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Abstract—Genetic programming (GP) is a powerful hyper-
heuristic method used for evolving dispatching rules (DRs).
DRs are commonly used to solve scheduling problems in which
scheduling decisions have to be performed in a small amount of
time, and are often based on incomplete information. Although
GP is the most commonly used method for evolving DRs, it
suffers from a serious problem called bloat, which represents
the uncontrolled growth of expression trees during evolution.
Bloat usually has two important repercussions on the evolved
DRs. First, DRs become hard to understand and it is unclear by
which strategy they perform scheduling decisions. Secondly, some
trees can also include parts that are a result of overfitting on the
training set and which reduce their generalization ability. To deal
with the problem of bloating DRs, we propose a simplification
method consisted of two parts: algebraic reduction and pruning.
The simplification method is applied after the normal evolution
process with GP is done to reduce the complexity of the evolved
DRs. The results demonstrate that it is possible to reduce the
number of nodes in an expression tree without significantly
deteriorating its performance. This shows that the DRs evolved by
GP are bloated and that substantial parts of them are redundant.

I. INTRODUCTION

Automatically designing dispatching rules (DRs) for
scheduling problems has become a viral research direction in
the last several years [1], [2], [3]. Although a wide variety
of methods can be used for generating new DRs, genetic
programming (GP) received the most attention in this regard.
Its popularity over other methods like artificial neural networks
does not come only from a better performance, but also
from their ability to provide symbolic expressions that can be
interpreted [4]. However, GP suffers from a serious problem
that is denoted as bloat, which is the uncontrolled growth of
expression trees during the evolution. This has a negative effect
on the interpretability of the evolved expressions, and as such
it is not easy to determine the strategy by which the evolved
rules perform different scheduling decisions.

Many methods have been used to limit the effects of bloat,
some of which include limiting the maximum depth of the
expression tree or using parsimony pressure [5]. However, it
is difficult to specify restrictions on the size as it might not
be known which expression complexity is required for solving
a problem. Additionally, even if the size of the expression is
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constrained, this still does not provide a guarantee that the
entire expression will be meaningful. Therefore, an alternative
approach to increase the interpretability of DRs is to use
methods which simplify the expression.

The goal of this paper is to apply two simplification
methods to reduce the complexity of DRs evolved by GP.
The first procedure performs an exact simplification, which
means that the expression retains the same behaviour, i.e.
for the same inputs the expression will calculate the same
result before and after the simplification is performed. The
second procedure allows a change in the behaviour of the DR
by eliminating subexpressions which contribute the least to
the solution quality. Both methods are applied to reduce the
complexity of expressions evolved by GP. This means that GP
is executed normally, without any changes, and after it evolves
a DR, the two simplification procedures are applied to reduce
its complexity. In that way the complexity of GP does not
increase, and the method can be applied on already existing
DRs to reduce their complexity.

The rest of the paper is organised as follows. Section II
provides an overview of related works. Section III provides
background on the considered problem, while section IV
describes the automatic design of dispatching rules. In section
V the proposed simplification procedure is described. Section
VI describes the experimental setup, and in section VII the
obtained results are displayed and discussed. Finally, in section
VIII our conclusions are listed along with ideas for future
work.

II. RELATED WORK

GP has been used to generate DRs for different scheduling
problems, like the one machine environment [6], jobshop [7],
unrelated machines [8], and resource constrained scheduling
problem [9]. Recent years saw the emergence of several
research directions in the area of automatically designing
DRs, which include multi-objective optimisation [10], [11],
ensemble learning methods [12], [13], [14], feature selection
[15], [16], and many others. Although interpretability of DRs
has been marked as an important research direction in [1], this
line of research has still received very little attention.

In [17] the authors examine how the size of the evolved
DRs correlates with its performance. The results demonstrate



that as the size of the expression increases, the performance of
the generated rules improves. However, as the sizes become
larger, the improvements become smaller. This shows that the
increase in the complexity of rules does not necessarily lead to
a significant increase in the quality of DRs. In [18] the authors
applied Dimensionally Aware GP (DAGP) [19] to evolve
expressions which adhere to certain semantic rules. With
DAGP it was possible to obtain dimensionally correct rules.
However, this did not increase their intepretability. A similar
direction to increase the interpretability of evolved rules was
investigated in [20], where the authors applied a strongly
typed grammar-based GP to constraint the search space to
rules with a better interpretability. The results demonstrate that
using the proposed method it was possible to obtain smaller
DRs which were more interpretable than the ones obtained
by standard GP. In [21] the authors use DAGP and propose a
new interpretability measure which is added to the fitness for
balancing between the quality and dimensional consistency of
the evolved rules. The results demonstrate that the proposed
method can achieve a trade off between effectiveness and
interpretability of the evolved rules.

Until now, most studies in improving the interpretability
of DRs were aimed at adapting the evolution process, which
was mostly performed by including semantic rules. However,
another approach to simplify DRs would be to remove re-
dundant parts of the expression after it has been evolved.
Such a process was performed manually in some studies to
obtain rules which can be more easily examined [22], [23].
Naturally, performing simplification manually is a difficult and
time consuming process. However, many procedures have been
designed to automatically reduce the size and complexity of
expressions.

The problem of simplifying expression trees has already
been covered in many published studies. These studies have
focused both on methods that simplify the expression tree
without changing its performance compared to the original
tree, and those that do change its performance. Methods for
simplifying the expression tree without changing the original
trees behaviour are usually based on performing algebraic
simplification of the mathematical expression which the tree
represents. Algebraic simplification is performed by applying
algebraic rules to replace an expression by an equal expression
which is simpler than the original. In [24] and [25] algebraic
simplification was applied during evolution, rather than ap-
plying manual simplification after evolution. In [26] a new
simplification method for symbolic regression was proposed.
The proposed method replaces subtrees with known, simple
subtrees if their evaluations over a set of regression points are
the same.

The simplification methods that change the performance
of the tree are based on the idea that not all parts of the
tree contribute equally to the overall performance of the tree.
This means that by removing the expressions that are not
meaningful, the expression tree might become much simpler
while the behaviour of the tree would not change much. These
simplification methods differ by the techniques used to select

which parts of the expression should be eliminated. In [27]
a bloat control mechanism is proposed. The mechanism is
based on evaluating the contribution of each function node to
the expression tree and removing nodes without contribution
before applying crossover to generate new individuals. In
[28] a pruning scheme, called constant subtree pruning, is
described. There, a subtree is replaced by its expected value
calculated over a dataset if that replacement does not produce
a statistically significant change in the output of the tree.
A method for generating classification rules for the financial
stock market is described in [29]. In the proposed method,
rules are extracted from a decision tree, evaluated, and then
pruned if they did not exceed the desired pruning threshold.

III. PROBLEM DEFINITION

This study examines the parallel unrelated machines
scheduling problem. In it, there are n jobs that need to be
executed on one of the m available machines. The subscript
7 is used to denote a certain job, whereas the subscript ¢
denotes a certain machine. For each job, several properties are
defined. The processing time of job p;; specifies the time that
is required for machine ¢ to process job j. In the considered
environment it is presumed that there is no relation between
the execution times of different jobs, or between jobs on
different machines, and therefore the processing time for each
job-machine pair needs to be specified. Each job has a release
time r; which defines the earliest moment at which a job can
be considered for scheduling. A due date d;, which specifies
the moment until when a job needs to finish, is also defined
for each job j. The due date is a soft constraint, which means
that a job can finish after its due date, however, in that case
it incurs a certain cost. Finally, all jobs do not have an equal
importance, and are therefore associated with different weights
w;. Additional assumptions in the considered problem are that
the jobs are not preemptive (the execution of a job cannot
be interrupted), machines are always available, machines can
execute one job at a time, and all jobs are independent and
can be executed on any of the available machines.

Although many different scheduling criteria have been con-
sidered for the unrelated parallel machines environment, in
this paper we consider the minimisation of the total weighted
tardiness criterion (TWT). The TWT is defined as in equation
(1), where T} is defined as in equation (2).

TWT =Y w,T;
T; = max(C; — d;,0)

(h
(2)
IV. AUTOMATIC DESIGN OF DRS

DRs are simple heuristics which build schedules by deciding
which job should be scheduled on which machine each time
at least one machine is empty and there is at least one job that
needs to be scheduled. Dispatching rules consist out of two
parts - a priority function and a schedule generation scheme.

The schedule generation scheme chooses which job-
machine pair is going to be selected next for scheduling based
on the priorities calculated for each available job-machine



pair. The pseudocode for the schedule generation scheme is
denoted in Algorithm 1. Since the schedule generation scheme
is generally quite simple, it is usually defined manually.

Algorithm 1: Schedule generation scheme used by
generated DRs

1: while unscheduled jobs are available do

2:  Wait until at least one job and machine are available
3:  for all available jobs j and each machine ¢ in m do
4 Get the priority 7;; of scheduling j on machine i
5:  end for

6:  for all available jobs do

7 Determine the machine with the best 7;; value

8
9

end for
:  while jobs whose best machine is available exist do
10: Determine the best priority of all such jobs
11: Schedule the job with best priority

12: end while
13: end while

However, the method by which the priority of a job-
machine pair is calculated is not defined within the schedule
generation scheme. The expression used to calculate priorities
of job machine pairs is called a priority function. Since it
is challenging to manually define a priority function for a
specific problem, this process is usually automated with the
use of genetic programming. Genetic programming evolves
programmes or mathematical expressions by using individuals
represented by expression trees. Expression trees consist out of
functions and terminals. Terminal nodes are the leaf nodes in
an expression tree. They provide specific information about the
scheduling problem which is being solved. The terminals that
were used are listed in Table 1. The function set consisted out
of 5 different functions: addition, subtraction, multiplication,
protected division which returns one in case of division by
zero, and the unary positive operator which returns zero
if the provided value is negative and returns the provided
value otherwise. Both sets were selected based on previous
experiments [18].

V. SIMPLIFICATION PROCEDURES

In this study, two simplification procedures were used to
reduce the complexity of the evolved DRs: the reduction pro-

TABLE I: Terminal set

Terminal Description
pt processing time of job j on machine @ (p;;)
pmin minimal processing time (MPT) of job j
pavg average processing time of job j on all the machines
PAT time until machine with the MPT for job j becomes available
MR time until machine ¢ becomes available
age time which job j spent in the system

dd time until which job j has to finish with its execution (d;)
weight of job j (w;)

w
SL slack of job j, —max(d; — pi; —t,0)

cedure which does not change the behaviour of the expression,
and pruning which allows a change in the behaviour of the DR.
These simplification procedures were applied to the best trees
obtained by different GP runs.

A. Reduction

The goal of the reduction simplification procedure is to
change the expression in a way that its behaviour remains
completely the same. This is done by traversing the tree and
identifying patterns of expression which can be replaced by
a smaller expression with the same behaviour. For example,
the expression x + 0 can be replaced by = without any loss in
meaning. The method which is applied for reduction is based
on the Compare-Match algorithm which is proposed in [30].
In this algorithm the entire expression tree is traversed and
parts of the expression are matched against a set of predefined
reduction rules. The set of the reduction rules that are applied
for simplification is given by equations 3 to 23. These rules
include simple mathematical rules which eliminate neutral
elements for certain operations, or apply simple mathematical
rules to simplify the expression. It needs to be stressed that
the variables X, Y, and Z do not only represent an input
variable, but can represent an expression (subtree) of any kind.
This allows the reduction method to match the rules to any
part of the expression. Since it is possible that after applying
one reduction rule it would be possible to apply other rules,
after the entire tree is traversed the entire procedure is repeated
if at least one simplification rule was applied. Therefore, the
procedure terminates when in a single pass through the tree
no simplification was performed.
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B. Pruning

The goal of pruning is to reduce the size of the expression
by removing parts of the expression which are deemed to
contribute the least to the quality of the expression. This is
performed in a way that the entire tree is traversed and each
node is replaced by a neutral element. A neutral element is
defined as an element which does not have an influence on
the calculation of an operator. For summation and subtraction
0 represents a neutral element, whereas for multiplication and
division the neutral element is 1. For the positive operator
there is no neutral element, since it has only one operand. By
replacing a subtree with a neutral element, it is effectively ex-
cluded from the expression, whereas the rest of the expression
is kept equal to the original.

Removing parts of the expression in such a way can have a
significant impact on the semantic of the original expression.
Therefore, the expression obtained after the simplification
needs to be evaluated. This is done by evaluating the ex-
pression on a given set of problem instances and comparing
the fitness of the original expression with the simplified one.
Although different strategies can be used to accept or reject
the simplified expression, here we use a simple method which
is based on a relative fitness change (RFC). This measure is
calculated as in equation (24), where f, represents the fitness
of the original expression, whereas f; represents the fitness of
the simplified expression. The simplification is accepted only
if RFC is smaller than a given pruning threshold specified by
the user. Similar as with reduction, this method is also applied
iteratively. Each time a part of the expression is eliminated,
the procedure starts from the root node, and traverses the
entire tree once again. This process is repeated until no further
simplification is accepted during a single traversal of the
expression.

RFO: fsffo

Jo

C. Complete simplification procedure

(24)

The simplification procedure used in this paper represents
a combination of the previous two methods, which are then
invoked on a given solution. The simplification procedure
consists out of three steps. In the first step the reduction
method is applied to simplify the initial solution algebraically.
After that, pruning is applied to detect unnecessary parts in
the expression obtained as the result of the first step. Finally,
another round of reduction is performed to eliminate any
terminal nodes that were introduced in the previous step.

Since the reduction method is less computationally expen-
sive, it is applied first to reduce the size of the expression and
to reduce the number of nodes that need to be pruned in the
pruning phase. Since pruning introduces neutral elements in
the expression, the reduction method is applied once again
to remove them from the expression. The obtained result
represents the smallest expression which can be acquired by
these methods for the given pruning threshold. Any further
applications of the simplification procedures would terminate

immediately since no additional rules can be used for further
reductions.

VI. EXPERIMENTAL SETUP

To evolve the DRs, a standard steady state tournament GP
variant with 3-tournament selection was used. The algorithm
used a population size of 1000 individuals, a mutation proba-
bility of 0.3, and 80000 function evaluations as the stopping
condition. All parameter values were previously optimised
[18]. To investigate the effect of the simplification procedure
on DRs of different sizes, GP was executed with tree depths of
3,5,7,9, 11, 13. For each of the considered tree depths, 30
executions were performed to obtain statistically significant
results. The optimisation criterion was the total weighted
tardiness (TWT) criterion. The training and evaluation of
the expressions were performed on two independent problem
instance sets, both consisting out of 60 instances.

After the 30 DRs have been evolved by GP, the simplifica-
tion procedure was applied on each of the evolved rules. To
examine the performance of the simplification method, several
pruning thresholds have been used: 0.01, 0.05, 0.1, 0.15, and
0.2. The simplification procedure was performed using the test
set to evaluate the simplified expression to determine whether
it should be accepted or not. It should be outlined that the
results for the tree depth of 13 and pruning threshold 0.01
could not be obtained due to a long execution time for several
trees which consisted of around thousand nodes. To examine
whether a statistically significant difference exists between
the original and simplified expressions, the Mann-Whitney
statistical test was performed. The results were considered to
be significant if the obtained p-value was lower than 0.05.

VII. RESULTS AND DISCUSSION

Table II represents the results obtained on the test set. The
bold values denote that, for the tested pruning threshold values,
the simplified DRs achieved significantly better or equally
good results as the DRs prior to simplification. From that,
several interesting phenomena can be observed. Generally, for
the two lowest pruning threshold values the fitness of the
rules stays the same or even improves after the simplification.
This indicates that the evolved expressions started bloating
and include unnecessary parts in parts which can be removed
without any consequences, or that the trees even started to
overfit on the training set. Therefore, slightly pruning such
DRs is shown to be extremely beneficial.

When using pruning thresholds of 0.1 and 0.15 the sim-
plified expressions start to perform worse than the original
expressions for tree depths 5 and 7. For other tree depths
the results are still at least equally good as those obtained
by the original expressions. An interesting observation can be
made for the expressions generated with depth 3, in which case
the results significantly improved when using larger threshold
values. It seems that in the case of small tree depths the
expressions overfit too easily on the training set. However, the
generated rules contain valuable knowledge, which becomes
clear when the expressions are further simplified. Larger tree



TABLE II: Test set fitness results.

Pruning thresh 0.01 0.05 0.1 0.15 0.2

depth original \ final final final final final
min 13.25 13.25 1330 13.30 13.30 13.38

3 med 14.21 14.21 1421 1344 1344 1348
max 14.91 1491 1491 16.07 16.07 16.07

min 12.88 13.01 13.01 1324 1324 13.44

5 med 13.94 1393 1375 1423 1429 14.64
max 14.76 1495 1491 15.18 16.14 18.61

min 13.05 13.06 12.68 13.00 12.86 13.38

7 med 13.98 14.00 14.01 1423 1450 14.54
max 17.35 2099 2449 23.67 1586 19.28

min 12.80 12.87 1292 13.05 1346 13.46

9 med 14.24 14.15 14.18 14.23 1444 14.82
max 18.20 1774 1646 16.04 16.02 16.68

min 12.92 1293  12.89 1290 13.31 1343

11 med 14.28 14.25 1422 14.06 14.22 1447
max 328.1 46.05 46.05 46.05 46.05 46.05

min 12.58 - 1299 13.09 13.30 13.30

13 med 14.40 - 14.27 1430 1433 14.68
max 18.34 - 21.14 20.85 19.73 20.84

depths also benefit from a larger pruning threshold, which also
seems to indicate that the evolved expressions contain parts
that are simply a consequence of overfitting on the training
set. Since for tree depths of 5 and 7 larger pruning threshold
values lead to deterioration of the results, this might indicate
that these tree depths are appropriate for this problem and thus
be less susceptible to including unnecessary parts.

For the largest pruning threshold value it can be seen that
the results deteriorate for most tree depths, although in some
cases they are still statistically equally good to those obtained
by the original DRs. However, these results indicate that at
this point the procedures started to remove important genetic
material, which then lead this expressions to under perform.

Aside from the results on the test set, it is also interesting
to observe the results on the training set that are presented
in Table III. These results show how the fitness deteriorates
more and more as the pruning threshold is increased. This
means that the methods remove parts of the DR which directly
influence its performance on the test set. However, as on
the test set the deterioration is not as prominent, we can
conclude that the method was efficient in removing parts of
the expression which did not contain general knowledge, but
rather parts which overly specialised for the test set.

Table IV denotes the expression sizes (in the number of
nodes) that were obtained by GP and after each simplification
procedure. The column denoted as "original" denotes the size
of the original expression. The first "reduce" column represents
the expression size obtained after the initial reduction. Since
this procedure has no parameters, it always produces the same
result. The remaining columns show the results obtained by
pruning for different pruning threshold values. After pruning
the reduction method is again performed to eliminate any

neutral elements that were introduced in the expression during
pruning.

The table shows that the very first application of reduction
had very little effect on the size of the expressions. This means
that the original expression had very little parts that could be
eliminated without affecting the semantic of the expression.
However, pruning shows a much better ability to reduce the
size of the expression. Naturally, the pruning threshold has
a large effect on how much the expressions can be reduced.
However, even for the smallest pruning threshold value the
expressions can be reduced by around 30% in some cases. As
the pruning threshold increases the efficiency of these methods
also increases, especially for the larger tree depths where the
expressions were regularly reduced to expressions containing
between 10 and 20 nodes. Naturally, this does come with
a negative effect on the fitness of the evolved expressions.
The table also shows that the additional reduction step after
pruning is important as it does significantly reduce the size of
the expression. This shows that pruning removed a lot of sub
expressions and introduced a large amount of neutral elements.

Figure 1 shows an example of how an evolved PF is
simplified with reduction and pruning. Subfigure la shows
the original expression which consists of 25 nodes. The first
step which is performed is applying the reduction method,
which in this case cannot reduce the expression as it cannot
match any of the reduction rules to any of the subexpressions
in the tree. In the next step, pruning is performed and the
procedure found an expression which it then replaces with
0 (since it parent node represents the summation operator).
The result of this pruning step is denoted in subfigure 1b.
After this subexpression has been pruned, the pruning steps
restarts from the root and finds that it can remove another



TABLE III: Train set fitness results.

Pruning thresh 0.01 0.05 0.1 0.15 0.2

depth original \ final final final final final
min 14.05 14.05 1428 15.04 1521 15.47

5 med 14.66 1476 1526 15.88 16.13 16.51
max 15.20 1528 1591 1649 17.17 17.88

min 13.88 14.00 1424 15.00 1524 15.24

9 med 14.40 1452 1503 1558 16.21 16.57
max 15.07 15.11 1578 16.35 17.26 17.69

min 13.61 13.73 1422 1477 1530 15.30

11 med 14.41 1454 1500 15.62 16.15 16.58
max 353.8 46.13 46.13 46.13 46.13 46.13

min 13.69 - 1435 1504 1533 15.54

13 med 14.44 - 1512 1569 16.11 16.47
max 15.65 - 16.36 17.11 17.99 18.58

min 14.02 14.16 1459 15.11 15.11 15.49

7 med 14.47 1453 15.10 15.62 16.16 16.52
max 14.88 23.72 2642 2956 1694 17.77

min 15.07 15.07 1507 15.07 1536 15.36

3 med 15.44 1544 1544 16.55 16.55 16.55
max 15.78 1578 16.01 16.76 16.88 18.44

part of the expression, and the result is shown in subfigure
lc. In the next pass of the reduction procedure, no part can
be further removed without significantly reducing the quality
of the expression, and therefore the pruning procedure is
terminated. Now the reduction procedure is applied once again
to remove any neutral elements and unneeded operators from
the expression. The final result is shown in subfigure 1d,
which shows that the O constant and its parent operator were
removed from the expression. The final expression has only 9
nodes. In comparison to the original size, we can see that the
simplification procedures reduces the expression to almost a
third of its original size.

An important property of the simplification methods is their
execution time. This is especially true for pruning since it has
to perform a lot of function evaluations during its execution.
Table V outlines the average execution time in seconds re-
quired to execute pruning with different threshold values for a
single DR. For smaller tree sizes, the method can be executed
in less than a minute. However, as the sizes increase, it is
evident that the execution times become too large as there are
too many combinations that need to be tested. This naturally
represents a limit of the applied procedure. However, in the
context of DRs, it is highly unlikely that DRs of such large
sizes would even be evolved. A similar situation is evident for
the threshold values, since for larger values the execution time
decreases as it allows the procedure to eliminate larger portions
of expressions. The lowest threshold value required the most
time. However, since the previous results demonstrated that
it does not offer any benefits in comparison to some larger
values, they can be used to decrease the execution time without
any repercussions on the performance of DRs.

VIII. CONCLUSION

This paper considers the problem of simplifying automat-
ically generated dispatching rules. The results have demon-
strated that when using the considered simplification pro-
cedures, it is possible to reduce the number of nodes in
the expression, and as a consequence, also improve their
interpretability. Out of the applied simplification procedures,
pruning was shown to be more appropriate as the evolved
rules usually did not include parts which could be algebraically
reduced. The results also show that significantly reducing the
size of dispatching rules does not necessarily result in sig-
nificantly worse solution. This demonstrates that the evolved
expressions are bloated, and that significant parts of them
are redundant and therefore do not have any effect on the
scheduling decisions that are performed.

Future work could be focused on employing the proposed
simplification procedures online, during the evolution process.
The goal in this line of research would be to determine the best
strategy by which they should be employed (for example how
often and on which individuals to apply simplification during
evolution). In addition, as the pruning methods execution time
is high, especially for smaller parameter values, another re-
search direction would be to examine possibilities of reducing
the number of tested combinations in this simplification step.
Finally, the discussed simplification methods were applied to
expressions generated to optimise the TWT criterion. The sim-
plification methods could be applied to expressions generated
to optimise other objectives or to expressions designed for
multi-objective problems.
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