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Marko –Durasević1, Lucija Planinić1, Francisco J. Gil-Gala2, and Domagoj
Jakobović1
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Abstract. Scheduling represents an important aspect of many real-
world processes, which is why such problems have been well studied in
the literature. Such problems are often dynamic and require that mul-
tiple criteria be optimised simultaneously. Dispatching rules (DRs) are
the method of choice for solving dynamic problems. However, existing
DRs are usually implemented for the optimisation of only a single crite-
rion. Since manual design of DRs is difficult, genetic programming (GP)
has been used to automatically design new DRs for single and multi-
ple objectives. However, the performance of a single rule is limited, and
it may not work well in all situations. Therefore, ensembles have been
used to create rule sets that outperform single DRs. The goal of this
study is to adapt ensemble learning methods to create ensembles that
optimise multiple criteria simultaneously. The method creates ensembles
of DRs with multiple objectives previously evolved by GP to improve
their performance. The results show that ensembles are suitable for the
considered multi-objective problem.
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1 Introduction

Scheduling is the problem of optimally assigning a set of jobs to a finite number
of machines [13]. Such problems have numerous applications in the real world, in-
cluding manufacturing, universities, airports, hospitals, electric vehicle charging,
and the like [13, 8]. Since most real-world scheduling problems are NP-hard, they
are usually solved using various heuristic methods, most notably metaheuristics.
However, metaheuristics are difficult to apply in dynamic environments. There-
fore, simple heuristic methods called dispatching rules (DRs) are the method of
choice for such problems. DRs construct the schedule online while the system
is running by selecting which job to schedule next when a machine becomes
available [17]. However, manually constructing such heuristics has proven to be
a difficult and time-consuming task, leading to the use of various methods to
automatically construct DRs [1].



Genetic programming (GP) is one of the most popular hyperheuristic meth-
ods used to develop new heuristics for various combinatorial problems. As such,
it is widely used for automatic design of various scheduling problems. In most
cases, using such a method, it has been possible to design new rules that outper-
form various manually developed rules. This led to a large amount of research
considering different problem variants and methods for designing better DRs [1].

A key direction in automatic design of DRs is to develop rules that are
also suitable for optimising multiple objectives, since most real-world problems
usually require optimising multiple objectives [10]. This direction is important
because manually developed rules are usually only suitable for optimising a single
criterion. This, of course, requires the application of different multi-objective
algorithms (MO) to develop rules for different combinations of criteria under
consideration. Although previous studies have shown that efficient MO DRs can
be designed using GP [16], these rules are limited by the aspect that a single
rule still performs poorly in certain situations. One of the most efficient ways
to improve the performance of DRs is to combine them into ensembles of rules
that make decisions together.

In this study, we are concerned with the application of ensemble learning
methods to create ensembles of DRs suitable for simultaneous optimisation of
multiple criteria. We are interested in answering the question of whether it is
possible to improve the performance of DRs designed for optimising multiple
objectives by combining them into ensembles. Therefore, an ensemble learning
method is adapted for the MO case and used to create ensembles for a MO
problem. The contributions of this study can be summarised as follows:

1. Adapt an ensemble learning method to construct ensembles for MO problems

2. Analyse the performance of the proposed method on a selected MO problem

3. Examine the Pareto fronts obtained by the different MO methods

The rest of the paper is organised as follows. Section 2 provides the overview
on the existing literature. The unrelated machines problem and automatic design
of dispatching rules for it are described in Section 3. The ensemble learning
method adapted for MO problems is outlined in Section 4. The obtained results
are shown in Section 5. Finally, the conclusion and future research directions.

2 Literature review

A MO problem for the job shop environment, where five criteria must be opti-
mised simultaneously, was considered in [9], where several MO algorithms were
used. This research was extended in [10], where the authors applied a local search
during evolution. In [7], several MO algorithms were used to develop rules for
problems involving four and five criteria. In [16], the authors consider several MO
problems with 3 to 9 criteria and apply 4 MO GP algorithms to evolve new DRs
for them. In [20], the authors consider the dynamic flexible job shop problem
and apply the NSGA-II and SPEA2 algorithms to construct DRs for multiple



flowtime objective formulations. In [6], the authors analyse how different features
of the job-shop problem affect the performance of a MO GP method.

In [12], the authors apply the cooperative coevolution algorithm to create en-
sembles for the job shop environment. In this approach, each subpopulation in
the algorithm represents a rule that is evolved for the ensemble. In [5], a method
called NELLI-GP was proposed for evolving ensembles of DRs, which achieves
better results than the cooperative coevolution from [12]. In [11], four ensem-
ble combination methods were investigated: sum, weighted sum, voting, and
weighted voting. Four ensemble learning methods were compared in [15], includ-
ing BagCP, BoostGP, cooperative coevolution, and SEC. Since the SEC method
performed the best, the study was extended in [18], where the SEC method was
analysed in more detail. In [14], the ensemble learning methods from [15] were
applied to the resource constrained project scheduling problem. Another type of
ensembles was proposed in [4, 3] for the variable capacity one machine problem.
These ensembles use each rule to construct the schedule individually and then
select the best results, making them suitable for static environments.

3 Background

3.1 Unrelated machines environment

The unrelated machines environment is a scheduling problem consisting of n
jobs that have to be scheduled on a given set of m machines. Each job i is
defined by its processing time pij on machine i, its ready time rj , its due date
dj , and its weight wj . The problem is considered under dynamic conditions, i.e.,
it is not known a priori when the jobs will be fed into the system, nor are job
characteristics known before the jobs’ ready time. When each job is scheduled,
the completion time Cj and the tardiness of a job Tj can be calculated. The
tardiness represents how much job j spent executing after its due date, and
is defines as Tj = max(Cj − dj , 0). Based on the previous properties, several
scheduling criteria can be defined which will be considered in this study:

– Cmax - maximum completion time of all jobs: Cmax = maxj{Cj}.
– Cw - total weighted completion time: Cw =

∑
j wjCj ,

– Twt - total weighted tardiness: Twt =
∑

j wjTj ,

All of the above criteria need to be minimised simultaneously. Therefore, the
problem considered in this paper can be defined as R|rj |Cmax, Cw, Twt using
the standard notation for scheduling problems [13].

3.2 Automatic design of DRs with GP

DRs are constructive heuristics consisting of a schedule generation scheme (SGS)
and a priority function (PF). The SGS is a procedure that builds the schedule
so that each time a machine becomes available, it selects which job to schedule
next. However, the decision of which job to schedule on which machine is not



made by the SGS itself; instead, the PF is used to make this decision. The PF
is used to assign a numeric value to each job-machine pair, and the pair that
received the smallest value is selected for scheduling.

Traditionally, PFs were designed manually, resulting in a plethora of DRs to
optimise various criteria. However, another option is to design such PFs using
GP. Since PF is a mathematical expression, it can be easily coded as a solution
tree in GP. For this purpose, however, a set of terminal and function nodes
must be defined that GP can use to construct the expression. The terminal
nodes used are listed in Table 1. These nodes represent important values of the
system like job processing times, due dates, average execution times, and the like.
For the function set, the addition, subtraction, multiplication, protected division
(returns 1 if division is by 0), and unary positive operators (pos(a) = max(a, 0)).
These were selected based on a previous study [19].

Table 1: Terminal set

Terminal Description

pt processing time of job j on machine i
pmin minimal processing time (MPT) of job j
pavg average processing time of job j across all machines
PAT time until machine with the MPT for job j becomes available
MR time until machine i becomes available
age time which job j spent in the system
dd time until which job j has to finish with its execution
w weight of job j (wj)
SL slack of job j, −max(dj − pij − t, 0)

4 Designing ensembles for MO problems

To design ensembles of DRs, two things must be specified: how the ensemble is
constructed and how the DRs that make up the ensemble work together.

4.1 Ensemble construction

Although a variety of ensemble construction methods have been proposed for
constructing ensembles of DRs, the simple ensemble combination method (SEC)
was chosen. The reason for choosing this method is its inherent simplicity and
better results compared to other ensemble learning methods. The idea of the
method is that it randomly constructs a set of ensembles from a pool of existing
DRs and returns the best ensemble as the result.

Algorithm 1 shows the SEC method adapted for MO optimisation. The
method accepts three parameters, the number of ensembles N to construct, the



number of rules in ensemble ES, and the set of rules used to construct ensem-
bles R. In each iteration, an ensemble is constructed by randomly selecting ES
rules from the set R. When the ensemble is constructed, it is added to the set
constructed that contains all constructed ensembles. This procedure is repeated
N times, resulting in a set containing N ensembles. This set is then nondom-
inately sorted [2] for the specified criteria, and the first front is returned by
the SEC method. In this way, a set of solutions that provide different tradeoffs
between the considered criteria should be obtained.

Algorithm 1 The simple ensemble combination method

1: function SEC(N,ES,R)
2: constructed ← ∅
3: counter ← 0
4: while counter < N do
5: counter ++
6: E ← ∅
7: while |E| < ES do
8: Select a random DR from R \ E, and add it to E
9: end while
10: constructed ← ensembles ∪ {E}
11: end while
12: Perform nondominated sorting on the constructed set
13: return first front of constructed
14: end function

4.2 Ensemble combination

When a set of rules is chosen to form an ensemble, it is important to specify
how these rules will work together, i.e., how their individual decisions will be
combined into a single decision. For this purpose, sum and vote combination
methods are used [15]. At each decision point, these methods combine the deci-
sions of all the individual rules in the ensembles into a single decision, which is
then executed by the SGS. Since each rule computes a numerical priority value
for job-machine pairs, the easiest way to aggregate the decisions of the individual
DRs is to add the priority values obtained from each rule. Then the job-machine
pair with the lowest value is selected and scheduled. This is how the sum com-
bination method works. An obvious pitfall with this method is that the rules in
the ensemble can produce very different priority values, which could result in
one rule dominating over others. Therefore, the vote combination method uses a
simple voting mechanism in which each rule in the ensemble casts a vote for the
job-machine pair to be scheduled (the one with the lowest priority value), and
the one that received the most votes is eventually scheduled. One problem with
this approach is that ties can occur, and while they can be resolved in different
ways, they are resolved in such a way that the job that arrived first is selected.



5 Experimental analysis

5.1 Setup

To test the effectiveness of the adapted SEC method, we evaluate it on the
R|rj |Cmax, Cw, Twt problem. However, to apply the SEC method, a pool of
MO DRs that can be combined into ensembles is required. To obtain this pool
of rules, first the considered problem is optimised using the NSGA-II, NSGA-III,
HaD-MOEA, and MOEA/D and then all obtained solutions are combined into a
single set of nondominated solutions [16]. After this first step, 70 MO DRs were
obtained, which are then used by SEC to construct the ensembles.

The SEC method is tested with different parameter values. The values 1000,
5000, and 10000 are used for the number of iterations of the method. Both the
sum and vote combination methods are tested with ensemble sizes of 3, 5, and 7.
For each parameter combination, the method is executed 30 times and the best
Pareto front of each execution is saved. To evaluate the quality of the obtained
Pareto fronts, the hypervolume (HV) metric is used [16]. The reason for choosing
this metric is that it measures both convergence and diversity of Pareto fronts.

To create and evaluate the ensembles, a set of 120 instances was used [19].
The set was split into two different sets, the training set and test set. The training
set was used to develop rules and create ensembles. The test set was then used
to evaluate the performance of the constructed rules and ensembles.

5.2 Optimising the R|rj|Cmax, Cw, Twt problem

Table 2 shows the HV values obtained for all tested parameter combinations
of the studied SEC method. The row labelled ”med” represents the median
HV value obtained for each algorithm execution. The line ”tot”, on the other
hand, denotes the HV value of the union of all 30 Pareto fronts obtained in
the executions. The last lines denotes the HV value obtained for the set of
individual MO rules used by SEC. The best values for each method are in bold.
The results illustrate several things. First, the vote combination method clearly
achieves better results than the sum method. As for the size of the ensemble, it
is difficult to determine which size would be the best. The sum method performs
best when 7 is used, but with the vote method, there is no single ensemble
size that gives the best results. Second, one can see that the SEC method in
a single execution gets Pareto fronts with lower HV values than the front of
the MO DRs. However, if we consider the union of these fronts obtained in
each execution, SEC always obtained a better Pareto front, at least for the vote
method. This seems to indicate that a single execution of SEC is not sufficient
to obtain a good approximation of the Pareto front, but rather that multiple
executions are required.

To get a better idea of the differences between the Pareto fronts of the MO
DRs and the ensembles, the solutions in their respective Pareto fronts are shown
in Figure 1. The figure shows pairwise combinations of the three optimised cri-
teria to better illustrate the Pareto fronts. For the ensemble, the Pareto front



Table 2: Results for the HV metric for the R|rj |Cmax, Cw, Twt problem

sum vote
Method 3 5 7 3 5 7

SEC-1000
med 0.568 0.565 0.563 0.588 0.587 0.586
tot 0.591 0.593 0.603 0.649 0.634 0.622

SEC-5000
med 0.572 0.566 0.567 0.593 0.596 0.591
tot 0.590 0.593 0.597 0.632 0.647 0.651

SEC-20000
med 0.571 0.571 0.571 0.598 0.599 0.596
tot 0.589 0.593 0.599 0.622 0.640 0.622

MO DRs 0.604

of SEC-5000 was used with the vote combination method and an ensemble size
of 7 rules, since the best Pareto front was obtained for this parameter combina-
tion. For all three combinations, the figure shows that the Pareto front of the
ensembles is closer to the origin of the coordinate system, indicating that much
better convergence was achieved. However, one problem with this Pareto front
could be that more solutions appear to be grouped together, suggesting that the
algorithm favours more convergence than diversity.
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Fig. 1: The Pareto front obtained for the R|rj |Cmax, Cw, Twt problem denoted
through pairwise combinations of the three optimised criteria

Table 3 shows the descriptive statistics calculated for the obtained Pareto
fronts for SEC-5000. The table shows the dominance of the vote combination
method, as it obtains better median and minimum values than the sum method
for all criteria. Compared to the MO DRs given in the end of the table, the
Pareto fronts of the ensembles generally achieve better median and maximum
values. For the minimum values, only the sum method achieved better minimum
values than the individual MO DRs.

Figure 2 shows the box plots of the optimised criteria for the Pareto fronts
obtained by different methods. The results obtained by ensembles are denoted
by E-x-y, where ”x” stands for ”s” or ”v” depending on whether the sum or vote



Table 3: Descriptive statistics of the Pareto fronts obtained for the
R|rj |Cmax, Cw, Twt problem

sum vote
Method min med max min med max

E-3
Cmax 38.13 38.39 39.00 37.95 38.31 38.68
Cw 868.8 872.6 894.8 867.9 871.8 894.0
Twt 13.04 14.16 17.67 12.78 13.93 17.04

E-5
Cmax 38.19 38.33 38.97 37.92 38.25 39.11
Cw 869.2 873.1 885.5 868.2 870.8 893.6
Twt 12.96 13.85 16.27 12.58 14.36 17.15

E-7
Cmax 38.18 38.36 38.88 37.95 38.16 38.66
Cw 868.9 872.2 885.1 868.4 871.8 890.2
Twt 12.94 13.99 16.75 12.49 13.63 16.89

MO DRs
Cmax 38.07 38.46 39.13 38.07 38.46 39.13
Cw 868.6 880.7 896.9 868.6 880.7 896.9
Twt 12.70 13.83 19.58 12.70 13.83 19.58

combination method is used, and ”y” stands for the size of the ensemble. For
the Cmax criterion, we can see that all ensemble variants achieve a better dis-
tribution of solutions. This is especially true for the vote combination method.
Something similar can be observed for the Cw criterion, with even larger differ-
ences. However, for the Twt criterion, in several cases the ensembles obtained
Pareto fronts with worse distributions than the MO DRs. In the other cases, the
distribution of solutions is mostly similar to the MO DRs, or the values obtained
for the criterion are slightly less scattered.

6 Conclusion

This study addresses the application of ensemble learning to create ensembles
of MO DRs to optimise multiple criteria simultaneously. The SEC method, pre-
viously used only for the single objective case, was adapted for multi-objective
problems and tested on the R|rj |Cmax, Cw, Twt. The obtained results show that
the constructed ensembles can outperform the results obtained by single MO
DRs. The analysis of the Pareto fronts showed that the constructed ensembles
achieve much better convergence and still provide good coverage of the search
space. In future studies, we plan to explore the possibility of using rules devel-
oped for a single target to construct MO ensembles and extend the experiments
to more MO problems.

Acknowledgements

This research has been supported by the Spanish Government under research
project PID2019-106263RB-I00, and by the Croatian Science Foundation under
the project IP-2019-04-4333.



DRs E-s-3 E-v-3 E-s-5 E-s-5 E-s-7 E-v-7

38

38.2

38.4

38.6

38.8

39

39.2

C
m

a
x

(a) Solution distributions for the Cmax criterion

DRs E-s-3 E-v-3 E-s-5 E-s-5 E-s-7 E-v-7
865

870

875

880

885

890

895

C
w

(b) Solution distributions for the Cw criterion

DRs E-s-3 E-v-3 E-s-5 E-s-5 E-s-7 E-v-7

12

13

14

15

16

17

18

19

20

T
w
t

(c) Solution distributions for the Twt criterion

Fig. 2: Distribution of solutions for all considered criteria.
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