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Abstract The Travelling Salesman Problem (TSP) is a well-known optimisation
problem that has been widely studied over the last century. As a result, a variety of
exact and approximate algorithms have been proposed in the literature. When it
comes to solving large instances in real-time, greedy algorithms guided by priority
rules represent the most common approach, being the nearest neighbour (NN)
heuristic one of the most popular rules. NN is quite general but it is too simple and
so it may not be the best choice in some cases. Alternatively, we may design more
sophisticated heuristics considering the particular features of families of instances.
To do that, we have to consider problem attributes other than the proximity of
the next city to build priority rules. However, this process may not be easy for
humans and so it is often addressed by some learning procedure. In this regard,
hyper-heuristics as Genetic Programming (GP) stands as one of the most popular
approaches. Furthermore, a single heuristic, even being good in average, may not
be good for a number of instances of a given set. For this reason, the use of
ensembles of heuristics is often a good alternative, which raises the problem of
building ensembles from a given set of heuristic rules. In this paper, we study the
application of two kinds of ensembles to the TSP. Given a set of TSP instances
having similar characteristics, we firstly exploit a GP to build a set of heuristics
involving a number of problem attributes, and then we build ensembles combining
these heuristics by means of a Genetic Algorithm (GA). The experimental study
provided valuable insights into the construction and utilisation of single rules and
ensembles. It clearly demonstrated that the performance of ensembles justifies the
time invested when compared to using individual heuristics.
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1 Introduction

The Travel Salesman Problem (TSP) is one of the most studied combinatorial op-
timisation problems with many real-world applications in a number of fields such
as logistics and planning or communications Punnen (2007); Mavrovouniotis et al.
(2017). Consequently, a lot of exact and approximate algorithms were proposed
in the literature over the last decades, such as the Lin–Kernighan heuristic pro-
posed by Lin and Kernighan (1973), Christofides heuristic proposed by Christofides
(1976), or Genetic Local Search (GLS) proposed by Freisleben and Merz (1996),
among others. These approaches have demonstrated good performance, but in sit-
uations when the problem instance is large, and the solutions must be completed
in a limited time, or when not all information is available at the beginning, the
best, if not the only one, solution is a greedy algorithm preferably guided by some
kind of efficient heuristic rule.

This kind of heuristics may be designed manually by experts in the problem
domain. This is the case of the simple and well-known Nearest Neighbour (NN)
heuristic. But such a simple heuristic often fails to build a good solution due
to the low amount of knowledge it can exploits. Therefore, more sophisticated
heuristics are normally required to obtain outstanding solutions, but this is usually
a hard and time consuming task Branke et al. (2016) for experts. Alternatively,
some hyper-heuristic may be used to search in a given space of heuristics. In
this context, Genetic Programming (GP) stands out as one of the most common
approaches Burke et al. (2019), which was already applied to a large variety of
hard optimisation problems Burke et al. (2012); Durasević et al. (2016); Gil-Gala
et al. (2019); Nguyen et al. (2019); Zhang et al. (2021).

Nevertheless, a single heuristic, although performing well on average for a large
set of instances, may not be good for a number of them individually. For this rea-
son, several approaches based on ensembles (sets of heuristics) have been recently
proposed for some optimisation problems, such as the One Machine Scheduling Gil-
Gala et al. (2020), the Unrelated Machines Scheduling Durasević and Jakobović
(2019), the Job Shop Scheduling Hart and Sim (2016); Park et al. (2018), the Re-
source Project Scheduling Dumić, and Jakobović (2021), or the Capacitated Arc
Routing Problem Wang et al. (2019), among others.

In this paper, we investigate two types of ensembles, which are termed
collaborative and competitive, respectively. A collaborative ensemble builds a so-
lution in such a way that all the rules contribute to take the next decision in each
iteration; while in a competitive ensemble each rule is exploited to build an inde-
pendent solution and then the best of these solutions is considered as the solution
of the ensemble. Each type of ensemble has its own weak and strong points. For
example, collaborative ensembles may be exploited in online settings where the
solution is being implemented at the same time it is being built Durasević and
Jakobović (2019), while competitive ensembles require all the problem data before
starting to build a solution.

The ensembles we consider herein are aimed to solve the Dynamic TSP (DTSP)
viewed as a sequence of static TSP over a time horizon. Therefore, they are ex-
ploited to solve TSP instances by a limited time. This time should be much lower
than the time interval between every two consecutive TSP instances, which, of
course, it will depend on the particular DTSP setting.
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To establish the extent to which the ensembles are viable for DTSP, we per-
formed an experimental study on the set of instances proposed in Duflo et al.
(2019). They are instances with different sizes that are taken from the TSPLIB
(2022). To create ensembles, we exploit a Genetic Program (GP) to evolve a set
of heuristics, which are then combined into ensembles by means of a Genetic Al-
gorithm (GA). The results of this study show that the quality of the solutions
produced by the ensembles makes up for the larger time they require with respect
to that of single rules, and that competitive ensembles perform much better than
collaborative ones.

The remainder of the paper is organised as follows. In the next section, we give
the formulation of the (Dynamic) TSP. The proposed solving method is described
in Section 3. Then, in section 5, we detail the combined approach of GP and
GA to evolve heuristics and ensembles. In section 6, we report the results of the
experimental study. Finally, in section 7, we summarise the main conclusions and
outline some ideas for future work.

2 The Travelling Salesman Problem

In the classical version of the Travel Salesman Problem (TSP), we are given a
symmetric matrix DN×N , in which Di,j indicates the distance between the cities i
and j. The goal is to obtain an optimal tour, i.e., the shortest path for visiting all
cities and returning to the starting city. Figure 1 shows an instance with 5 cities
and one of its solutions.

Fig. 1: A TSP instance with 5 cities and one of its solutions represented by the
permutation (0,1,3,4,2).

The dynamic version of the TSP, i.e., the DTSP, was introduced by Psaraftis in
Psaraftis (1998). Since then, a number of variants were considered but there is not
still a unified framework. In some cases, the distances between cities may change,
and, in other cases, some cities may be removed or added. A review and taxonomy
of the models proposed over the last three decades are given in Psaraftis et al.
(2016). In general, in an instance of the DTSP, the distances between the cities,
Mi,j(t), may change over time following some temporal pattern that depends on
the underlying problem. In this way, the DTSP is a continuous problem, but in
practical settings, it is usually considered as a sequence of static TSP instances
over a sequence of time points ti, i = 1, ...T , each time interval (ti, ti+1] being
sufficiently short so that the instance at time ti must be solved in real-time, indeed



4 Francisco J. Gil-Gala et al.

by taking a time much lower than ti+1 − ti. Therefore, a particular solution may
be viewed as a permutation of the N cities s = [s1, ..., sN ], which is evaluated as:

f(s, t) = DSN ,S1
(t) +

N−1∑
n=1

DSn,Sn+1
(t) (1)

3 Solving the TSP in real-time

In accordance with the previous definition, solving an instance of the DTSP
amounts to solving a sequence of static TSP instances at time points ti, i = 1, ..., T .
It often happens that the instances at times ti and ti+1 are very similar. In these
cases, repairing a previous solution may be better than generating some new one
from scratch; therefore, some population based metaheuristics as Ant Colony Algo-
rithms (ACO) or Evolutionary Algorithms (EA) may be a good choice Mavrovouni-
otis et al. (2017). However, if there are abrupt changes from ti to ti+1, solving the
new instance making a fresh start may be better. This is the option we take here;
specifically, we propose to use some greedy algorithm guided by problem domain
priority rules, under the assumption that the time intervals ti+1− ti between con-
secutive solutions may be too short to use exact methods or even population based
metaheuristics.

Algorithm 1 Route generation scheme
Data: A TSP instance.
Result: A feasible route R.
R← starting city;
UV C ← all unvisited cities;
while UV C ̸= ∅ do

A city u ∈ UV C is selected heuristically;
Add u to the route R;
Remove u from UV C;

end
return The route R;

In the TSP context, greedy algorithms are usually termed route generation
schemes, as in each iteration they select the next city applying some heuristic
until a complete tour is built. The procedure we use here is given in Algorithm
1; the heuristic is used as a priority rule, meaning that it assigns a priority value
to each unvisited city, and the city with the highest priority is selected to be
visited next. An example of such a rule is the well-known Nearest Neighbour (NN)
heuristic: the priority of the candidate city j after i is calculated from only one
problem attribute, the distance Dij , as 1/Dij . Figure 2 illustrates the use of this
heuristic; in the example, the next city to be visited after A will be B as it is the
closest city to A among the unvisited cities.
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Fig. 2: Application of the Nearest Neighbour (NN) heuristic

Because of NN actually exploits too few information on the problem, it often
happens that it builds a tour that seems good on the first cities, but that is
really bad for the last ones due to the unvisited cities being quite dispersed and
far from each others in the last iterations. To avoid the NN’s low performance,
we may consider attributes other than the distances to the next candidate cities.
Specifically, we could consider, for example, some measure of the dispersion of the
remaining unvisited cities. But a large number of attributes makes it difficult the
problem of devising new heuristics, so that an automatic procedure may be the
best option.

In Duflo et al. (2019), the authors consider 7 attributes and exploit GP to
evolve priority rules, which are evaluated taking quadratic time complexity. Those
attributes were also exploited in Singh and Pillay (2022) with a novel hyper-
heuristic based on ant colony optimisation (HACO). Both works show that the
evolved heuristics actually outperform NN and some other well-known classic
heuristic algorithms for the TSP as nearest insertion or the Christofides heuristic
Christofides (1976).

We conjecture that exploiting a low number of simple attributes could be
enough to achieve reasonable heuristics that in turn could be evaluated taking less
time. This is the rationale of the GP approach proposed in Section 5.1. In addition
to single rules, we also explore here the use of ensembles of rules (see Section 4);
the rationale is that combining the recommendations from a set of rules we may
take wiser decisions than that from single rules.

4 Ensembles of rules

Under the assumption that a single rule may not be robust enough to produce good
solutions for all instances in a given set, we explore here the use of ensembles. An
ensemble is just a set of rules. Figure 3 shows an ensemble composed by 3 rules.

From previous experience on some problems as, for example, the one machine
sequencing with variable capacity Gil-Gala et al. (2020), or the unrelated parallel
machines scheduling Durasević and Jakobović (2019), we propose to use two kinds
of ensembles, which are termed collaborative and competitive, respectively.
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Fig. 3: An example of an ensemble composed of three rules. Dcn denotes the
distance from city c to n; Din denotes the distance from city i to n; and Dc

denotes the distance from the centroid of the unvisited cities to the city c.

Collaborative ensembles are indeed like the classic ensembles used in other
contexts as classification or recommendation systems. The rationale of these en-
sembles is that good rules take the right decisions in most of the situations and
fail in a low number of them. Therefore, the decision on the next city to visit may
be taken by aggregating the recommendations of each rule in the ensemble. In
Durasević and Jakobović (2019), the authors analysed the two classic aggregation
methods, namely sum and vote and they opted for the second one to avoid the
issue of normalising the priorities of the individual rules, which is not an easy
problem in general. This is the approach we consider here as well. In the voting
method, each rule assigns the value 1 to the city with the largest priority and 0
to the remaining ones. Then, these values are summed up and the city with the
largest sum value is chosen, breaking ties at random.

In turn, the rules in competitive ensembles work independently from each other
to build a different solution each. Then, the best of these solutions is taken as the
solution produced by the ensemble. The rationale of this kind of ensembles is that
a good rule produces good solutions to some instances but it may produce bad
solutions to others; therefore taking different rules, one can cover reasonably well
all instances in a given set.

In both cases, competitive and collaborative, the ensembles may be built from
a given set of heuristics as it was proposed in Durasević and Jakobović (2019),
where the authors analysed 5 methods to create collaborative ensembles, namely
random selection, probabilistic selection, grow, grow-destroy and instance based.
In all cases, the ensemble starts from just a random rule and then new rules are
added iteratively up to a given limit. Each time a new rule is added, the partial
ensemble must be evaluated on a training set of instances. As an alternative, we
propose to use here a Genetic Algorithm (GA) to build ensembles of both types
(see Section 5.2).

5 Evolving heuristics and ensembles

In this work, we use the same methodology as in Durasević and Jakobović (2019);
Gil-Gala et al. (2022). Therefore, a large set of heuristics (priority rules in this
context) is previously evolved by Genetic Programming (GP), and then these
rules are used to build ensembles by a Genetic Algorithm (GA).
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5.1 GP to evolving priority rules

Priority rules are simple arithmetic expressions that may be naturally represented
by trees. For this reason, the framework of GP proposed by John Koza Koza
(1992) is widely used to evolve new heuristic rules. To use GP, the first issue is to
establish a set of symbols and some grammar. The grammar restricts the set of
expression trees that can be built from the symbols, so that it fixes the search space
of GP. The set of symbols must include a number of attributes of the problem,
some constants and a set of operators. In this work, we consider three problem
attributes, namely

– Dcn: Distance from c to n.
– Din: Distance from i to n.
– Dc: Distance from the centroid of the unvisited cities to c.

where c denotes the current city in the partial tour built so far, i is the initial
city, and n is a candidate city to be visited next. Dc is calculated as the distance
between c and the point cn̄ (centroid of the unvisited cities excluding n) defined by
the coordinates x = X−xn

Nrm−1 and y = Y −yn

Nrm−1 where Nrn is the number of remaining
cities to visit, X and Y are the summation of x-values and y-values of the unvisited
cities and xn and yn are the coordinates of n. Figure 4 shows an example of these
terminals.

Fig. 4: Illustration of the three terminal symbols used.

We also include 10 constants and a number of unitary and binary arithmetic
functions in the set of symbols. The whole set is given in Table 1. The set of
attributes Dcn, Din, Dc is indeed a subset of the 7 attributes considered in Duflo
et al. (2019). As mentioned, the rationale of this selection of attributes is to con-
sider a small number of them and that they are meaningful and easy to evaluate
at the same time.
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Table 1: Function and terminal sets used to build expression trees. Symbol “-”
is considered in unary and binary versions. max0 and min0 return the maximum
and minimum of an expression and 0.

Binary functions - + / × max min

Unitary functions - pow2 sqrt exp ln max0 min0

Terminals Dcn Din Dc

Numeric constants 0.1 0.2 . . . 0.8 0.9 1.0

The GP strategy is rather conventional and it is quite similar as in other stud-
ies Durasević et al. (2016); Gil-Gala et al. (2021); Nguyen et al. (2019); Zhang
et al. (2021); Duflo et al. (2019). GP starts from an initial population generated
by the well-known ramped half-and-half method Koza (1992). Then, GP follows
an evolutionary scheme in which parents are randomly selected into pairs at the
beginning of each generation; each pair of parents is combined, and their offspring
are mutated with a given probability. The genetic operators are the well-known
one-point crossover and subtree mutation Koza (1992). Finally, in the replacement
phase, from each two parents and their offspring, the best child is selected uncon-
ditionally and the second selection comes from tournament between the parents
and the other offspring. The evaluation is the same as in Duflo et al. (2019); Gil-
Gala et al. (2022), each candidate rule is evaluated on a set of TSP instances (the
training set), and the fitness value of the rule is given by the inverse of the average
tour of all instances.

5.2 GA for building ensembles

To build ensembles, either collaborative or competitive, we are given a set of rules
R and the goal is to come up with a subset of maximum size P of rules, so
that the ensemble composed by these rules performs as well as possible on a given
(training) set of TSP instances. In this work, we adapted the GA proposed to build
competitive ensembles in Gil-Gala et al. (2022). This GA may be used to build
collaborative ensembles just by changing the evaluation function. As proposed in
Gil-Gala et al. (2020, 2023), the encoding schema is variations with repetition
from R taken P by P . Figure 5 depicts an example of ensemble encoding. In
this illustration, R consists of five rules, and the ensemble is represented as an
array containing three rules, each encoded by corresponding indices: 3, 1, and 4.
This allows for representing subsets with maximum size P and for classic genetic
operators as one-point crossover and single mutation. The evolutionary schema
is quite similar to that of GP described in Section 5.1, and the population is
randomly generated.

Regarding the evaluation of candidate ensembles, there are substantial differ-
ences depending on collaborative and competitive ensembles. In the first case, each
of the instances in the training set must be solved by each candidate ensemble, in
similar way as done by GP to evaluate a candidate rule. In a good collaborative
ensemble it is expected that most of the rules take the right decision in each it-
eration of the routing generation scheme (see Algorithm 1) when it solves every
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Fig. 5: An example of an ensemble with three heuristics encoding in GA.

instance in the training set; only in this way the ensemble will produce eventually
a good solution.

However, the evaluation of competitive ensembles can be done much more
efficiently. If the results of each rule in R on each instance of the training set
were known in advance, we would not need to obtain a new solution from the
candidate competitive ensemble, as this solution is just that from the best rule in
the ensemble. However, for the sake of fair comparison to collaborative ensembles,
in the experimental study (see Section 6) we consider that the above results are
not known in advance. Therefore, each rule in the competitive ensemble must be
evaluated on the training set, but only when it appears in an ensemble for the first
time, as this result may be kept to be used in the same or further generations of
the GA. In a good competitive ensemble, it is expected that at least one of the
rules produces a good solution to each problem instance in the training set. In
other words, the fittest collaborative ensembles evolved by GA should provide a
good covering of the training set, i.e., for each instance in the training set, they
should include one of the rules that perform the best for this instance.

6 Experimental Study

We performed an experimental study to assess the viability of the ensembles and
to compare their performance with respect to that of individual rules.

6.1 Experimental setup

We implemented prototypes of GP and GA in Java 8 and ran a series of experi-
ments distributed into a Linux machine: a Dell Power Edge R740 with 2 x Intel
Xeon Gold 6132 (2.6GHz, 28 cores) and 128GB.

The test bed is composed of the set of 70 TSP instances considered in
Duflo et al. (2019); Gil-Gala et al. (2022). They are the euclidean instances
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Table 2: Description of the Training and Test sets of TSP instances used in the
experimental study. Each training set is composed by the N smallest instances out
of the 49 training instances.

Size of the set Number of cities

Training (N) in all

7 574
14 1391
21 2595
28 4722
35 10454
42 19756
49 37303

Test (21) 11757

Table 3: Parameters used by GP and GA.

Parameter GP GA

Population size 200 100
Crossover ratio 1.0 0.8
Mutation ratio 0.02 0.2

Chromosome length 28 − 1 3, 5, 7
Generations 100 50

(EDGE WEIGHT TYPE=EUC 2D) from the TSPLIB TSPLIB (2022) having
less than 4000 cities. As in the above works, the same 21 instances were used
for testing and the remaining 49 instances were used for training, with a number
of cities between 52 (berlin52) and 3795 (fl3795),

To analyse the effect that the size of the instances may have on the quality of
the ensembles, we used training sets composed out of the N smallest instances, N
taking different values as it is showed in Table 2.

The set of rules R was calculated by GP. This set is composed of 42 000 rules
out of which 35 296 are syntactically different. They were recorded from the last
population in each GP execution. Specifically, 6 000 rules (200 individuals and 30
executions) were collected by training the GP with each training set in Table 2.

The parameters used for GP and GA are summarised in Table 3. These values
were taken from some previous experiments reported in Gil-Gala et al. (2022).
We considered sizes 3, 5 and 7 for both types of ensembles, collaborative and
competitive. For each configuration of parameters, GP and GA were executed 30
times, and the best, average, and standard deviation of the 30 solutions (heuristics
or ensembles) were recorded on both the training and the test sets.

As mentioned, we have only used the vote combination method for collaborative
ensembles Durasević and Jakobović (2019).

GP was firstly run starting from random initial population of rules and then
from a population built from rules evolved in previous executions of GP. This was
done for the sake of a fair comparison between ensembles and rules.

In all cases, the stopping condition of the algorithms was given by a number
of generations, but we also established a time limit of 1440 minutes. Thus, the
executions where the field “Time(min)” is 1440 minutes mean that the algorithm
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Table 4: Tardiness values of the solutions reached by the priority rules evolved
by GP on both the training and test sets. The last column shows the time taken by
GP in one execution, and the next-to-last column shows the number of different
candidate rules that were evaluated.

Training Test Time

Init. N Best Avg SD Best Avg SD Unique (min)

Random

7 27993.56 28350.12 5038.23 69454.45 71322.78 13087.45 15434.67 2.80
14 35672.09 36262.86 6532.08 68829.59 70295.88 12660.79 15815.00 8.62
21 34398.35 34900.26 6372.18 69527.13 69993.02 12550.59 15468.60 19.02
28 31901.50 32332.86 5756.63 69277.89 70149.60 12841.70 15499.37 55.42
35 52672.88 53312.92 9550.57 69262.11 70190.18 12772.45 15262.13 317.24
42 67907.92 68480.39 12275.50 68757.23 69579.94 12422.91 15377.30 976.42
49 88598.57 89176.15 15966.83 68900.89 70035.29 12605.37 7178.10 1440.00

Heuristic

7 27687.53 27992.59 91.81 70044.92 71357.78 897.42 16394.10 3.72
14 35525.94 35645.62 66.61 69346.70 70165.78 478.14 16155.70 10.88
21 34339.52 34449.29 72.40 69648.37 70063.90 394.31 16172.00 25.56
28 31721.55 31860.89 45.47 69515.10 69940.53 475.22 15384.60 65.47
35 52342.04 52617.48 108.33 69203.81 69652.06 317.32 17482.97 544.81
42 67788.02 67939.04 90.09 68638.03 69653.03 351.12 14654.13 1434.95
49 88005.64 88160.02 98.81 68520.16 69516.31 471.74 4972.37 1440.00

terminated before reaching the maximum number of generations. In addition, we
report the number of chromosomes syntactically different (the field “Unique”),
which denotes the average number of unique chromosomes (rules or ensembles)
per configuration.

6.2 Analysis of GP and GA

In this section, we analyse the results of the rules and ensembles produced by GP
and GA, respectively, with different settings. In particular, we will try to assess
their generalisation capability.

6.2.1 Priority rules evolved by GP

Table 4 summarises the results obtained by the rules evolved by GP. For each
setting (Init./N), the best and average tardiness, and the standard deviations, of
the 30 rules are reported for both the training and test sets; for the test set, the
best value refers to the best rule in training. We can observe that starting from
a heuristic initial population, GP is more stable and it is able to reach slightly
better rules on average than when it starts from random populations. However,
this difference vanishes on the test set. The time taken, as expected, is in direct
ration with the size of the training set. And the number of different chromosomes
evaluated along each execution is about 1/4 of the maximum theoretical value
(300 × 200 = 60 000), with the only exception for the largest training set when
GP did not reach 200 generations. The differences between heuristic and random
initial populations for different sizes of the training set may be better observed
in the box-plots from the results on the test set given in Figure 6. As it could
be expected, the lowest value of N produces the worst results. Besides, there are
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Fig. 6: Box plots from the results achieved by the priority rules for each test
set (N) and initialisation method (Hr random or Hh heuristic) (see Table 4). On
the top are the p-value produced by the Wilcoxon signed-rank test.

significant statistical differences between random and heuristic initialisation for
only 4 of the 7 values of N .

6.2.2 Collaborative ensembles evolved by GA

Table 5 and Figure 7 summarise the results obtained by the collaborative ensem-
bles evolved by GA. In this case, the main observation we may draw is that the
performance of the ensembles on the test set improves with the size of the training
set, and that there are no significant differences between the three sizes of the
ensembles for each training set. Besides, the time taken by GA grows exponen-
tially, so that it is unable to complete the 200 generations for N = 49 in all cases
and even for N = 42 for ensembles of sizes 5 and 7. This is not surprising as GA
must build a new solution for each instance in the training set to evaluate each
candidate ensemble, and the average size of the instances grows with the value of
N (see Table 2).

6.2.3 Competitive ensembles evolved by GA

The results achieved by competitive ensembles are reported in Table 6 and Figure
8 in a similar way as it was done for collaborative ensembles. As in that case, we
can observe that the performance of the competitive ensembles slightly improves
on average with the size of the training set. But, at difference with collaborative
ensembles, the performance of competitive ensembles strongly improves with the
size of the ensemble, as it is shown by the Kruskal-Wallis test (Figure 8). Besides,
the time taken by GA grows smoothly with the size of the training set so that
it is able to complete the 200 generations much earlier than the time limit in all
experiments. This is not surprising as to evaluate a competitive ensemble GA does
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Table 5: Tardiness values reached by the collaborative ensembles calculated
via GA from different training sets (see Table 2) with maximum ensemble sizes
P of 3, 5 and 7, on the training and test sets. The last column shows the time
taken by GA in one execution, and the next-to-last column shows the number of
different ensembles that were evaluated.

Ensembles Training Test Time

size N Best Avg SD Best Avg SD Unique (min)

3

7 27873.02 28014.24 47.48 69373.19 70445.39 711.62 2804.17 2.05
14 35433.68 35575.04 63.88 69361.87 69940.64 204.93 2972.60 6.19
21 34192.74 34324.42 60.16 69516.05 69848.49 234.67 2965.13 14.61
28 31677.43 31787.73 60.21 69171.82 69831.51 403.42 3040.57 44.41
35 52295.07 52430.72 83.70 68830.68 69835.40 524.95 3041.53 253.81
42 67475.08 67672.47 100.91 68966.14 69567.59 343.50 2992.97 778.44
49 87679.24 87984.75 114.64 68587.06 69493.56 429.87 1639.20 1440.00

5

7 27659.92 27878.15 90.79 68636.93 70009.78 748.22 7475.17 8.49
14 35381.98 35515.80 62.51 69365.78 69822.33 344.14 7509.23 25.77
21 34176.03 34247.26 53.63 69324.13 69836.75 293.44 7562.43 60.63
28 31576.70 31704.55 65.31 68764.52 69631.65 321.84 7544.53 175.00
35 52065.30 52294.11 95.30 69084.28 69652.65 372.89 7584.40 1043.92
42 67417.96 67675.33 101.33 68646.48 69360.25 434.75 3486.60 1440.00
49 87796.99 88052.49 119.91 68767.62 69341.27 330.48 1035.03 1440.00

7

7 27708.04 27914.45 85.61 68636.26 70340.12 1396.05 8063.63 12.80
14 35357.52 35491.00 60.48 69060.45 69998.35 810.03 8071.70 37.52
21 34083.22 34232.77 77.10 68776.47 69701.41 484.94 8080.20 90.37
28 31531.14 31678.09 74.11 68958.73 69690.43 352.97 8077.63 266.30
35 51991.21 52283.78 92.46 68864.30 69689.73 493.69 7631.20 1434.52
42 67511.10 67720.83 81.39 68714.03 69487.71 442.92 2577.30 1440.00
49 87790.67 88054.16 120.66 68509.95 69403.14 372.92 772.03 1440.00

not need to build a new solution for the rules that took part in previous ensembles
when searching for the best solution from the compounding rules. Here, we have
to be aware that the efficiency of competitive ensembles could be further improved
if the results of the rules on the training set were available beforehand, which may
be a reasonable assumption. In this case, the time taken to evaluate a competitive
ensemble would be independent of the size of the instances, and so GA would run
in linear time on the number of instances in the training set.

6.3 Comparison

In this section, we show a comparison between ensembles and single rules. We
also provide a comparison against classical heuristics like the nearest neighbour
and the best-known solutions in the literature obtained by exact methods and
metaheuristics.

6.3.1 Single rules versus ensembles

Table 7 summarises the differences between ensembles and single rules with regards
to the quality of the solutions reached. Collaborative ensembles do not always
produce better results than single rules and there are statistical differences in only
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Fig. 7: Box plots of the results reported in Table 5 obtained by collaborative
ensembles on the test set. The p-values produced by the Kruskal-Wallis test for
the three sizes of the ensembles and each training set in the X-axis are given at
the top of the figure.

Table 6: Tardiness values reached by the competitive ensembles calculated via
GA from different training sets (see 2) with maximum ensemble sizes P of 3, 5
and 7, on the training and test sets.

Ensembles Training Test Time

size N Best Avg SD Best Avg SD Unique (min)

3

7 27353.42 27506.00 86.79 68463.28 69497.97 604.78 4940.87 0.13
14 35045.90 35109.66 41.12 68263.02 68866.88 313.27 4939.57 0.39
21 33781.69 33867.67 35.67 68304.36 68883.44 334.60 4938.83 0.93
28 31257.39 31294.31 24.06 68485.40 68764.59 238.63 4943.57 2.72
35 51634.35 51742.80 54.46 68276.43 68698.23 205.00 4936.87 15.32
42 66773.68 66879.59 70.23 68016.01 68628.00 197.91 4940.57 46.81
49 85495.15 85664.19 163.50 68669.05 68949.68 189.36 4940.03 166.14

5

7 27216.97 27293.61 62.50 67780.03 68809.25 512.60 4942.10 0.26
14 34782.60 34867.67 62.47 67677.34 68546.51 348.41 4939.13 0.77
21 33511.84 33576.51 39.01 67806.67 68602.87 331.05 4938.13 1.89
28 30976.03 31028.65 37.39 67816.30 68555.99 271.66 4937.10 5.51
35 51217.01 51347.24 48.44 67996.22 68457.20 186.38 4937.93 31.92
42 66380.41 66459.25 44.27 67451.11 68184.61 361.76 4941.77 95.50
49 84887.95 85049.35 82.14 67609.02 68313.06 290.02 4935.00 341.99

7

7 27200.60 27251.14 34.59 67361.56 68582.18 469.02 4942.03 0.40
14 34683.95 34739.64 40.13 67488.50 68215.83 300.75 4940.27 1.17
21 33271.50 33395.13 57.79 67548.75 68274.20 324.06 4938.53 2.85
28 30818.36 30897.42 34.40 67636.12 68159.56 264.63 4942.20 8.29
35 51084.28 51183.36 42.15 67549.85 68184.96 251.13 4941.03 47.67
42 66020.20 66207.18 79.34 67332.82 67825.75 275.14 4939.13 142.25
49 84614.00 84781.66 63.14 67295.09 67968.94 312.64 4942.53 501.69
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Fig. 8: Box plots of the results achieved by competitive ensembles solving the
test set that are reported in Table 6. The numbers at the top are the p-values
produced by the Kruskal-Wallis test.

Table 7: Summary of the comparison between rules and ensembles on the test set.
The symbol ✓means that the ensemble produces better results than single rules,
or that the Wilcoxon signed-rank test shows statistical differences.

Ensemble size (P )

Best Solution On Average Stat. Dif.

Ensembles N 3 5 7 3 5 7 3 5 7

Collaborative

7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
14 ✓ ✓ ✓ ✓
21 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
28 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
35 ✓ ✓ ✓ ✓ ✓ ✓
42 ✓ ✓ ✓
49 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Competitive

7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
14 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
21 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
28 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
35 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
42 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
49 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

15 out of the 21 configurations (N ,P ). In turn, competitive ensembles are always
better than single rules, with only one exception in the best solutions reached
by the best ensemble with 3 rules and the best rule, and they show significant
statistical differences in all configurations.



16 Francisco J. Gil-Gala et al.

6.3.2 Collaborative versus competitive ensembles

Figure 9 shows a comparison between collaborative and competitive ensembles by
means of a series of box plots and p-values from the Wilcoxon signed-rank test, one
for each configuration (N ,P ). We can observe that competitive ensembles perform
better than collaborative ensembles in all cases. Even for some configurations, the
worst result from competitive ensembles is better than the best result reached by
collaborative ensembles.

6.3.3 Run-time analysis

Since the routing generation scheme given by Algorithm 1 guided by heuristics
(rules or ensembles) is aimed to solve DTSP, we have to analyse the time taken by
the algorithms to assess its suitability for the dynamic changes in each particular
setting. From the algorithm structure, it is clear that the execution time will
depend on both the size of the static TSP instance and the size of the rule or
ensemble exploited.

To that purpose, we generated 1 000 random rules and 1 000 random ensembles
of size P = 5. All the instances in the test set were solved by these rules and by
these ensembles, in this case considering them as collaborative and competitive,
and the time taken in each run was registered. We evaluated them independently,
without the presence of any other ensembles. Consequently, we intentionally ex-
cluded the reuse of previously calculated results to conduct an unbiased investi-
gation into runtime performance.

Figure 10 shows the box plots of these experiments. The average times required
to solve all instances in the test set were 1.62 and 1.63 seconds for competitive
and collaborative ensembles respectively, and 0.3 seconds for the single rules. This
means that the expected times to solve one instance are about 7 ms for a rule and
35 ms for an ensemble.

In regards to the size of the heuristics, i.e., the number of symbols in a rule
or ensemble, one may expect it be strongly correlated with the time taken by the
algorithms. This is rather clear in Figure 11, which show the dispersion plots of
the time taken versus the size of the heuristics. The correlation coefficients in the
three plots showcase high correlation between them.

Finally, we have to analyse the influence of the problem size on the time taken
by the algorithms. To this end, Figure 12 shows the bar plot of time versus instance
size with the best rule and ensembles obtained. We can see that the number of
cities and the time taken is directly related.

6.3.4 Comparison against the state-of-art

The TSP is an extensively studied problem, and numerous algorithms have been
proposed to solve it, including the Lin-Kernighan heuristic Lin and Kernighan
(1973), Christofides heuristic Christofides (1976), and Genetic Local Search (GLS)
Freisleben and Merz (1996). While these algorithms demonstrate good perfor-
mance, they face challenges when dealing with large problem instances, time con-
straints, or incomplete information. In such situations, a greedy algorithm guided
by an efficient heuristic rule is often the preferred solution. Having said that, we
consider classic heuristics as NN or NI, as well as the priority rules evolved by
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Size 3

Size 5

Size 7

Fig. 9: Box plots from the results achieved by collaborative and competitive
ensembles on the test set (detailed in Tables 5 and 6). For each ensemble size P ,
the box plots are organised by increasing values of the size of the training set N .
The numbers at the top are the p-values from Wilcoxon signed-rank tests.
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Fig. 10: Box-plot with the time required (in milliseconds) for solving the test set
with each heuristic type.

Fig. 11: Dispersion plots of the time taken versus the size of the heuristics. The
values at the top are the Kendall rank correlation coefficients.

GPHH Duflo et al. (2019) and HACO Singh and Pillay (2022), as suitable refer-
ences in the context of hyper-heuristics.

For our comparative study, we exploited NN and NI in combination with Al-
gorithm 1 and considered the results of the best rules evolved by GPHH, which
are presented in Duflo et al. (2019). We also include the results obtained by the
best configuration of HACO from Singh and Pillay (2022). The results obtained
by all the mentioned methods, detailed for each instance of the test set, are re-
ported in Table 8. The size of the ensembles is P =7, and they were evolved from
the largest training set (N =49). The second column of the table shows the best
known solution for each instance, which in some cases is optimal.

As may be expected, all methods produce solutions much worse than the best
known ones, which were normally obtained by heavy exact or approximate methods
that take much more time than greedy algorithms guided by heuristics. With
regards to simple rules, it is clear that NN and NI perform worse than the best
rules evolved by both GPHH and GP, showcasing the advantage of automatically
calculated rules over the classical ones. The best rule evolved by GP is better on
average and also in 11 of the 21 instances than that evolved by GPHH. In this case,
showcasing that it is possible to obtain good rules considering a small number of
problem attributes.
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Fig. 12: Bar-plot with the time required (in seconds) for achieve the best solutions
with each heuristic type.

We can see that ensembles produce the best solutions among all the heuristics
considered, being competitive ensembles better than collaborative ones in all but
3 instances. Furthermore, we can also observe that competitive ensembles achieve
(on average) similar results to HACO. However, the HACO approach has the
inconvenience that the evolved heuristic is difficult to interpret for the human eye.
In this regard, a rule in HACO is encoded as a pheromone matrix that is much
harder to interpret than expression trees.

7 Conclusions and future work

As it was done in some previous works Duflo et al. (2019); Gil-Gala et al. (2022),
we have seen that Genetic Programming is a suitable hyper-heuristic to evolve
priority rules to solve the TSP. In our experimental study, these rules outperformed
some classic heuristics, such as Nearest Neighbour or Nearest Insertion. From the
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Table 8: Comparison of the best rule and ensembles achieved by GP and GA
against the Nearest Neighbour (NN) and Nearest Insertion (NI) heuristics, Genetic
Programming Hyper-heuristic (GPHH) proposed in Duflo et al. (2019), Hyper-
heuristic Ant Colony Optimisation (HACO) proposed in Singh and Pillay (2022),
and the best-known (BK) solutions BK (2022) solving the whole test set.

Best Rule Best Rule Best Ensemble

Instance BK GPHH NN NI GP Collaborative Competitive HACO

ts225 126643 136412.40 147941.80 151884.60 139766.63 139766.63 139978.00 131820.10
rat99 1211 1381.68 1474.92 1465.88 1383.86 1362.84 1361.88 1344.50
rl1889 316536 383303.70 391697.00 393573.50 377690.12 369445.48 368533.90 375383.20
u1817 57201 69334.72 69901.17 70970.14 66867.66 68765.38 68643.83 66247.10
d1655 62128 73740.45 76950.71 75390.58 74108.73 76421.03 72468.16 72292.10

bier127 118282 136781.20 145784.90 145544.10 129579.91 130718.90 127755.71 128104.10
lin318 42029 48039.78 52865.57 52299.12 47684.21 47987.33 47197.19 48190.90
eil51 426 469.46 562.16 494.75 479.06 480.57 450.92 452.30
d493 35002 40453.72 43403.90 42140.47 42007.21 41546.29 39352.09 40717.70

kroB100 22141 25254.54 27955.27 26908.61 25441.15 25005.23 24798.05 24394.50
kroC100 20749 24114.56 26094.22 25780.57 23024.51 22254.85 22362.36 22618.70

ch130 6110 7012.58 7677.60 7283.95 6668.41 7139.50 6616.58 6778.90
pr299 48191 56980.64 63334.80 60263.85 55341.71 55341.71 55456.73 55738.30
fl417 11861 14555.84 15706.24 14887.62 15079.67 14300.26 14214.60 13537.40
d657 48912 56882.87 63456.26 60081.63 58942.05 58423.95 57567.52 58546.70

kroA150 26524 30660.12 33440.39 31588.40 31239.31 29916.93 29538.72 30428.40
fl1577 22249 26163.75 27813.25 27625.77 26148.49 26588.93 25678.45 25308.50
u724 41910 48423.29 53834.65 52629.51 47955.74 48292.80 46571.66 48465.30
pr264 49135 60908.02 57915.59 65978.21 59363.51 60306.69 57017.63 54425.30
pr226 80369 92837.77 100178.30 102887.20 86995.73 84509.99 84851.38 89027.90
pr439 107217 130114.30 136546.50 133663.80 123155.76 130133.56 122781.52 126402.70

Avg. 59277.43 69705.97 73549.30 73492.49 68520.16 68509.95 67295.09 67629.70

comparison between GPHH Duflo et al. (2019) and the GP proposed in this work,
we can see that using a small number of problem attributes, the search space of
GP is reasonably low. Therefore, it may reach better rules than those obtained
from the search space generated from a large set of attributes.

We have also seen that ensembles of rules may produce better results than
single rules at the cost of linear increase of the execution time with the size of
the ensembles. From the two kinds of ensembles analysed, competitive ensembles
showed much better performance than collaborative ones. Nevertheless, we have
to be aware that both of them were evaluated on building solutions for static TSP
instances, which is a suitable framework when a DTSP is viewed as a sequence of
static TSP instances over time. However, in other situations, the dynamic problems
require on-line solutions, i.e., the route is being travelled at the same time as it is
being built. In these cases, competitive ensembles may not be used, so collaborative
ones may also represent a good alternative to single rules.

In future work, we plan to consider alternative combination methods Durasević
et al. (2023); Park et al. (2018) and multiobjective optimisation Durasević et al.
(2023b). Additionally, we are interested in analysing alternative rule representa-
tions, such as neural networks Branke et al. (2015); Jia et al (2022) or pheromone
matrices Singh and Pillay (2022), to build ensembles.
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Durasević M, Gil-Gala F.J., Jakobović D, Coello-Coello C.A. Combining single
objective dispatching rules into multi-objective ensembles for the dynamic un-
related machines environment. Swarm and Evolutionary Computation (2023)

Freisleben B., Merz P. A Genetic Local Search Algorithm for Solving Symmet-
ric and Asymmetric Traveling Salesman Problems International Conference on
Evolutionary Computation (1996)
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