeated until all requests are served. If the first request in the list is a pickup
request, the list of vehicles with free space is first determined. If no such vehicles
are available, the request is placed at the end of the list until certain delivery
requests are processed and the vehicles free up space for new requests. If there
are vehicles with free space, a priority pi is calculated for each vehicle i and the
current request j as

pi =

∣∣∣∣ej + bj
2

− (ti + dij)

∣∣∣∣ ,
where ej and bj represent the end and the beginning of the time window, ti is
the current time of the vehicle, and dij is the distance between the vehicle and
the pickup request location (the time it takes to reach a location is equal to
the distance). This priority indicates how close to the middle of the time win-
dow the vehicle would arrive. The vehicle with the lowest value is then selected
to serve the request. This solution initialisation method has demonstrated to
achieve better results in preliminary experiments than if the initial population is
generated completely randomly. On the other hand, if the first request in the list
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is a delivery request, a check is made to see if the corresponding pickup request
has already been served. If yes, this delivery request is assigned to the corre-
sponding vehicle. Otherwise, the request is placed back in the list of requests to
be considered when its corresponding pickup request is handled.

Algorithm 1 Initial solution construction procedure
1: requests ← create random permutation of requests
2: while requests not empty do
3: currentRequest ← first request from requests
4: if currentRequest is a pickup request then
5: fVehicles ← currently free vehicles
6: if fVehicles is empty then
7: Place currentRequest at the end of the requests list
8: else
9: for each vehicle vi in fVehicles do

10: Calculate pi =

∣∣∣ ej+bj
2
− (ti + dij)

∣∣∣, where j denotes the location of
currentReqest

11: end for
12: selectedVehicle ← select the vehicle with the lowest pi
13: Assign currentRequest to selectedVehicle
14: end if
15: else
16: if the corresponding pickup request of currentRequest is already assigned

to a vehicle then
17: Assign currentRequest to the vehicle which contains its corresponding

pickup request
18: else
19: Place currentRequest at the end of the requests list
20: end if
21: end if
22: end while

For the crossover operator an adapted PMX crossover, denoted as partially
car mapped crossover (PCMX), is used. Unlike in the PMX crossover, in which
two random crossover points are selected, in this variant a number of vehicles
are selected and then all the genes associated to those vehicles are copied to
the child individual. The remaining genes are then filled in a similar way as
it is done in the original PMX crossover by copying over those requests form
the second parent which are not yet present in the child individual. Figure 2
shows an example of the crossover performed on a solution for a problem with
10 requests and 2 vehicles. In this case the route for vehicle 1 is copied over from
the first parent to the child individual. The requests which belong to the other
vehicles are then filled from the second parent. If a request already exists in the
child, then it would be mapped in the same way as in PMX to a request which
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does not exist in the child individual, and that request would be copied to the
child.

Fig. 2. Example of the PCMX crossover

The mutation is performed by simply swapping the order of the requests for
two customers. Two customers are randomly selected (they can be assigned to
the same or different vehicles) and then their pickup and delivery requests are
swapped. An example of this mutation is shown in Figure 3. In this example
it can be seen that the pickup requests 4 and 2 are swapped, as well as their
corresponding delivery requests 9 and 7.

Fig. 3. Example of the swap mutation

It is possible that during evolution a certain number of constraints are not
satisfied. Therefore, after each modification of an individual, a procedure is used
to check the validity of the solutions and make a correction. First, it is checked
whether all delivery requests appear after their respective pickup requests. If this
is not the case, the two requests are simply swapped. Second, it checks if the
vehicle capacity constraint is satisfied at all points in time. This is determined
by finding the point where the capacity constraint is violated in the solution
and then moving a delivery request ahead of that point to make room in the
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vehicle. Using these corrections ensures that the algorithm only works with valid
solutions throughout the evolution process.

4 Experimental study

4.1 Benchmark setup

The experimental study will be conducted on the dataset which is proposed in
[4]. This dataset consists out of 20 problem instances which contain between 24
and 144 customers, and between 3 and 13 vehicles. The instances are divided
into two groups, instances from R1a to R10a were generated with narrow time
windows, whereas instances from R1b to R10b have been generated with wide
time windows. For each instance the GA was executed 10 times. The parameters
of the GA were fine tuned in preliminary experiments. A population size of 200
individuals, mutation probability of 0.1, the 5-tournament selection for selecting
individuals, and stopping criterion of 1500 generations were used.

The results will be directly compared to the results obtained by previous
studies from Cordeau and Laporte [4] and Jorgensen et al. [9]. The results ob-
tained in the previous two studies are summarised in Table 1. It should be
outlined that in these studies not all instances were considered, therefore only a
subset of instances is denoted in the table.

Table 1. Overview of the results from the literature

Cordeau and Laporte [4] Jorgensen et al. [9]
Instances Route duration Waiting time Ride time Route duration Waiting time Ride time

R1a 1041 252 477 881 211 1095
R2a 1969 470 1367 1985 724 1977
R3a 2779 292 3081 2579 607 3587
R5a 4250 500 5099 3870 833 6154
R9a 3597 94 6251 3155 323 5622
R10a 5006 315 8413 4480 721 7164
R1b 907 143 630 965 321 1042
R2b 1719 198 1214 1565 309 2393
R5b 4296 552 4615 3596 606 6105
R6b 5309 630 6134 4072 449 7347
R7b 1299 102 990 1097 129 1762
R9b 3679 147 5362 3249 487 5581
R10b 4733 113 7969 4041 362 7072

Total 40584 3808 51600 35537 6082 56900

4.2 Results

The results obtained by the proposed GA are shown in Table 2. The table outlines
the three main objectives considered in previous studies: route duration, ride
time, and waiting time. ”Avg.” denotes the average of 10 executions obtained for
these objectives, while ”Best” denotes the value for the objective obtained by
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the solution with the best fitness. Also, the average values for the late times and
ride time violations per customer are given to illustrate how much the obtained
solutions violate these constraints. The results in the tables are marked with
’†’ if they are only better than the results of Cordeau and Laporte, with ’*’ if
they are better than those of Jorgensen et al., with ’+’ if they are better than
the results of both studies, and with ’-’ if they are worse than the results of
both studies. Note that the results for the instances that were not solved in
previous studies are not marked. The last row shows the aggregated results for
the instances that were also used in the previous studies to make the cumulative
results comparable.

Table 2. Overview of the obtained results

Instance Route Duration Waiting Time Ride Time Late Time Ride Time Violation
Avg. Best Avg. Best Avg. Best Avg. Avg.

R1a 890* 972* 114+ 201+ 1138- 694† 0.49 0.07
R2a 1601+ 1975+ 164+ 491+ 2190- 1969† 0.72 1.60
R3a 2353+ 2387+ 117+ 93+ 3487† 2958† 0.34 0.92
R4a 3252 3598 270 548 4635 4495 0.53 1.20
R5a 3813* 3958* 193+ 317+ 5885† 4790+ 0.98 1.32
R6a 4691 4773 279 323 7228 7133 0.92 2.58
R7a 1273 1354 133 162 1571 1295 1.50 0.19
R8a 2271 2254 46 14 3349 2803 0.89 2.86
R9a 3225* 3305* 64† 118† 5835* 5947* 4.72 2.52
R10a 4422* 4518* 97+ 102+ 8099* 7796* 5.19 4.26
R1b 788* 766* 31+ 4+ 984† 667† 0.48 0.06
R2b 1499* 1422* 55+ 6+ 2108† 1733† 0.42 1.32
R3b 2306 2282 69 34 3370 2555 0.34 0.42
R4b 3001 2941 75 38 4353 3636 0.20 0.82
R5b 3749* 3981* 135+ 242+ 5618† 5130† 0.58 1.34
R6b 4492* 4456* 149+ 139+ 6653† 6171+ 1.13 1.01
R7b 1150* 1120* 19+ 10+ 1571† 1358† 0.54 1.12
R8b 2329 2355 100 88 3505 2658 0.96 2.17
R9b 3287* 3337* 45+ 90+ 5962- 5415† 1.88 2.98
R10b 4388* 4442* 66+ 70+ 7734* 7084* 3.62 2.00

Total 35659* 36637* 1249+ 1882+ 57264- 51711† 21.08 20.52

The results show that the proposed algorithm can achieve some improvements
over the results obtained in the studies of Cordeau and Laporte and Jorgensen
et al. For the waiting time cost, the proposed algorithm always obtained better
results than both methods. For the route duration cost, the algorithm always
obtained better results than the method of Jorgensen et al. Finally, for the ride
time cost, better results were obtained for multiple instances than in the study
of Cordeau and Laporte, but the overall results obtained for this criterion were
worse than in both studies. It should be mentioned that compared to the results
of Cordeau and Laporte, the route duration and travel time costs obtained by
the proposed method are similar (within a range of 1%). However, we obtained a
much smaller value for vehicle waiting time, by a factor of 5. This improvement
was possible due to the flexibility provided by treating some constraints as soft
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constraints (late time). Jorgensen et al. also treated late times as soft constraints.
Unfortunately, these values are not reported in the paper and it is not possible
to determine the extent to which these constraints were not met. However, the
proposed GA was able to achieve better results for the route duration and wait
time objectives.

Although the problem was solved by treating late times as soft constraints,
it can be noted that the violations of late times and ride times are not very
extensive. The average of late times is usually not greater than one minute, and
the maximum late time was 5 minutes for instance R10a. On the other hand, the
ride time violations were also usually in the range of one or two minutes. Such
small violations of constraints should not cause much user dissatisfaction, but
should give the algorithm more flexibility in finding better solutions for other
criteria. Therefore, it seems to be more beneficial to treat such constraints as
soft and optimise them together with the other objectives, as this seems to have
a positive effect on the other objectives.

5 Conclusion

The obtained results show that with the initial adjustment of the GA it is possible
to improve the results for DARP. For one of the considered criteria the algorithm
achieved a significant improvement over the existing results, while the results
for the other two criteria were mostly consistent with those of the other studies.
This performance was achieved by including more problem-specific elements in
the algorithm, but also by allowing some constraints not to be met. Since in this
study the problem was addressed only briefly and with only a few adjustments
to the algorithm, there is still much room to improve the results through further
adjustments and fine-tuning for the problem under consideration.

In future studies, the goal is to test the proposed method on other data sets
used in related surveys. It is also intended to adapt the proposed approach to
cover other DARP variants not considered in this work. A more thorough study
with different metaheuristic algorithms will be conducted to propose alternative
and more efficient methods for DARP. Since DARP usually considers multiple
objectives simultaneously, another obvious research direction would be to apply
multi-objective algorithms.
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