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Abstract

In many real-world situations, it is necessary to make timely scheduling deci-
sions. In most cases, metaheuristic algorithms are used to solve various schedul-
ing problems because of their flexibility and their ability to produce satisfactory
results in a short time. In recent years, several novel or hybrid metaheuris-
tics have been proposed for scheduling problems. Although such research leads
to new insights, it inevitably causes certain problems. First, it becomes un-
clear which methods perform best, especially if they are not properly compared
with existing ones. Second, the proposed methods become increasingly com-
plex, making them more difficult to understand and apply. The goal of this
study is to investigate the possibility of defining efficient but simple iterative lo-
cal search (ILS) methods for the parallel unrelated machines environment with
minimization of the total weighted tardiness. To improve the efficiency of ILS
methods, several design decisions, such as the construction of the initial solu-
tion and choice of local search operators. The proposed methods have been
compared with several metaheuristics, of which they achieve significantly better
results. Thus, we conclude that it is not necessary to increase the complexity of
metaheuristics to achieve better results. Rather, better results can be obtained
with simple but well-designed local search methods.

Keywords:
Scheduling, Unrelated machines environment, Metaheuristic, Local search,
Iterated local search, Total weighted tardiness

1. Introduction

Scheduling processes are important in many real-world situations, such as
planning in manufacturing plants (Kofler et al., 2009; Ouelhadj & Petrovic,
2009), universities and schools (Lewis et al., 2007), airports (Cheng et al., 1999;
Hansen, 2004), hospitals (Burke et al., 2004; Petrovic & Castro, 2011), and many
others. In such problems, the goal is to assign a certain number of jobs or tasks
to a limited number of machines or resources in such a way that all required con-
straints are satisfied and a certain user-defined criterion is optimised (Pinedo,
2012). Solving most scheduling problems is difficult because they are NP hard.
Exact methods can provide optimal solutions to such problems Fanjul-Peyro
et al. (2019), but they cannot be applied to large-scale problems because it is
not possible to enumerate the entire search space. Therefore, most research
focused on the development and use of methods that do not necessarily provide
optimal results, but can achieve good solutions in a reasonable amount of time.
The studies mainly focused on two types of methods, approximation methods
(Lenstra et al., 1990) and heuristic methods (Morton & Pentico, 1993). Approx-
imation methods provide some guarantee of optimality of the solution (Pinedo,
2012; Wotzlaw, 2012), while heuristic methods provide no guarantees.
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Of the previous two types of methods, heuristic algorithms have attracted
considerable attention because they can be adapted to a wider range of prob-
lems and are easier to design. Heuristic methods used for solving scheduling
problems can be divided into problem-specific heuristics and metaheuristics.
Problem-specific heuristics usually appear in the form of dispatching rules (DRs)
(Maheswaran et al., 1999; Braun et al., 2001; Ðurasević & Jakobović, 2018).
DRs are simple heuristics that build the schedule iteratively by deciding which
scheduling decision should be made next, i.e., which job should be scheduled on
which machine. Because of this, they have limited visibility into the problem,
which affects their performance. They can generate the schedule extremely fast,
which makes them ideal for dynamic scheduling problems. On the other hand,
metaheuristic algorithms search as much of the solution space as possible by
starting with complete solutions and iteratively improving them by introducing
changes (Hart et al., 2005). Such methods can achieve extremely good results
because they do not construct the schedule greedily, but rather try to improve
the existing ones.

Various metaheuristics have been applied to the problem of scheduling on
parallel unrelated machines. Researchers mainly used genetic algorithms (GAs)
Holland (1992), tabu search (TS) (Glover, 1990), simulated annealing (SA)
(Kirkpatrick et al., 1983), ant colony optimisation (ACO), variable neighbour-
hood search (VNS), variable neighbourhood descent (VND) Mladenović & Hansen
(1997), greedy randomised adaptive search procedure (GRASP) Feo & Resende
(1995), and others. Among such a large number of methods, it is difficult to
choose the one that is most appropriate for the problem under consideration.
Moreover, the above algorithms are often combined into sophisticated methods
that are difficult to understand and reproduce. In many cases, novel metaheuris-
tics are also proposed to deal with scheduling problems. However, such methods
usually offer limited novelty (Sörensen, 2015) or the problem in question could
have been solved more effectively with a simpler method that yields competitive
results (Molnar et al., 2016).

Local search (LS) operators are popular methods for searching in the neigh-
bourhood of the current solution. They have been used in various optimisation
problems, including unrelated machines. Due to their increasing popularity, a
wide range of LS operators have been proposed in the literature, along with
metaheuristics that define how they should be applied. In addition, hybrid al-
gorithms are proposed to further improve performance, which increases their
complexity. This inevitably leads to the situation where it is difficult to choose
the right LS operators or to determine which strategies should be used to apply
them to a problem. However, instead of developing new LS operators or hybrid
methods, one should consider if with already existing operators it is possible to
construct simple methods that produce high-quality results.

This paper investigates whether various LS operators can be combined into
simple but efficient methods for solving the problem of scheduling parallel un-
related machines. For this purpose, different approaches from the literature
were analysed, based on which the most important parts of LS methods were
identified, such as initial solution generation, perturbation and LS operators.
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Based on these observations, two simple iterative LS methods were defined. To
provide an exhaustive analysis of the proposed methods, several LS operators
were selected from the literature and used as building blocks for the proposed
methods. The studied methods were compared with several metaheuristics and
the results showed that the iterative LS procedures easily outperform all of the
methods. These results indicate that simple LS based methods are as powerful
as the more complex metaheuristics. This conclusion is important because it
shows that it is more beneficial to focus on constructing simple LS based meth-
ods than to apply metaheuristics that may not be appropriate for the problem.
The contributions of this work can be summarised as follows:

1. Definition of two simple iterative LS methods and identification of the key
design decisions in their development.

2. Analyse the effectiveness of the various LS operators proposed in the lit-
erature.

3. Investigation of the influence of different design decisions (initial solution
generation, solution acceptance criterion, application of path relinking) on
the performance of the simple iterative LS methods.

4. Analysis of the performance of the simple iterative local search methods
compared to several previously applied metaheuristics.

The paper is organised as follows. The literature review of heuristic methods
applied to the unrelated machines environment problem is given in Section 2.
Section 3 contains the description of the unrelated machines scheduling envi-
ronment. The overview of the methods applied to solve the above problem is
given in section 4. Section 5 describes the experimental setup and outlines the
obtained results. Finally, Section 6 concludes the paper and provides guidelines
for future research.

2. Literature overview

Until now, a large number of studies have addressed the application of meta-
heuristics to the unrelated machines scheduling problem. Glass et al. (1994)
applied GA, SA, and TS to optimise the makespan criterion. SA and TS used
two neighbourhood operators, job reassignment and job interchange. The re-
assignment neighbourhood moved an job from one machine to another, while
the interchange neighbourhood swapped two jobs on different machines. The
results show that all three algorithms perform similarly. TS was also applied
by Srivastava (1998) to optimise the makespan criterion. It uses a single neigh-
bourhood operator that reassigns a task to all other positions in the schedule
and selects the best solution. Kim et al. (2002) use SA with six operators to
construct the neighbourhood of the current solution. Since the authors consider
batches of jobs, they use operators that insert and exchange jobs and batches,
and operators that merge and split batches of jobs. The obtained results show
that these operators improve the performance of the SA method. The unrelated
machines problem with batches is considered by Kim et al. (2003), where SA
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is applied with other heuristics to optimise the total weighted tardiness objec-
tive. However, the method uses only a single LS operator that exchanges jobs
belonging to different batches or machines. Kim & Shin (2003) use a restricted
TS, which excludes non-effective job moves from the search. The tested method
performs better than some others such as SA or the rolling horizon heuristic.
The problem of scheduling printed circuit boards on unrelated machines using
a composite GA is studied by Hop & Nagarur (2004).

TS was also used by Logendran et al. (2007) with several initial solution
construction methods similar to DRs. The job insert and job swap LS operators
were also used. Raja et al. (2008) used a combination of fuzzy logic and a
GA, to optimise the total earliness and tardiness criterion. The method used
proved to be very effective compared to other methods. A combination of ACO
with SA and VNS was proposed by Behnamian et al. (2009). The authors
apply 3 neighbourhood operators: job swap on the same machine, job swap
between different machines, and insertion of a job on another machine. Based
on these neighbourhood operators, they define LS operators that use a single
neighbourhood operator but apply it to all jobs in the schedule and select the
best result. The hybrid algorithm performed better than any of its individual
components. A competitive evolution strategy was used by Chyu & Chang
(2010) to optimise the total weighted tardiness and flowtime criteria. A GA,
which uses matrix solution coding with new crossover and mutation operators,
was proposed by Balin (2011). Chang & Chen (2011) combine the GA with
dominance properties that allow the algorithm to obtain near-optimal solutions
and outperform other similar methods.

ACO is used by Arnaout et al. (2009) along with a LS operator to improve its
performance. In each iteration, the local search operator either swaps two jobs or
moves a certain number of jobs to different machines. A variable neighbourhood
descent (VND) method is proposed by Fanjul-Peyro & Ruiz (2010) along with
several new LS operators that improve its performance. The authors apply
the swap and insertion LS operators to search for a better solution, but they
also apply three perturbation operators to perturb the solution and avoid local
optima. Fanjul-Peyro & Ruiz (2011) also propose a size reduction method to
further improve the solutions for the makespan criterion. In addition, Fanjul-
Peyro & Ruiz (2012) consider a variant of the problem where it is not necessary
to execute each job and where not every machine may be suitable for running
every job. A novel method called "GARP", which is a combination of GA with
VND and path relinking, was proposed by Haddad et al. (2012). The VND
method applies LS operators that swap jobs on the same and different machines,
as well as an operator that inserts a job on another machine. However, the
operators are applied to all combinations of jobs, and the best obtained solution
is selected.

The parallel unrelated machines environment with limited human resources
is considered by Costa et al. (2013), where the authors use permutation coding
to represent solutions. The TS method is used by Lee et al. (2013) to minimise
the total tardiness criterion. The authors use machine list encoding and propose
eight LS operators to obtain neighbouring solutions. These LS operators per-
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form operations on individual jobs, such as swap or insert, as well as on groups
of jobs assigned to the same machine. The ACO algorithm has been applied
by Lin et al. (2013) along with 3 different LS operators (job swap on the same
machine, job swap between different machines, and job insertion) to improve its
performance. A hybrid GRASP method is proposed by de C. M. Nogueira et al.
(2014) and achieves good performance compared to other similar methods. The
GRASP method uses only the job insertion operator to generate neighbours, but
also includes an iterated greedy method to perturb the solutions. The method
is also combined with path relinking to improve results. The AIRP method,
based on LS, VND and path relinking, is proposed by Cota et al. (2014). The
method uses three local search operators: job swap on the same machine, job
swap between different machines, and job insertion.

A combination of GA, ACO, and SA is proposed by Afzalirad & Rezaeian
(2016). Several metaheuristics, including GAs and bee algorithms, are applied
by Rambod & Rezaeian (2014) to address the problem of scheduling parallel
unrelated machines with rework processes, machine eligibility, and setup times.
Both methods apply a swap local search in their genetic operators. Five hy-
brid metaheuristics, including ACO and TS, are evaluated by Liao et al. (2014).
These methods are applied to solving the unrelated machines scheduling prob-
lem with inbound truck sequencing, and therefore the methods and LS operators
have been adapted for such a problem. The paper draws conclusions about the
situations in which each algorithm variant achieves the best results. A GA
with the permutation and floating point representation was applied by Ðurase-
vić & Jakobović (2016) and the performance was compared with several simple
DRs. Scheduling parallel unrelated machines with heterogeneous delivery vehi-
cles using a single-stage GA is considered by Joo & Kim (2017). Arık (2019)
applied the GA, SA and artificial bee colony (ABC) algorithms, of which the
ABC achieved the best results. All methods used a simple LS operator which
swapped two random jobs. The influence of population initialization in GAs
by DRs was investigated by Vlašić et al. (2019), showing that the use of initial
solutions generated by DRs can lead to a significant improvement in results.
Al-Harkan & Qamhan (2019) propose a two-stage hybrid VNS method com-
bined with SA. Five local search operators were applied, including swapping
random jobs on the same machine, swapping two jobs on different machines,
swapping all jobs between two machines, swapping the order of jobs, and in-
serting a job to a different machines. The proposed method achieved better
results compared to other methods. An enhanced symbiotic organisms search
was proposed by Ezugwu (2019) for the unrelated machines problem with setup
times. Finally, seven solution representations for the unrelated machines envi-
ronment were compared by Vlašić et al. (2020), showing that GA achieved the
best results for permutation-based representations.
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3. The unrelated parallel machines scheduling problem

3.1. Problem definition
The scheduling problem considered in this paper can be classified asR|rj |Twt

(Pinedo, 2012), which means that the considered environment is the parallel
unrelated machines environment with job release times and the total weighted
tardiness criterion is optimised. A single problem instance in this environment
consists of n jobs, where each job must be scheduled on one of the m available
machines. It is assumed that the number of jobs and machines is finite. The
subscript j refers to jobs, while the machines are denoted by the subscript i.
The basic properties that need to be defined for this problem are job processing
times, the release times, the due dates, and the job weights. The processing
time of job j on machine i is denoted as pij . The release time rj of a job defines
the time at which the job is released in the system and can be scheduled. The
due date dj of job j defines the time by which the job needs to be executed.
The due date is a soft constraint, i.e., even if some orders are completed after
their due date, the schedule is still feasible. However, the delay creates a cer-
tain penalty that must be minimised. The weight wj of a job indicates how
important each job and is taken into account in the optimisation criteria. It is
also important to mention that the problem was considered under static and
deterministic conditions. This means that all the property values of jobs are
known in advance and their values do not change.

After a schedule is created based on the above job characteristics, the com-
pletion time Cj of each job can be observed. In addition, for each job j, the
tardiness can be calculated as Tj = max(0, Cj − dj). The tardiness of a job
indicates the time that the job was executed after its due date. If the job was
completed before its due date, the tardiness of that job is 0. Based on the
individual tardiness values, the total weighted tardiness (Twt) of the schedule
can be calculated as Twt =

∑
j wjTj (Ðurasević & Jakobović, 2018). In this

criterion, each tardiness value is additionally multiplied by the corresponding
job weight to prioritise specific jobs. The goal of this study is to minimise the
Twt of the schedule.

To better outline the problem under consideration, the computation of Twt
is demonstrated on a small example. Table 1 outlines job properties of an
instance consisting of 8 jobs and 3 machines. An example solution for this
problem instance is shown in Figure 1 in the form of a Gantt chart that indicates
when each job begins and ends its execution. From the schedule, it can be seen
that jobs 7, 3, 4, 2, and 6 finished before their respective due dates. Therefore,
their tardiness is 0 and they do not contribute to the Twt criterion. This is
because the tardiness of jobs can only be positive, which only applies to jobs
that are late. For example, job 7 has completed its execution at time 41, while
its due date is 70. Therefore, its tardiness would be calculated as follows:
T7 = max(41 − 70, 0) = max(−29, 0) = 0. Jobs 0, 1, and 5 did not finish
by their specified due dates and incur a penalty. For example, job 5 started
execution at time 82, and since its processing time on machine 0 is 17, it finished
its execution at time 99. Since this job should have been completed by time
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Table 1: An example problem instance for the unrelated parallel machines scheduling envi-
ronment

Job j index 0 1 2 3 4 5 6 7

rj 62 85 12 44 68 62 43 0
dj 105 98 60 75 103 91 65 70
wj 0.97 0.65 0.58 0.56 0.87 0.15 0.95 0.40
p0j 40 95 54 38 42 17 43 41
p1j 40 4 69 60 30 36 89 43
p2j 36 12 48 24 79 91 13 65

0 10 20 30 40 50 60 70 80 90 100 110

M0 7 3 5

M1 4 1

M2 2 6 0

Figure 1: An example solution for the considered problem instance

91, its tardiness is equal to T5 = max(99 − 91, 0) = 8. A similar calculation
can be made for the other two jobs. Since job 1 was completed at time 102,
its tardiness is equal to T1 = max(102 − 98, 0) = 4. Similarly, job 0, whose
execution was completed at time 109 but whose due date is 105, has tardiness
equal to T0 = max(109− 105, 0) = 4. In the end, the total weighted tardiness is
calculated by multiplying the tardiness values by the corresponding job weights:

Twt = w0T0 + w1T1 + w2T2 + w3T3 + w4T4 + w5T5 + w6T6 + w7T7

Twt = 0.97 · 4 + 0.65 · 4 + 0.58 · 0 + 0.56 · 0 + 0.87 · 0 + 0.15 · 8 + 0.95 · 0 + 0.40 · 0

Twt = 7.68

The parallel unrelated machines scheduling problem can formally be defined
using a mixed integer programming formulation (Unlu & Mason, 2010; Ðura-
sević & Jakobović, 2020). The time horizon is discretized into time periods
1, . . . , l, where l denotes the largest completion time of any job. The binary
variable χt

ij is equal to 1 if job j ∈ J starts execution on machine i ∈M at time
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t, otherwise it is equal to 0.

min
∑

j

wjTj (1)

s.t.
∑
i∈M

l∑
t=0

χt
ij = 1 j ∈ J (2)

∑
j∈J

i−1∑
h=max(0,t−pij)

χh
ij ≤ 1 i ∈M, t = 1, . . . , l (3)

∑
i∈M

rj−1∑
t=0

χt
ij = 0 j ∈ J (4)

Cj ≥
∑
i∈M

l−1∑
t=0

(t+ pij)χt
ij j ∈ J (5)

Tj ≥ Cj − dj j ∈ J (6)

As mentioned earlier, the objective is to minimise the total weighted tardiness
of the schedule. Constraint (2) ensures that each job is executed on a single
machine at each time. Constraint (3) constrains that a machine executes only
a single job at any time. Constraint (4) ensures that no job is executed before
it is released in the system. Constraints (5) and (6) represent the constraints
imposed on the completion time Cj and tardiness Tj of job j.

3.2. Solution encoding
An important decision when considering the unrelated machines schedul-

ing problem is how to represent the solutions. Various encodings have been
proposed in the literature to represent schedules for this problem, including
permutation (Costa et al., 2013; Ðurasević & Jakobović, 2016), floating point
(Bean, 1994; Behnamian et al., 2009), and matrix encodings (Balin, 2011). In
this work, the machine list encoding (MLE) (Vallada & Ruiz, 2011) is used.
This encoding represents the solution such that each machine has a list of jobs
that are associated with it. The jobs in these lists are enumerated in the order in
which they are executed on the machines. Figure 2 shows an example solution
encoded with MLE for a problem consisting of 3 machines and 10 jobs. In the
example, machine 0 is assigned four jobs that must be executed in the specified
order. This means that job 5 is executed first, followed by jobs 1, 4, and 9 (in
that order). This encoding is used because it is simple, many LS operators have
been defined for it, and algorithms obtain good results when they use it (Vlašić
et al., 2020).

3.3. Dispatching rules
A plethora of DRs have been proposed for the parallel unrelated machines

environment (Ðurasević & Jakobović, 2018). Although their performance is not
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5 1 4 9

7 3 6

2 8 0

Machine 0

Machine 1

Machine 2

Figure 2: Schedule encoded by MLE

comparable to that of metaheuristics, they can be used to obtain a good initial
solution to the problem. The apparent tardiness cost (ATC) rule is one of the
most effective DRs used to optimise criteria related tardiness (Lee et al., 1997;
Ðurasević & Jakobović, 2018). Each time a job is available and a machine is
free, all available jobs are ranked according to the following priority function

πij = wj

pij
exp

(
−max (dj − pij − time, 0)

kp̄

)
,

where time denotes the current time of the system, p̄ denotes the average pro-
cessing time of all jobs waiting to be scheduled, and k denotes the scaling pa-
rameter. Considering the processing time, weight, and time remaining until the
job’s due date, this DR schedules those jobs for which it receives a higher pri-
ority value. The schedule is constructed in a way that each time a scheduling
decision must be made, the priority function is calculated for all released jobs
and the one with the highest priority value is scheduled. This variant of the
rule is suitable for scheduling in dynamic environments, since it does not take
into account future information.

In static problems, all information is already available and can be used.
Therefore, the ATC rule has been adapted for scheduling under static conditions
(Yang-Kuei & Chi-Wei, 2013). Instead of calculating only the priorities of the
available jobs, the extended rule calculates the priorities for all jobs. In this way,
the rule can determine whether it is better to keep a machine free for a more
important job that will arrive in the near future. To account for unreleased
jobs, the rule’s priority function must also be adjusted:

πi,j = wj

pij
exp

(
−max (dj − pij −max (rj , time), 0)

k1p̄

)
exp

(
−max (rj − time, 0)

k2p̄

)
,

where k1 and k2 represent the scaling parameters. This version adds an addi-
tional term to the priority function that takes into account the time until the
job is released in the system, which means that jobs that are released far in the
future have a lower priority value.

4. Iterated local search procedures

Over the years, several LS based methods have been proposed, such as
GRASP (Feo & Resende, 1995), VNS (Mladenović & Hansen, 1997; Hansen
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& Mladenovic, 2001), and VND (Hansen et al., 2016). These methods work in
similar ways, with the differences lying in details such as whether or not one
or more LS operators are used, or whether or not the LS operators are applied
in a deterministic manner. None of these procedures are explicitly used in this
work, instead a simple iterated LS (Lourenço et al., 2010) procedure is defined
to test the LS operators. The general idea of LS based methods is to start with
a given solution to a problem and iteratively improve it by making changes to
it. This is usually done by exploring the neighbourhood of the current solution
and moving to the best neighbour. The neighbourhood can be explored only
once or iteratively until a local optimum is reached. To escape local optima,
these methods introduce random changes to the solutions every now and then.
In this way, it is possible to jump out of local optima and direct the search to
new and possibly better areas.

Based on the previous descriptions, several parts of iterative LS methods
can be identified: initial solution generation procedure, perturbation operator,
improvement LS operators, and solution acceptance strategy. Based on these el-
ements, the iterative local search (ILS) method is outlined in algorithm 1. The
method first generates the initial solution using a selected procedure. Then,
several steps are repeated in each iteration until a certain termination criterion
is met. First, the current solution is perturbed to introduce random changes.
Then, a LS procedure is applied to obtain a new solution. Two ways of improve-
ment are considered. The first, denoted in the algorithm, applies the selected
LS operator until convergence. In the second, denoted as CLS, the LS operator
is applied only once and the obtained solution can either be accepted or not. It
should be noted that methods can use a single LS operator or a set of LS opera-
tors. If a set of LS operators is used, one LS operator is randomly selected from
the set in each iteration and applied to the current solution. Figure 3 shows
the flowcharts of the ILS and CLS variants. The main difference is that CLS
applies the LS operator once in each iteration, after which the current solution
is updated. In contrast, ILS applies the LS operator until convergence, before
testing the acceptance criterion for the obtained solution. All other elements
are the same in both variants.

The last item to be specified is the acceptance criterion for the solution
obtained after LS. The standard ILS accepts a solution only if it is better than
the best solution obtained so far. However, a probabilistic acceptance criterion
is also tested. In this acceptance criterion, a better solution is always accepted,
but in some cases a worse solution may be accepted. The probability of accepting
a worse solution decreases in each iteration by a certain factor (in this case by
a factor of 2). This acceptance criterion is inspired by SA, where there is a
low probability that a worse solution will be accepted. With this strategy, the
algorithm has a greater chance of escaping local optima and starting the search
at another solution.

4.1. Initial solution construction
An important part of ILS methods is the construction of initial solutions. In

many studies, they are constructed randomly. This can have a negative impact
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Algorithm 1 Iterated local search
1: S∗ ← GenerateInitialSolution()
2: while !stoppingCriteria do
3: S′′ ← Perturbation(S∗)
4: do
5: S′ ← S′′

6: S′′ ← LocalSearchOperator(S′′)
7: while f(S′′) < f(S′)
8: if f(S′′) < f(S∗) then
9: S∗ ← S′′

10: end if
11: end while
12: return S∗

Generate initial solution

Perform perturbation

Apply a local search operator

Solution improved?

Update best solution

Termination cri-
terion satisfied?

Return the best obtained solution

No

Yes

Yes

No

(a) Flowchart of the ILS variant

Generate initial solution

Perform perturbation

Apply a local search operator

Update best solution

Termination cri-
terion satisfied?

Return the best obtained solution

No

Yes

(b) Flowchart of the CLS variant

Figure 3: Flowcharts of the two considered iterated local search procedures
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on the algorithm, since it has to expend a lot of effort to reach good solutions.
On the other hand, starting from good initial solutions can have a significant
impact on the results, since the algorithm does not have to invest time to find
areas with good solutions, but can immediately start improving them (Vlašić
et al., 2019). Therefore, the influence of the initial solution operators was also
analysed in this work. For this purpose, five solution initialization techniques
were tested:

• Random initialization (random) - the solution is initialised randomly,

• Processing time initialization (processing) - the solution is initialised by
placing each job on the machine on which it is executed the fastest (Fanjul-
Peyro & Ruiz, 2010),

• Greedy construction initialization (greedy) - the solution is initialised by
placing each job in the order of its arrival on the machine for which the
optimised criterion would be the lowest. Then, a certain percentage of
the jobs with the best criterion values are selected and rescheduled in a
random order (de C. M. Nogueira et al., 2014). In this way, the procedure
balances between a greedy and a random initialisation,

• ATC initialization - the initial solution is initialised using the ATC DR,

• static ATC initialization - the initial solution is initialised using the static
variant of the ATC DR.

4.2. Local search operators
The most important part of ILS is the LS operators used to explore the

neighbourhood of a solution. Many operators have been proposed in the litera-
ture and have been collected and classified as shown in Figure 4. All operators
are divided into two main categories: perturbation and neighbourhood operators.

The goal of perturbation operators is to change the solution to escape from
local optima. These operators do not need to improve the solution, but only
introduce random changes in it to seek a different solution space. This is usually
done by removing several jobs from the schedule and then reinserting them with
a specific strategy. This group of operators consists of:

• Iterated greedy (IG) (Ruiz & Stützle, 2007; Fanjul-Peyro & Ruiz, 2010;
de C. M. Nogueira et al., 2014) - a certain number of jobs are removed
from the schedule. Each of the removed jobs is reinserted into the schedule
at the position that gives the best value for the optimised criterion of the
partial schedule. This means that for each job all positions are tested
where it can be inserted back into the schedule.

• No same place (NSP) (Fanjul-Peyro & Ruiz, 2010) - selects a random job
and places it on another machine that would result in the lowest value of
the optimised objective.
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Local search operators

Perturbative Neighbourhood

Iterated greedy

No same place

Virtual

Random neighbour

Local neighbourhood

Individual

Job insert

Heuristic job insert

Random job insert

Job swap

Job swap one machine

Heuristic job
swap one machine

Job swap two machines

Heuristic job swap
two machines

Group

Job group insert

Chain job group insert

chain job group
and job insert

Chain job insert

Chain job switch

Descent

Job insert descent

Job swap descent

Total descent

Figure 4: Hierarchical diagram of LS operators considered in this study. Grey nodes represent
LS operator groups, while white nodes represent individual LS operators.

• Virtual (VIR) (Fanjul-Peyro & Ruiz, 2010) - works in the same way as
NSP, but the job can be placed on the same machine where it was already
scheduled.

• Random neighbour (RN) - a random neighbour is created by either insert-
ing job in a different position or swapping two jobs.

The neighbourhood group contains operators that search the neighbourhood
of the current solution to obtain new, hopefully better, solutions. The first
group local neighbourhood contains operators that search only the immediate
neighbourhood of the current solution. This means that after searching the
neighbourhood, they return the best solution found in that neighbourhood. The
operators are further divided into two groups: individual and group operators.
The individual operators search the neighbourhood by modifying a single job at
a time, while the group operators perform their operations on a group of jobs.
Individual operators include:

• Job insert (JI) (de C. M. Nogueira et al., 2014) - each job is inserted at
every possible position and the best solution obtained is selected.
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• Heuristic job insert (HJI) (Behnamian et al., 2009) - determines the ma-
chines with the highest and lowest Twt values. Each job from the machine
with the highest Twt value is inserted at every possible position on the
machine with the lowest Twt value. The changes that lead to the best
improvement of the total objective value are kept.

• Random job insert (RJI) (Lee et al., 2013) - similar to HJI, but instead
of trying every possible combination, a random job is selected from the
machine with the highest Twt value and inserted at a random position on
the machine with the lowest Twt value.

• Job swap (JS) - each job is swapped with every other job in the schedule.
If the swap results in a better solution, the change is kept.

• Job swap one machine (JSOM) (Behnamian et al., 2009) - similar to JS,
but the swaps are performed only between jobs on the same machine.

• Job swap two machines (JSTM) (Behnamian et al., 2009) - similar to JS,
but the swaps are performed only between jobs on different machines.

• Heuristic JSOM (HJSOM) (Lee et al., 2013) - similar to JSOM, but one
swap is performed and the machine and jobs to be swapped are selected
randomly.

• Heuristic JSTM (HJSTM) (Lee et al., 2013) - similar to JSTM, but the two
machines and jobs on them which will be swapped are randomly selected.

The group operators include:

• Job group insert (JGI) (Lee et al., 2013) - a random group of jobs is
selected from the machine with the highest Twt value and inserted on the
machine with the lowest Twt value.

• Chain job group insert (CJGI) (Lee et al., 2013) - a random group of
jobs will be selected from the machine with the highest Twt value and
inserted on a random machine (intermediate machine). A new group of
jobs is randomly selected from the intermediate machine and inserted on
the machine with the lowest Twt value.

• Chain job group and job insert (CJGJI) (Lee et al., 2013) - similar to
CJGI, but only one job is inserted from the intermediate machine to the
machine with the lowest Twt value.

• Chain job insert (CJI) (Lee et al., 2013) - similar to CJGI, but jobs are
inserted one after another at the intermediate machine and from the in-
termediate machine to the machine with the lowest Twt value.

• Group job switch (GJS) (Lee et al., 2013) - a random group of jobs is
selected from the machine with the highest Twt value and swapped with
a random job group from a randomly selected machine that is not the
machine with the highest Twt value.
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The last group includes descent methods. These operators are executed
iteratively until no better neighbour exists. This means that they perform a
greedy descent towards an optimum in the given neighbourhood. This group
includes:

• Job insert descent (JID) (Fanjul-Peyro & Ruiz, 2010) - inserts each job at
every other possible position on another machine in the schedule. When
the best solution is found, the procedure is repeated, starting the search
at that solution. The search is repeated until no better solution can be
found.

• Job swap descent (JSD) (Fanjul-Peyro & Ruiz, 2010) - swaps all pairs
of jobs on different machines in the schedule. When the best solution is
found, the procedure is repeated, starting the search at that solution. The
search is repeated until no better solution can be found.

• Total descent (TD) - a combination of JID and JSD, as it searches both
neighbourhoods.

4.3. Path relinking
In several cases, LS operators have been coupled with intensification pro-

cedures to obtain better solutions. One such method is path relinking (PR)
(Glover et al., 2000), which has often been coupled with other methods in solv-
ing scheduling problems. The idea of PR is to construct the path from one
solution to another and hopefully obtain a better solution that lies on that
path. The best solutions are placed in the elite set, which is a list of good solu-
tions. PR is applied after a solution is obtained by the LS operator by selecting
a random solution from the elite set and constructing the path between these
two solutions. The path is constructed using job swaps and insertions until the
two solutions are equal. The best solution on this path is then returned as the
new solution and inserted into the elite set. Since PR has often been used in
conjunction with LS based methods, this paper investigates whether basic ILS
can be improved by combining it with PR.

5. Results and discussion

5.1. Experimental setup
To test the considered algorithms, a set of problem instances was generated

using procedures from the literature (Kim et al., 2003; Lin et al., 2013; Lee
et al., 2013; Vlašić et al., 2020). The generated set consists of 60 problem
instances with different properties. The instances were generated with different
combinations of the number of jobs and machines, with the number of jobs set
to 12, 25, 50, and 100 and the number of machines set to 3, 6, and 10. Job
processing times were generated from the interval pij ∈ [0, 100]. The processing
times of each job are generated with either a uniform, normal or quasi-bimodal
distribution. In this way, it is simulated that jobs are released from different
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sources. The weights of jobs were generated from the interval wj ∈ (0, 1], where
a larger weight means that the job is more important. The job release times are
generated uniformly form the interval rj ∈

[
0, p̂

2

]
, where p̂ is defined as.

p̂ =
∑n

j=1
∑m

i=1 pij

m2 .

Job due dates are generated uniformly from the interval

dj ∈
[
rj + (p̂− rj) ∗

(
1− T − R

2

)
, rj + (p̂− rj) ∗

(
1− T + R

2

)]
,

where T and R are the due date tightness and due date range parameters,
respectively. The due date range controls the dispersion of due dates in time.
The due date tightness specifies how close to the release times of jobs the due
dates are generated, which directly affects the difficulty of the problem. Problem
instances were created using both parameters with values of 0.2, 0.4, 0.6, 0.8,
and 1 in various combinations.

Each tested method was executed 30 times on all problem instances to obtain
statistically significant results. Based on the 30 obtained results, the minimum,
median, and maximum values for each method were calculated. The results
reported in the experiments represent the Twt value obtained for all 60 problem
instances in the set. To determine if there is a statistical difference between
the methods tested, the Kruskal-Wallis test was used when comparing a group
of methods with the Canover method adjusted by Benjamini-Hochberg for the
post-hocc analysis, and the Mann-Whitney test was used for pairwise compar-
ison. The difference in results is considered significant if the obtained p-value
is less than 0.05. The termination criterion was set at 5 seconds per instance,
as the experiments showed that this amount of time is sufficient for the tested
methods to converge. This ensures that each method will perform the same
amount of work and that the comparisons are fair. The parameters for all
methods from the literature were fine-tuned through preliminary experiments
to improve their performance, and the best parameter values were used for the
comparisons.

The lower bound (LB) for the problem instances is not known because they
are too large to be solved by exhaustive search methods. However, the best
result obtained for each instance by any method tested in the experiments was
used to calculate the approximation of the lower bound for the considered prob-
lem set. This approximated LB was 9.419 and will be used in further sections
to analyse how far away the methods are from the LB.

5.2. ILS method analysis
This section analyses the individual components of the ILS method to de-

termine how they affect its performance.
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Table 2: Performance of the initial solution procedures

Random Greedy Processing ATC Static ATC

Twt 1059 337.5 247.8 13.38 12.38

5.2.1. Analysis of initial solution generation methods
Since LS operators use a single solution that they iteratively improve, the

selection of an appropriate initial solution can have a significant impact on the
results. Therefore, we first analyse the impact of the quality of the initial solu-
tion on the results obtained. The five solution initialization methods produce
solutions of significantly different quality, as can be seen in Table 2. Since the
greedy and random methods are stochastic, the values in the table represent the
median of 30 executions of these methods. Compared to the other methods, the
ATC rules produced solutions that were one or two orders of magnitude better.

5.2.2. Analysis of the local search operators
It can be concluded that ATC and static ATC provide the best results, but

it is questionable whether this has a significant impact on the LS procedures.
Therefore, the immediate neighbourhood of the initial solutions is investigated,
which means that each LS operator is applied only once to the generated ini-
tial solutions. The results are shown in Table 3, where the cells represent the
median values of 30 individual executions. The values in bold denote the best
result obtained with each LS operator. Note that the descent operators per-
form multiple iterations of job insertions or swaps and are therefore expected
to produce better results than others. The best neighbours are obtained with
the solution generated by the static ATC heuristic. As expected, the results
show that several operators could not improve the quality of the schedule for
some initial solutions due to randomness in job selection and swapping. The
best results are obtained by the descent operators. Among the operators that
are applied only once, the JS and JI operators obtained the best solutions. This
shows that it is possible to improve the results of most LS operators by searching
in the neighbourhood of good solutions.

To further examine the LS operators, each is applied repeatedly to the solu-
tions generated by the initialization procedures with a limit of 5 seconds. Table
4 shows that the operators obtained improved solutions when applied multiple
times, giving them the opportunity to achieve better solutions. This can be
seen most clearly in the random, greedy and processing initialization methods,
where the results were significantly improved compared to the variant where the
LS operator was used only once. Still, most of them get stuck in local optima
that are relatively far from the LB. This highlights the limitations of using only
a single LS operator, since at some point they reach a solution from which they
cannot get out. An interesting phenomenon is that the RN operator obtained
among the best results, showing that it is possible to get good results even with
a random sampling of the search space.
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Table 3: Results obtained by applying the LS operators once on starting solutions generated
by different initial solution methods

Random Greedy Processing ATC Static ATC

Initial 1059 337.5 247.8 13.38 12.38

JI 896.5 284.2 195.2 11.88 11.22
TD 13.82 12.22 14.05 10.45 10.30
CJGI 1010 335.4 245.9 13.38 12.38
CJGJI 999 336.8 244.8 13.38 12.38
JGI 1005 336.0 243.8 13.38 12.38
GJS 1061 337.7 243.9 13.38 12.37
JGS 16.67 16.16 18.41 10.76 10.47
JID 31.53 23.35 27.29 11.15 11.35
JSD 1010 332.6 242.45 13.38 12.38
CJI 1003 331.3 240.8 13.38 12.36
HJSOM 1040 334.7 246.4 13.38 12.38
HJSTM 1010 334.5 240.9 13.38 12.37
RJI 939.4 295.5 212.0 12.82 12.12
JSOM 904.1 283.9 186.9 12.58 11.71
JSTM 861.8 273.9 194.6 12.18 11.94
JS 856.7 274.7 183.9 11.87 11.48
NSP 831.6 262.5 198.3 13.11 12.14
IG 812.5 252.5 191.7 12.99 12.10
RN 1040 332.0 245.2 13.38 12.38
VIR 825.7 257.5 195.0 12.88 12.01

The results outline the differences in the performance of the applied LS oper-
ators. Some LS operators perform well across all the initial solution generation
methods, like JI or TD, whereas some still achieve poor results when used with
non ATC based initialisation procedures. This demonstrates that there is a
significant difference in the performance of LS operators, where some operator
types can more easily navigate to good solutions. However, these results do not
give a definite overview of the performance of LS operators, since by starting
from a single solution it is just a matter of time when they get stuck in a local
optima.

Based on the outlined results, it is possible to conclude that the ATC initial-
isation methods represent the best choice for generating the starting solution.
Although the relative improvements are the smallest for this initialisation pro-
cedure, all of the LS operators easily achieve the best performance by starting
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Table 4: Results obtained by applying the LS operators iteratively (with a limit of 5 seconds
per instance) on starting solutions generated by different initial solution methods

Random Greedy Processing ATC Static ATC

Initial 1059 337.5 247.8 13.38 12.38

JI 11.80 11.40 10.66 10.30 10.11
TD 13.66 12.44 14.05 10.45 10.30
CJGI 42.98 31.46 28.42 12.12 11.19
CJGJI 37.16 27.45 26.19 12.01 11.14
JGI 351.5 116.1 83.17 13.01 12.15
GJS 288.8 34.73 14.51 12.14 11.18
JGS 17.61 16.51 18.41 10.76 10.47
JID 30.82 23.05 27.29 11.15 11.35
JSD 51.48 30.06 27.50 11.94 11.16
CJI 336.4 115.9 80.09 12.95 12.15
HJSOM 41.90 27.86 30.44 12.12 11.68
HJSTM 338.0 113.4 80.55 12.96 12.14
RJI 236.7 72.75 62.83 12.71 11.90
JSOM 282.7 35.08 16.30 12.12 11.21
JSTM 37.77 25.79 28.69 11.36 11.40
JS 23.74 14.84 13.19 10.34 10.44
NSP 20.18 15.40 16.35 10.84 10.59
IG 19.78 11.31 11.53 10.05 9.85
RN 10.94 10.48 10.54 9.960 10.03
VIR 17.21 12.01 11.26 10.53 10.21

from them. Therefore, in further sections the static ATC method will be used
to generate the initial solution for all experiments.

5.2.3. Analysis of perturbation operators
The previous results show that the individual LS methods cannot achieve

results close to the lower bound. This is because they have limited exploratory
capability and usually focus only on exploitation, i.e., obtaining the best so-
lution in the neighbourhood. Therefore, to obtain a method that has both
exploratory and exploitative capabilities, it is necessary to combine both types
of LS operators in the procedure. In this way, the operators of one group can
introduce perturbations in the solution to escape local optima, while the others
try to find the best solution in the neighbourhood. Therefore, the LS opera-
tors that fall into the perturbation group are used to introduce random changes
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into the current solutions, while the other LS operators are used to search the
neighbourhood of the solution.

To get an idea of the effectiveness of the perturbation operators, each op-
erator is combined with every other LS operator using both the CLS and ILS
combination strategies. The median values of these results are shown in Table
5. The values in bold denote the best result obtained for each LS operator. The
first thing to note is that the NSP and VIR operators do not lead to good results
and perform worse than IG and RN for all LS operators. The reason for this
is that NSP and VIR make more conservative changes compared to IG. On the
other hand, RN gives the best results when the CLS strategy is used, since it is
used more often in this situation and is more conservative (it introduces smaller
changes to the solution) compared to IG. Although the RN operator performs
better in more situations, it is difficult to assess whether it really performs bet-
ter than IG, since the performance strongly depends on both the strategy used
(CLS or ILS) and the specific LS operator. Therefore, both will be considered
in further experiments.

Table 5: Results obtained for different perturbation operators

CLS ILS

NSP RN IG VIR NSP RN IG VIR

JI 10.15 9.855 9.684 10.12 10.14 9.635 9.527 10.13
TD 10.32 9.516 9.706 10.05 10.30 9.626 9.717 10.02
CJGI 10.34 9.704 9.678 9.994 11.35 11.47 11.58 11.20
CJGJI 10.35 9.692 9.674 10.02 11.14 11.30 11.31 11.00
JGI 10.58 9.744 9.855 10.23 11.03 11.36 11.08 10.80
GJS 10.19 9.935 9.827 10.16 9.915 9.679 9.857 9.707
HJI 10.46 9.571 9.770 10.17 10.47 9.572 9.693 10.18
JID 10.40 9.564 9.713 10.05 10.42 9.599 9.685 10.07
JSD 10.35 9.640 9.585 9.991 10.71 11.11 10.98 10.57
CJI 10.58 9.782 9.844 10.21 10.49 10.98 10.43 10.35
HJSOM 10.56 9.783 9.836 10.22 10.53 10.97 10.48 10.36
HJSTM 10.42 9.614 9.828 10.09 10.41 10.74 10.58 10.25
RJI 10.56 9.967 9.845 10.18 10.55 10.26 9.867 10.18
JSOM 10.08 9.750 9.795 10.02 10.10 9.614 9.637 10.03
JSTM 10.21 9.975 9.807 10.16 10.32 10.31 9.820 10.19
JS 10.40 9.717 9.831 10.05 10.48 10.24 9.910 10.14

Now that the LS operators are used with various perturbation operators, one
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can get a better idea of their performance. From these results, it appears that
some operators perform much better than others. Thus, the choice of the used
operator is very important, as it is clear that certain operators simply do not
perform well. This is especially true for operators which manipulate groups of
jobs. Some other operators such as the RJI and JSTM operators also performed
poorly. On the other hand, the best overall results were obtained by the JI and
TD operators. The reason for the good results of these operators is that they
perform a simple but thorough search of the neighbourhood. This allows them
to easily navigate to good solutions.

5.2.4. Analysis of different LS operator combinations
Although good results can be obtained by using a single LS operator, this

could limit the ability of the method to effectively explore the search space and
obtain good solutions. Therefore, in this section we analyse how the ILS and
CLS methods perform when different combinations of LS operators are used.
Although many combinations were tested, only the 10 combinations with the
best results, listed in Table 6, are included in the analysis. The perturbation
method used is given in the second column and the LS operators in the third
column. In each iteration of the algorithms, a LS operator is randomly selected
from the given list of operators in the second column and used to generate
the neighbourhood. Both strategies, CLS and ILS, are tested with all of the
enumerated combinations.

Table 6: Tested ILS combinations

Method ID Perturbation LS operators

1 IG all LS operators except perturbation
2 IG JID, JSD, HJSTM, CJI
3 IG all LS operators except IG
4 IG JI, TD
5 IG JI, JS
6 RN JI, TD
7 RN JI, JS
8 RN all LS operators except perturbation
9 IG HJI, JSOM, JSTM
10 IG TD, HJI, JSOM, JSTM, CJI, HJSTM

The results of the considered LS operator combinations are given in Table
7. The bold values show the best values obtained for each strategy. It is im-
mediately apparent that a wide range of results is obtained for the various LS
operator combinations. Therefore, one still has to be very careful when select-
ing the LS operators. For the CLS method, the best results were obtained for
combinations 1, 3, and 8. In these variants, almost all LS operators are used.
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This shows that the CLS method prefers a larger set of operators, probably due
to the fact that they are applied only once after each perturbation. Therefore,
using a larger number of LS operators will further increase the diversity of the
obtained solutions. On the other hand, the ILS method obtained the best re-
sults for the first six LS operator combinations, especially for combinations 2,
4, and 6. Experiments 4 and 6 are particularly interesting because only two LS
operators are used, which seems to be sufficient to obtain good solutions. Since
in this strategy the operators are applied until convergence, it seems to be more
advantageous to use only a small number of operators. The results also show
that the ILS method obtains the best solutions for more combinations compared
to the CLS method, which makes it somewhat less sensitive to the choice of LS
operators used.

Table 7: Result obtained by different LS operator combinations

CLS ILS

Min Med Max Min Med Max

1 9.451 9.470 9.499 9.465 9.488 9.602
2 9.493 9.628 9.745 9.440 9.473 9.578
3 9.443 9.472 9.502 9.467 9.569 9.790
4 9.453 9.623 9.669 9.450 9.471 9.522
5 9.487 9.644 9.713 9.460 9.493 9.536
6 9.491 9.534 9.571 9.456 9.482 9.528
7 9.578 9.653 9.818 9.603 9.661 9.780
8 9.474 9.505 9.576 9.624 9.669 9.917
9 9.747 9.810 9.952 9.575 9.635 9.832
10 9.611 9.659 9.820 9.627 9.659 9.849

The results are also shown in Figure 5 in the form of boxplots. The two plots
illustrate that the two strategies often perform quite differently when using the
same LS operator combinations. Moreover, the graphs show that in the cases
where poor results were obtained, they were also more scattered and contained
multiple outliers. The plots show that the ILS method is more resilient to the
choice of LS operators, as the CLS method gives more scattered results in most
experiments. However, there is no statistically significant difference between the
best results of CLS and ILS, showing that both perform equally well for each
best choice of operators.

5.2.5. Analysis of the intensification procedure
To investigate the effectiveness of the PR procedure, it was applied to all

LS combinations given in Table 6. The results obtained are shown in Table 8.
The bold cells represent the values where the addition of PR led to a better
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(a) Results obtained for the CLS strategy

1 2 3 4 5 6 7 8 9 10

9.4

9.5

9.6

9.7

9.8

9.9

10

(b) Results obtained for the ILS strategy

Figure 5: Boxplot representation of the results obtained for CLS and ILS

result compared to the method without PR in Table 7. In most cases, the
introduction of PR did not lead to better results. On the contrary, in the cases
where CLS and ILS gave the best results, such as CLS-1, CLS-3, or ILS-2, the
addition of PR led to a significant deterioration of the results. Although in some
cases the addition of PR led to better results, statistically these results were
rarely better. Only in the ILS-7 method were the results with PR statistically
better than those without PR. However, in all other cases, the results obtained
with PR were equally good or significantly worse than the results obtained
without PR. In general, PR only leads to an improvement in a very limited
number of scenarios, and in most cases it did not improve the performance of
the algorithm under consideration. The reason for this is probably that the
selected LS operator combinations can already cover the search space well, and
thus a rather costly intensification method that tries to find better solutions in
its region is redundant, as it consumes time that could have been used by the
LS operators.
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Table 8: Result obtained by different LS operator combinations with PR

CLS ILS

Min Med Max Min Med Max

1 9.500 9.684 9.898 9.472 9.520 9.673
2 9.561 9.771 9.876 9.526 9.585 9.750
3 9.633 9.827 10.10 9.496 9.646 10.20
4 9.501 9.653 9.849 9.472 9.497 9.708
5 9.599 9.734 9.956 9.569 9.624 9.739
6 9.506 9.578 9.702 9.460 9.549 9.811
7 9.512 9.682 9.903 9.470 9.507 9.561
8 9.535 9.796 9.953 9.651 9.783 9.942
9 9.645 9.868 9.985 9.698 9.785 10.02
10 9.606 9.662 9.836 9.609 9.653 9.837

5.2.6. Analysis of the stochastic acceptance criterion
In this section we study the influence of using the stochastic acceptance

criterion, which allows a worse solution than the current one to be accepted
according to the LS operator. Table 9 shows the ILS and CLS methods with the
stochastic acceptance criterion. The bold numbers represent the values where
the methods with the stochastic acceptance criterion performed better than
the corresponding variants from Table 7. The results show that the stochastic
acceptance criterion is able to significantly improve the results in several cases.
The stochastic acceptance criterion worked particularly well for the CLS variant,
which is most likely due to the fact that it can accept worse solutions more often
than ILS. Unlike the case where the standard acceptance criterion was used, here
the CLS method achieves better results than the ILS method in more cases. This
also shows how a small design decision can have a large impact on the results
obtained.

5.3. Comparison with metaheuristic methods
In the last section, various ILS elements were analysed, resulting in several

good LS operator combinations. However, it is necessary to test how these
methods compare to other approaches that have been widely used in the litera-
ture. Therefore, in this section, the best ILS methods from the last section are
compared to several metaheuristic methods:

• GA with random population initialization Vlašić et al. (2020) and a pop-
ulation initialised by different dispatching rules (GA +DRs) Vlašić et al.
(2019)

• ACO with one LS Arnaout et al. (2009)
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Table 9: Result obtained by LS operator combinations with the stochastic acceptance criterion

CLS ILS
Min Med Max Min Med Max

1 9.441 9.459 9.494 9.449 9.473 9.534
2 9.970 10.27 10.54 9.495 9.568 9.938
3 9.441 9.466 9.497 9.438 9.472 9.547
4 9.450 9.468 9.653 9.459 9.483 9.538
5 9.460 9.502 9.677 9.454 9.478 9.524
6 9.467 9.497 9.542 9.611 9.650 9.739
7 9.523 9.591 9.632 9.623 9.664 9.813
8 9.454 9.483 9.527 9.589 9.637 9.927
9 10.02 10.34 10.62 9.747 9.849 9.928
10 9.536 9.611 9.767 9.562 9.612 9.681

• TS with multiple LS operators (JGI, CJGI, CJGJI, CJI, GJS, HSJOM,
HJSTM) Lee et al. (2013)

• GRASP with ILS and PR (GRASP +ILS+ PR) using the IG and JS
operatorsde C. M. Nogueira et al. (2014)

• VNS with HJI, JSOM, and JSTM Behnamian et al. (2009)

• VND with VIR, IG, JID, and JSD Fanjul-Peyro & Ruiz (2010)

• SA with JS Behnamian et al. (2009)

These methods were chosen because they represent popular metaheuristics that
have been most commonly used to solve the problem under consideration. More-
over, with the exception of ACO, the outlined metaheuristics used the same en-
coding (MLE) to represent solutions. All methods were adapted to the studied
problem and their parameters were fine-tuned.

The seven LS methods that produced the best results are labelled CLS or
ILS, depending on the strategy, and the ID from Table 7, which represents the
LS combination that was used. The variants using the stochastic acceptance
criterion are labelled with the prefix "S" along with the strategy and the ID of
the LS combination.

Table 11 presents the results obtained with the considered methods. Among
the tested methods, ACO has obtained the worst results, statistically worse than
all other methods. Although this method is coupled with a LS operator, the
performance was still quite poor. VND, TS, and VNS achieved similar results.
Of these three methods, VNS achieved the most widely scattered results and the
best median and minimum values, which seems to indicate that it is superior to
the other two methods. However, these methods do not achieve the same results
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as GA with a randomly initialised population, which performs significantly bet-
ter. SA achieves significantly better results than either of the previous methods,
even though it uses only a simple LS operator. Of the methods based on LS
from the literature, GRASP achieved the best overall results. Of the tested
methods, GA initialised with DRs achieved the best result. So, it is obvious
that the methods from the literature give quite different results, which clearly
shows that the choice of method is important for solving this problem.

In order to test whether the observed differences are statistically significant,
the Kruskal-Wallis test was performed, which yielded a p-value of 0. This means
that there are significant differences between the considered methods. Post-hoc
analysis was performed to determine how the methods performed in pairwise
comparisons. Table 10 shows the results of the post hoc analysis, where =
means that there is no significant difference, < means that the method in the
row performs significantly worse than the method indicated in the column, and
> means that the method in the row performs significantly better than the
method indicated in the column. Based on the obtained results, it is clear
that the selected ILS and CLS variants perform significantly better than any
of the other tested metaheuristics. On the other hand, except in one case,
there is no significant difference between the different ILS and CLS methods.
This is further evidence that methods based on LS operators can significantly
outperform many existing metaheuristics, and most of them by a large margin.
Among the standard metaheuristics, GA+DRs performed significantly better
than all other existing metaheuristic methods, followed by GRASP and SA
(which performed equally well), then TS, VNS and VND (which again performed
statistically equally), and finally ACO performed significantly worse than all
other methods.

The proposed ILS achieved significantly better results than all the other
methods mentioned above. Among them, ILS-5 obtained the worst results,
while the best results were obtained by S-CLS-1 and S-CLS-3, which use the
stochastic acceptance criterion. Comparison with the LB shows that the best
solution (ILS-2) is only about 0.5% worse. The best solutions and median
values of the other LS methods are also quite close to the obtained LB. These
results show that the proposed ILS methods can easily outperform the existing
algorithms.

Figure 6 shows the results in the form of a boxplot (without ACO, as this
would affect readability). Most of the solutions obtained by GA when using DRs
to initialise the initial population are better than the best solution obtained by
GA when randomly generating the initial population. Except for one outlier,
the worst solutions obtained using the LS methods are better than the best
result obtained using any other metaheuristic method. Another strength of
the methods based on LS is that the dispersion of their solutions is immensely
small. For example, the worst solution for S-CLS-1 is no greater than 9.5, and
considering that the best objective value achieved by all methods combined is
9.419, the relative difference is less than 1%.

It is also interesting to observe the convergence rate of the algorithms. All
methods except ACO are shown in Figure 7 to illustrate how the fitness of the
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Table 11: Result obtained by different metaheuristic methods

Index Method Min Med max

1 GA 9.682 9.934 10.15
2 GA+DRs 9.536 9.595 9.670
3 ACO 11.39 11.96 12.43
4 TS 10.01 10.10 10.19
5 GRASP+ILS+PR 9.578 9.724 9.891
6 VNS 9.791 10.05 10.58
7 VND 10.05 10.15 10.34
8 SA 9.576 9.710 9.937
9 CLS-1 9.451 9.470 9.499
10 CLS-3 9.443 9.472 9.502
11 ILS-2 9.440 9.473 9.578
12 ILS-4 9.450 9.471 9.522
13 ILS-6 9.456 9.482 9.528
14 S-CLS-1 9.441 9.459 9.494
15 S-CLS-3 9.441 9.466 9.497
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Figure 6: Boxplot representation of the results for different metaheuristics

best solution changes over time. It is obvious that all algorithms have a very
similar convergence curve. At the beginning, they all rapidly improve the fitness
of the best solution up to about 0.3-0.5 seconds, then the improvement slows
down. However, the main difference is in the solution quality, where the methods

29



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

9.6

9.8

10

10.2

10.4

10.6

10.8

11

Execution time (in seconds)

T
w
t

GA GA+DRs TS GRASP VNS VND SA CLS-1 ILS-4 S-CLS-1

Figure 7: Convergence of different metaheuristic methods

start to stagnate. TS is the worst in this respect, because after obtaining a good
solution, it is not able to escape the local optimum and move to better solutions.
All GA variants have a very similar convergence curve, but depending on which
initialization strategy was used, the curve is lower. All ILS and CLS variants
converge fairly quickly and usually overlap in later iterations. In the end, it is
obvious that good results can be achieved in a fraction of the time that was
available. This could prove important in situations where the time available to
create the schedules is limited.

5.4. Discussion
The results in the previous sections show that the proposed simple ILS meth-

ods can outperform several existing metaheuristics. However, the most impor-
tant question is why similar approaches from the literature do not perform as
well or perform so poorly.

First of all, an important part in applying metaheuristics to this problem is
related to generating a good initial solution. As has been shown, the choice of
the starting solution can significantly affect the performance of the LS operators.
Although several initial solution methods have been defined in the literature,
their results lag behind those of the DRs. This leads to significantly slower
convergence, since the algorithms have to invest a lot of time to reach the search
space that contains good solutions. Research conducted by Vlašić et al. (2019)
has already shown that using DRs as initialization methods leads to significantly
better results. Therefore, DRs can be used as a fast and easy method to obtain
good initial solutions and thus increase the convergence speed of algorithms.

As for the choice of metaheuristics, it is obvious that more complex algo-
rithms do not necessarily provide better results. A good example of this is
ACO, which produced the worst results for several reasons. First, the solution
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representation is not "natural" and this limits the use of generating initial so-
lutions and LS operators. Also, there are a large number of parameters that
need to be optimised, and poor choice of these parameters can reduce efficiency.
Although TS performed better than ACO, it did not perform better than the
other algorithms that do not use the concept of tabu lists. The reason is that
the housekeeping that must be done when dealing with the tabu list (updat-
ing the list, finding tabu moves) takes a lot of time and reduces the number
of schedules that can be tested. Therefore, it seems more beneficial to invest
this time in finding more neighbours rather than using it to narrow down the
neighbourhood. In addition, a large number of LS operators were used, which
did not perform well on their own. On the other hand, the best results were
obtained with GRASP, SA, and GA. The results for GA and SA are particu-
larly important because both algorithms use simple operations to modify the
solution, showing that the methods used do not need to be very sophisticated
to obtain good results.

The last point to note is the LS operators used in each method to obtain a
new solution. Since VNS, VND, GRASP, SA, and TS all use LS operators, their
differences are mostly the result of using different LS operators. For example,
VND uses the JSD and JID LS operators in conjunction with the NSP, VIR,
and IG perturbation operators. However, initial analysis has shown that these
operators generally work best with the RN perturbation operator. Combined
with the fact that a poor initial solution was used, this resulted in an overall
poor performance of the method. An interesting result can be observed for
VNS. Although this method used a good selection of LS operators, it obtained
very poor results. This shows that this collection of LS operators can produce
quite good results in certain cases, but this is rare. However, when these LS
operators are used in the ILS-9 method, where they are paired with an IG
operator and iterated to convergence, they can produce much better results.
Thus, it can be seen that the strategy in which the LS operators are used has
a significant impact on performance. GRASP achieved better results than any
of the previously described methods. The result of SA shows that a simple
method can already achieve quite good results. SA used the JS operator in
combination with the RN perturbation operator, but achieved some of the best
results of the existing metaheuristics. The fact that only a single LS operator
was used could possibly be limiting, since the search is only performed in a
single neighbourhood structure.

There are several reasons why the proposed ILS methods perform well com-
pared to other metaheuristics. First, the method starts from a good initial
solution, saving valuable computational time, but also focuses the search on a
good solution region. Second, the method applies a carefully selected set of LS
operators capable of covering the search space. Of course, this could be seen as
a serious drawback of ILS methods, since there are many LS operators in the
literature and therefore the decision is not trivial. However, the experiments
have shown two things. First, even when all operators are used together, the
method achieves quite good results and is among the best. Thus, it is not even
necessary to make a detailed selection of the operators to obtain good results.
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Second, the results of each LS operator have already identified several opera-
tors that do not perform well. These include the VIR and NSP perturbation
operators, as well as most group-based operators and heuristic-based operators.
Clearly, TD and JI have proven to be the best operators. Using just one of these
operators yielded remarkable results, and using both together yielded some of
the best results. This shows another extreme, namely that by using a small set
of well-performing LS operators, the method again produces excellent results.
So the designer has the choice of either selecting a few good LS operators or
using a wide range of LS operators, and in both cases equally good results are
obtained. Regardless of whether the LS operators are used to convergence or
only once, the results show that both methods achieve similar performance.

The choices described in the previous paragraph are already sufficient to
develop a method that works well. However, two additional improvements were
considered. First, the PR was used to intensify the search. This method did not
lead to any improvements and proved to be redundant. As mentioned earlier,
this is likely due to the fact that the LS already traverse the search space quite
extensively, making an intensification procedure redundant. On the other hand,
the modified probabilistic solution acceptance criterion has proven to be much
more useful. This acceptance criterion allows the method to start the search
from another solution in the domain and thus escape from local optima more
easily. The convergence plots showed that the methods reached good solutions
quite quickly. Accepting worse solutions in the neighbourhood and starting the
search from them allows the method to explore the search space in the area of
good solutions more thoroughly.

From the results, it can be concluded that with careful design decisions, it
is possible to construct a method that performs significantly better than more
complicated metaheuristic methods. By generating a good initial solution, using
a single operator to perturb the solutions, and only two LS operators, it is
possible to obtain solutions that are less than 1% away from the lower bound.
This shows that complicated and hybrid methods are not needed, but that even
simple combinations of LS operators are more than sufficient to cope with the
problem. Another aspect that must also be considered is that very often it is
not even necessary to solve the problem optimally, but rather to a satisfactory
degree. Therefore, one should not strive to define a complex and difficult-to-
understand algorithm that will yield only a small increase in performance, but
rather a method that is easy to understand and replicate, and that produces
acceptable results.

6. Conlusion

This paper investigated the performance of various metaheuristics for the
parallel unrelated machines scheduling problem. The goal was to find out
whether it is necessary to use complicated metaheuristics for the above problem,
or whether it is possible to obtain satisfactory results using simpler methods.
The experiments show that simple methods based on LS operators are more
powerful than some complex or hybrid methods. Metaheuristics such as GA,
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ACO, and TS were not able to give as good results as those obtained by simple
LS procedures. Although these metaheuristics could certainly be improved to
match and perhaps eventually surpass the quality of the LS based methods, one
should be cautious about concluding that such an approach is justified when
acceptable solutions can already be obtained using simpler and more compre-
hensible methods. For example, a LS strategy that uses static ATC to initialise
the solution, the IG perturbation operator to perturb the solutions, and only
two LS operators may provide some of the best results obtained in this work.
Each part is simple by itself and can be easily combined. On the other hand,
more complicated metaheuristics must be adapted to such problems, which re-
quires many design decisions that complicate the algorithm, or they are applied
without much adaptation, which can usually lead to poor results.

Although this study has shown the superiority of several approaches over
others, this does not mean that these methods are always superior to others.
This depends heavily on the problem variant, optimisation criteria, and many
other factors. Rather, the results should be interpreted in a way that very simple
metaheuristic methods, coupled with good initial solutions, can significantly
outperform the results of more complicated metaheuristics. Therefore, instead
of developing new methods or highly complicated hybrid algorithms, one should
first consider whether such problems can be satisfactorily solved with simpler
methods and whether it is possible to improve performance by making better
design decisions. More complex or hybrid methods should be considered if
simpler methods do not provide acceptable results or cannot be adapted to
some other constraints.

There are many plans to continue this research in the future. One of them
is certainly to test the operators and methods to optimise other scheduling
criteria and determine if there is a correlation between the considered criteria
and the LS operators that should be applied. Another goal is to extend this
research on multi-objective optimisation, especially to define simple LS based
methods to optimise multiple criteria simultaneously. Another extension would
be to incorporate various constraints into the problem, such as setup times,
precedence constraints, machine eligibility, and the like. Finally, it would also
be interesting to develop a method to automatically determine the set of LS
operators that should be used. This could be done either offline before the
schedule is created or even online during optimisation.
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