
Building heuristics and ensembles for the travel
salesman problem

Francisco J. Gil-Gala1, Marko –Durasević2, Maŕıa R. Sierra1, and Ramiro
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Abstract. The Travel Salesman Problem (TSP) is one of the most stud-
ied optimization problems due to its high difficulty and its practical in-
terest. In some real-life applications of this problem the solution methods
must be very efficient to deal with dynamic environments or large prob-
lem instances. For this reasons, low time consuming heuristics as priority
rules are often used. Even though such a single heuristic may be good
to solve many instances, it may not be robust enough to take the best
decisions in all situations so, we hypothesise that an ensemble of heuris-
tics could be much better than the best of those heuristic. We view an
ensemble as a set of heuristics that collaboratively build a single solution
by combining the decisions of each individual heuristic. In this paper, we
study the application of single heuristics and ensembles to the TSP. The
individual heuristics are evolved by Genetic Programming (GP) and then
Genetic Algorithms (GA) are used to build ensembles from a pool of sin-
gle heuristics. We conducted an experimental study on a set of instances
taken from the TSPLIB. The results of this study provided interesting
insights about the behaviour of rules and ensembles.
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1 Introduction

Greedy algorithms guided by single heuristics are usually the best if not the
only method suitable to solve large-scale problems or dynamic problems that
require solutions in real-time, due to them being able to perform reasonable de-
cisions quickly. In these situations, exact methods or even metaheuristics such
as genetic algorithms are not practical because they are very time consuming.
Single heuristics as priority rules are often manually designed by experts, but
this is also very time consuming and may be a difficult task because the problem
features that are relevant for the heuristics are not always evident to the human
eye. For this reason, several hyper-heuristic methods have been exploited to au-
tomatically design heuristics for various optimization problems, such as the Job
Shop Scheduling Problem [16] or the Unrelated Machines Scheduling Problem
[7]. In spite of the success of these methods, it is often the case that a single



heuristic is not robust enough to produce good solutions to all instances of a
given benchmark set. This fact motivates the consideration of ensembles as an
alternative that could outperform single heuristics at the cost of a reasonable
increment in the computational burden.

Over the last years, there have been some proposals for learning ensembles.
For example, Hart and Sim [13] proposed the NELLI-GP method, which is used
to create ensembles for the Job Shop Scheduling Problem, where each heuristic is
used to solve a particular subset of instances. A different approach was proposed
by Gil-Gala et al. [10] for the scheduling problem of a single machine with time-
varying capacity; in this case, each of the heuristics in an ensemble is used to
solve an instance, the final result being the best of the schedules. The calculation
of ensembles is modelled as a set covering problem and solved by means of a
genetic algorithm. However, the most common strategy to exploit ensembles
is that all the heuristics build a solution collaboratively. This is the approach
considered by Durasević and Jakobović in [5], where they remarked that the
main decisions that have to be taken to build ensembles are 1) how heuristics are
combined and 2) how the heuristics are selected to compose the ensemble. For
the first problem, some classic techniques borrowed from machine learning such
as summation and voting strategies are of common use, while some methods
such as greedy algorithms [6, 4] or coevolutionary algorithms [5, 17, 4] were used
for the second.

In this work, we are interested in developing ensembles for solving the Travel
Salesman Problem (TSP). In our proposed method, Genetic Programming (GP)
[14] is used to evolve a large pool of heuristics for solving the TSP. Then, a
genetic algorithm (GA) is used to build ensembles from this pool. We conducted
an experimental study across a set of instances taken from the TSPLIB3.

The remainder of the paper is organised as follows. Firstly, we describe the
method used to solve the TSP. Then, in Section 3 we present the proposed
algorithms designed to evolve heuristics and ensembles. Next, in Section 4 we
present the experimental analysis and the obtained results. Finally, in Section 5
we summarise the main conclusions and outline some ideas for future work.

2 The travel salesman problem and solving method

We consider the symmetric Travel Salesman Problem (TSP) that is a well-known
NP-hard problem. We are given a matrix DN×N , where dij denotes the distance
between cities i and j and the goal is to obtain an optimal tour, i.e., the shortest
path visiting each of N cities exactly once and returning to the starting city.
Several algorithms were proposed to find tours, for example genetic algorithms or
the well-known Lin-Kernighan Heuristic [15]; however, none of them is actually
efficient for large instances or in dynamic environments. In these situations,
greedy algorithms guided by simple priority rules are the most, if not the only,
viable solution method.

3 http://comopt.ifi.uni-heidelberg.de



In this work, we exploit a greedy algorithm that, starting from the initial city,
in each iteration selects the next city by means of a priority rule. An example of
such rule is the Nearest Neighbour (NN) heuristic: if i is the current city, the
priority of the candidate city j is given by 1/dij . In general, a priority rule is
an arithmetic expression that assigns a priority to each unvisited city, which is
calculated from the problem attributes; in the NN heuristic, the only considered
attribute is the distance dij .

A good priority rule usually produces good solutions for a number of in-
stances, but it may produce bad solutions for other instances as well. At the
same time, it is clear that different rules may produce quite different solutions
for the same instance. For these reasons, it is often the case that a single rule
may not be robust enough to produce good solutions for all the instances in a
given set. To deal with this issue, a suitable alternative may be to exploit en-
sembles of rules so that each decision is taken from the aggregated values of the
individual rules instead from just a single rule. In this way, a number of rules
work together to produce a single solution.

To aggregate the priorities from the rules in the ensemble, we may use the
classic summation or voting methods, each one having their own strong and
weak points. In our study, we consider the vote combination method proposed
in [6], where the priorities given by the rules are normalized so that each rule
assigns 1 to the city with highest priority and 0 to the remaining ones. The city
with the most votes is the one chosen by the ensemble, breaking ties uniformly.

3 Building heuristics and ensembles

The methodology used in this paper is similar to that used in [5, 6, 12, 9] for
some scheduling problems. It consists of two steps: 1) a sufficiently large pool
of heuristics, i.e., priority rules, is evolved by some hyper-heuristic, in this case
Genetic Programming (GP), and 2) from this pool of heuristics, a search algo-
rithm, in our case a Genetic Algorithm (GA), is exploited to build ensembles. In
the following subsections we explain the main features of the proposed GP and
GA.

3.1 Genetic Programming

Genetic Programming (GP) may be viewed as a hyper-heuristic that is widely
used to evolve heuristics for optimization problems. In [2], the authors demon-
strated that GP based hyper-heuristics may outperform some other machine
learning techniques, such as regression or neural networks, in learning priority
rules for a scheduling problem. In this study, we use a generational GP similar
to the one proposed in [8], which implements the classical genetic operators pro-
posed by John Koza [14]. They are the one-point crossover, the subtree mutation
and the generation of the initial population by means of the ramped half-and-
half method. In this paradigm, heuristics are encoded as expression trees [2],
which are composed by terminal and function symbols. Terminals are relevant



attributes of the problem and function symbols are used to combine the termi-
nals. We have used the following set of terminals for the TSP, which are some
of those proposed in [3]:

– Dcn: Distance from c to n.
– Din: Distance from i to n.
– Dc: Distance from the centroid of the unvisited cities to n.

where c denotes the current city in the partial tour built so far, i is the initial
city and n is a candidate city to be visited next.

Dc is calculated as the distance between c and the point cn̄ (centroid of the
unvisited cities after n) defined by the coordinates x = X−xn

Nrm−1 and y = Y−yn

Nrm−1
where Nrn is the number of remaining cities to visit, X and Y are the summation
of x-values and y-values of the unvisited cities and xn and yn are the coordinates
of n.

These terminals can be evaluated in O(1), as it is demonstrated in the above
work. To do that, X and Y are initialized with the summation of x-values and
y-values of the N cities and, when a city is visited, X and Y are updated by
subtracting the coordinates of the last visited city.

The function set is the same used in [11] for a scheduling problem of a sin-
gle machine with time-varying capacity. Additionally, the proposed alphabet
includes some numeric constants. The whole set of symbols is summarised in
Table 1.

Table 1: Function and terminal sets used to build expression trees. Symbol “-” is
considered in unitary and binary versions. max0 and min0 return the maximum
and minimum of an expression and 0.

Binary functions - + / × max min

Unitary functions - pow2 sqrt exp ln max0 min0

Terminals Dcn Din Dc

Numeric constants 0.1 0.2 . . . 0.8 0.9 1.0

3.2 The Genetic Algorithm

To represent ensembles of maximum size P , we encode a chromosome by a per-
mutation with repetition of heuristics taken P at a time from the pool evolved
by GP. Figure 1 shows an example with 3 rules, all of them are different in
this case. We consider a generational strategy, similar to that used in [12], with
random selection and replacement by tournament among every two mated par-
ents and their two offspring. The initial chromosomes are random variations of
heuristics taken uniformly from the pool. As in [12], we use one point crossover
and a mutation operator that changes randomly a number of heuristics between
1 and P/2 in the chromosome.



Fig. 1: An example of ensemble composed of three rules. Each rule is represented
by the arithmetical expression in each array position.

3.3 The GP and GA fitness functions

In both algorithms, GP and GA, the evaluation of a chromosome involves solving
a training set composed by a number of TSP instances. These instances are
solved by each candidate rule in GP and by each candidate ensemble in GA.
Therefore, the fitness function calculates the sum of distances produced by all
tours created by a heuristic or an ensemble and returns the inverse of this value.

Note that each time a priority must be calculated, the entire tree encoding
the heuristic must be traversed to compute the specific values for each terminal.
Moreover, ensembles must perform this process with each heuristic and then
compute a single priority for each unvisited city. Therefore, we opted to cache
all evaluated chromosomes to prevent GP and GA from repeated evaluation.

4 Experimental study

We conducted an experimental study to analyse the components of the proposed
method. To this aim, we implemented a prototype in Java 8 and ran a series
of experiments distributed into a Linux machine Dell PowerEdge R740: 2 x
Intel Xeon Gold 6132 (2.6GHz, 28 cores) and 128GB. The common termination
criterion is given by 100 generations, and each configuration of GP and GA
is executed 30 times. Additionally, we establish a day (1440 minutes) as the
run-time limit for each execution.

4.1 Preliminaries

The TSPLIB is one of the most used sets of instances to validate solvers for the
TSP. We considered the same instances as in [3], 112 in all, but removed those
that are not of type EDGE WEIGTH TYPE = EUC 2D; so there are 78 left.
We select the same 21 instances from them to compose the test set as in [3]. They
used another set of 49 instances randomly selected from the remaining instances
for training in their genetic program, termed GP-HH, which was parametrised
with a population of 200 individuals, 100 generations as termination criterion
and a maximum depth of trees of 17. Table 2 summarises the results achieved



by heuristics calculated by the GP-HH when solving the test set. As we can
see, heuristics evolved by the GP-HH clearly achieves much better results than
simple classical heuristics such as Nearest neighbour and Nearest insertion.

Table 2: Average distances produced when solving the test set by some classical
heuristic (Nearest neighbour and Nearest insertion) and evolved by the GP-HH
proposed in [3].

GP-HH Nearest Nearest
best neighbour insertion

69705.97 73549.30 73492.49

In this work, our GP approach uses a population size of 200 individuals and
crossover and mutation probabilities of 100% and 2%, respectively, which are
similar to those reported in [8], the stopping condition and population size are
the same as used by the GP-HH in [3]. However, the maximum depth of trees D
that we use is much smaller, being D=8 instead of D=17. On the other hand,
our terminal set comprises of only three instead of the seven terminals used in
[3]. Table 3 shows the run-time (in seconds) necessary for solving the instances
berlin52, lin318 and pr2392 with 200 random heuristics generated with D taken
values 4, 8 and 12. As it is observed, the execution time of GP is directly related
to the number of cities and the number of symbols in the heuristics.

Table 3: Time (in seconds) for solving three instances with three heuristics of
different sizes. These intances have 52, 318 and 2392 cities, respectively. It also
reports the average sizes of those heuristics.

Time (sec.) Avg. Size

D berlin52 lin318 pr2392 of heuristics

4 0.12 1.24 64.57 6.93
8 0.38 11.42 645.93 51.89
12 10.84 176.34 9980.31 493.38

In view of the results, we note that our target machine is not powerful enough
to execute our GP implementation with large D values and number of cities.
Taking into account that the evaluation of ensembles is much more costly than
the evaluation of single heuristics, the GA is parametrised with the population
size of 100 individuals and the crossover and mutation probabilities of 80% and
20%, respectively, which correspond to the values used in [12]. We restricted these
experiments to construct ensembles composed of 3 heuristics and the stopping
condition of 50 generations.
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For all the above reasons, in the following experiments, we have limited the
number of instances in the training set and the maximum sizes of heuristics
for obtaining the results in a reasonable time. The training sets proposed were
composed by selecting a maximum number of instances N with less number of
cities The instances were picked from the set of 78 instances, disregarding the 21
instances (with a total of 11757 cities) used for testing. Additionally, we removed
8 instances with more than 4000 cities, resulting in a total of 49 instances with
a number of cities between 52 (berlin52.tsp) and 3795 (fl3795.tsp), which sum
up to a total of 37303 cities. The training sets are summarized in Table 4.

Table 4: The seven training sets proposed that are composed by the N instances
with less number of cities.

Number of cities

N Cities

7 574
14 1391
21 2595
28 4722
35 10454
42 19756
49 37303

4.2 Results

Table 5 shows the results achieved by heuristics evolved by GP when solving
the training and test sets. We observe that when the whole training set is used
(N=49), the time taken by GP is prohibitive even though it evaluates half dif-
ferent chromosomes than the other combinations, due to the stopping condition
is given by 1440 minutes execution, which happens before completing 100 gen-
erations. When N takes values 7 and 49, training sets with the smallest and
largest number of cities respectively, the results in test are worse than other
training sets, such as when N takes values 21 and 42, training sets with the
best results in test. Specifically, with N=42 the heuristics are better than those
calculated by [3]. Furthermore, our GP approach uses fewer training instances,
fewer terminals to compose heuristics and smaller maximum size. Thus, we can
conclude that our GP approach is able to achieve similar results as GP-HH, but
evolving simpler heuristics. From our point of view, the high standard deviation
(SD) in the test set with all settings is indicative of the stochastic nature of GP
and provides motivation to use more robust methods like ensembles.

To build ensembles, we recorded all heuristics of the last population in each
GP execution. Therefore, a total of 6000 heuristics (200 individuals and 30 exe-
cutions) were collected from each training set. With the seven sets of heuristics,



Table 5: Results achieved by the best heuristic evolved in each execution of
GP using seven training sets. Results with N=49 are got before complete 100
generations.

Training Test Time

N Best Avg. SD Best Avg. SD (min) Dif.

7 27993.56 28350.12 5038.23 69454.45 71322.78 13087.45 2.80 15434.67
14 35672.09 36262.86 6532.08 68829.59 70295.88 12660.79 8.62 15815.00
21 34398.35 34900.26 6372.18 69527.13 69993.02 12550.59 19.02 15468.60
28 31901.50 32332.86 5756.63 69277.89 70149.60 12841.70 55.42 15499.37
35 52672.88 53312.92 9550.57 69262.11 70190.18 12772.45 317.24 15262.13
42 67907.92 68480.39 12275.50 68757.23 69579.94 12422.91 976.42 15377.30
49 88598.57 89176.15 15966.83 68900.89 70035.29 12605.37 1440.00 7178.10

Table 6: Results achieved by the best ensemble evolved in each execution of
GA using seven training sets and focusing on three as the size of ensembles.

Training Test Time

N Best Avg. SD Best Avg. SD (min) Dif.

7 27873.02 28014.24 47.48 69373.19 70445.39 711.62 2.05 2804.17
14 35433.68 35575.04 63.88 69361.87 69940.64 204.93 6.19 2972.60
21 34192.74 34324.42 60.16 69516.05 69848.49 234.67 14.61 2965.13
28 31677.43 31787.73 60.21 69171.82 69831.51 403.42 44.41 3040.57
35 52295.07 52430.72 83.70 68830.68 69835.40 524.95 253.81 3041.53
42 67475.08 67672.47 100.91 68966.14 69567.59 343.50 778.44 2992.97
49 87679.24 87984.75 114.64 68587.06 69493.56 429.87 1440.00 1639.20

we generated a large pool of heuristics to build ensembles. After eliminating du-
plicate heuristics (those syntactically equal), 35 296 heuristics compose the set
used for building ensembles.

Finally, to assess the viability of ensembles we executed the GA to build
ensembles of size 3. The results are summarized in Table 6 and Figure 2. From
our point of view, ensembles are more robust than single heuristics since they
are always perform better on average and show lower standard deviation when
using the same training set, especially for the smaller sets. However, the best
solutions are achieved by single heuristics in some cases. Additionally, there is
a considerable gap between the best and average solutions in the test set which
motivates further experimentation with alternative combination methods and
ensemble sizes, which can help to better predict the behaviour in the test set.
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Fig. 2: Boxplots obtained from the results reached on the test set by the heuris-
tics and ensembles evolved from the 7 trainning sets.

5 Conclusions and Future Work

We have seen that Genetic Programming is a suitable hyper-heuristic to evolve
priority rules to solve the TSP that perform better than classic heuristics, as
Nearest Neighbour or Nearest Insertion, designed by experts. Even though this
is not new, in our experiments we obtained heuristics that are simpler than pre-
vious heuristics obtained by other GP implementations. But the main conclusion
we may draw from our study is that ensembles obtained combining just a few
heuristics (3 in our experiments) are able to improve the results from the best
heuristic working alone. At the same time, we consider that there is still room
for ensembles to improve. To this end, we will try to devise new methods to
exploit them more efficiently.
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