
A comparative study of solution representations for the

unrelated machines environment

Ivan Vla²i¢a, Marko Ðurasevi¢a,∗, Domagoj Jakobovi¢a

ivan.vlasic2@fer.hr, marko.durasevic@fer.hr, domagoj.jakobovic@fer.hr

aUniversity of Zagreb, Faculty of Electrical Engineering and Computing, Croatia

Abstract

Scheduling problems are quite di�cult to solve since in many cases no exact
algorithms exist which can obtain the optimal solution in a reasonable amount of
time. Therefore, these problems are often solved by using various metaheuristic
methods, like genetic algorithms. To use these methods, the �rst step which
needs to be performed is to de�ne an encoding scheme that will be used to
represent the solutions. Until now, several encoding schemes were proposed
for the unrelated machines environment, each of which comes with its own
bene�ts and drawbacks. However, the performance of metaheuristic methods
depends on the applied encoding scheme. Unfortunately, no extensive research
was performed in the literature to compare di�erent solution representations
for the unrelated machines scheduling problem. Therefore, the choice of the
solution representation used is mostly provisional and is usually not based on
any existing knowledge of how it would perform on the considered problem.
This can cause the algorithms to obtain suboptimal results, which can lead
to wrong conclusions about the performance. Thus, the goal of this paper
is to test seven solution representations that were used in previous studies to
represent solutions for the unrelated machines scheduling problem. The selected
solution representations were tested for optimising four scheduling criteria, while
additionally measuring the execution time of the genetic algorithm when using
each of the encodings. The obtained results demonstrate that the encoding
which is based on the permutation of jobs obtains the best results, making it
the superior encoding scheme for this type of scheduling problem.

Keywords: Unrelated machines environment, genetic algorithms, solution
representations, scheduling

1. Introduction

Scheduling is a process by which a certain number of jobs are allocated to
a set of machines, in a way that one or more user-de�ned criteria are opti-

∗Corresponding author

Preprint submitted to Computers and Operations Research March 27, 2020

mised (Pinedo, 2012). In the unrelated machines environment, each job needs
to be allocated to only one of the available machines. However, each job has
a di�erent execution time for each of the available machines, meaning that the
choice of the machine on which a job will be executed can have a high impact
on the generated schedule. Scheduling in the unrelated machines environment
can be found in many practical real-world examples, such as scheduling jobs on
multiprocessor computers, airplanes on landing lanes in airports, operations to
operating rooms in hospitals, jobs in circuit board and semiconductor manu-
facturing, and many other (Fanjul-Peyro & Ruiz, 2012; Lee et al., 2013; Wang
et al., 2013). Although scheduling problems can be solved by using various op-
timisation methods, heuristic and metaheuristic methods are most often used
to obtain solutions. The reason is that most scheduling problems are NP-hard,
therefore an algorithm that could solve such problems optimally in a reasonable
amount of time is unknown. However, metaheuristic algorithms can obtain so-
lutions of good quality in a relatively short amount of time, which makes them
suitable for solving various scheduling problems.

Although a variety of di�erent metaheuristic methods were proposed in the
literature, the genetic algorithm (GA) (Goldberg, 1989; Mitchell, 1998; Eiben &
Smith, 2015) represents one of the most popular and widely used metaheuristic
algorithms. To be able to apply GAs for solving a certain scheduling problem, it
is mandatory to de�ne how the solutions to this problem are represented in the
algorithm. The choice of the solution representation has a large impact not only
on the e�ectiveness, execution time, and memory consumption of the algorithm
but also on the genetic operators which can be used for adapting the solutions.
Therefore, it is important to select the appropriate solution representation for
solving the problem at hand. Although many di�erent solution representations
were proposed for solving scheduling problems in the unrelated machines en-
vironment until now no exhaustive study was conducted which compares the
di�erent solution representations and outlines the bene�ts and drawbacks of
each. Thus, when selecting the solution representation which will be used, re-
searchers are mostly left to select the representation based on their intuition
and prior experience. Therefore, in many papers the solution representation is
selected without any justi�cation or comparison to alternative representations.
This can result in the selection of an inappropriate solution representation for
the considered problem, which can consequentially lead the algorithm to obtain
poor results. This can have signi�cant in�uence on the obtained conclusions,
since they might not be valid if another representation would have been used.
As a result, it would be possible that some studies come to the wrong con-
clusions about the e�ectiveness of an algorithm, just because an inappropriate
representation was used. Therefore, the choice of the right representation for
the considered problem is of great importance to ensure that the results and
conclusions that are obtained in studies are relevant.

The objective of this paper is to collect several solution representations that
were previously used for solving scheduling problems in the unrelated machines
environment and to perform an evaluation of these representations. The reason
why the results from existing studies could not simply be used for comparing

2

the solution representations lies in the fact that those studies used di�erent
problem instances and optimised various scheduling criteria. Therefore, it was
required to perform the tests of all the representations on the same problem
instances and under the same conditions. To obtain a better and more ob-
jective conclusion about the performance of each solution encoding, they were
used to optimise four scheduling criteria. Furthermore, the execution time of
the GA for each of the tested encodings was also analysed, since it can have an
impact on the choice of the appropriate solution representation. Based on the
obtained results for the optimised criteria and the execution time for the GA,
the paper outlines the bene�ts and drawbacks of each encoding and draws cer-
tain conclusions about each of them. Therefore, depending on the situation and
requirements, it should be possible to select the representation which ful�ls the
requirements and provides the best possible results. The analyses and conclu-
sions presented in this paper should give other researchers a good starting point
for selecting the most appropriate solution representation. This should improve
the research in the area of unrelated machines environment, since it would re-
duce the number of studies which would obtain results and conclusions which
might be less informative and incomparable, simply because an inappropriate
representation was selected.

The rest of the paper is structured as follows. Section 2 provides an overview
of the existing research focused on solving the unrelated machines scheduling
problem, especially when using various metaheuristic methods. A short descrip-
tion of the unrelated machines scheduling problem is given in Section 3. The
solution representations tested in the paper are described in Section 4. Sec-
tion 5 describes the design of the experiments used for evaluation, and provides
details on the parameter values which were used by each of the solution repre-
sentations. The results obtained by each of the tested solution representations
are presented and analysed in Section 6. Section 7 provides a discussion on the
bene�ts and drawbacks of the tested solution representations. Finally, Section
8 gives a brief conclusion and outlines the possibilities for future work on this
and similar topics.

2. Literature overview

Solving various kinds of scheduling problems has until now been an exten-
sively researched �eld (Allahverdi et al., 1999, 2008; Hart et al., 2005; Branke
et al., 2016). Because most scheduling problems are NP-hard (Pinedo, 2012),
exact methods cannot be used for larger problem instances. On the other hand,
approximation methods are hard to design and cannot be de�ned for all prob-
lems. Therefore, the research in scheduling has largely focused on developing
new heuristic methods for solving various scheduling problems. Unfortunately,
such heuristics are di�cult to design and are usually specialised for solving only
a speci�c type of scheduling problem. As a result, a lot of research focused on
applying di�erent metaheuristic methods for solving scheduling problems. The
bene�t of using metaheuristics is that they can easily be adapted for solving

3

various kinds of scheduling problems. Although these algorithms do not guar-
antee that they will obtain the optimal solution for the problem, they mostly
obtain solutions of good quality in a reasonable amount of time. The unrelated
machines environment did not receive the same amount of attention as some
other machine environments, although it appears in various real-world situa-
tions. Nevertheless, a wide range of methods were proposed for solving the
unrelated machines scheduling problem, ranging from exact methods (Graham
et al., 1979; Rocha et al., 2008; Pinedo, 2012; Wotzlaw, 2012), approximation
methods (Graham et al., 1979; Lenstra et al., 1990; Chen et al., 1998; Wot-
zlaw, 2012), problem-speci�c heuristics (Fanjul-Peyro & Ruiz, 2010, 2011; Cota
et al., 2014; de C. M. Nogueira et al., 2014), manually designed dispatching rules
(Morton & Pentico, 1993; Maheswaran et al., 1999; Braun et al., 2001; Pinedo,
2012; Ðurasevi¢ & Jakobovi¢, 2018), and automatically designed dispatching
rules (Ðurasevi¢ et al., 2016; Ðurasevi¢ & Jakobovi¢, 2017a,b).

Glass et al. (1994) consider the problem of scheduling jobs in the unrelated
machines environment when optimising the makespan criterion. The authors ap-
ply tabu search, simulated annealing, and a GA to solve the considered problem.
Srivastava (1998) develops a tabu search heuristic for minimising the makespan
criterion in the unrelated machines environment. Kim et al. (2002) apply the
simulated annealing algorithm for solving problems in the unrelated machines
environment with setup times. The authors have proposed six methods for
constructing the neighbourhood of the current solution, and show that these
methods improve the performance of the simulated annealing method. The
simulated annealing method was further used by Kim et al. (2003) to minimise
the total weighted tardiness criterion in batch scheduling of unrelated machines
environment. Kim & Shin (2003) propose a restricted tabu search method for
minimising the maximum lateness of jobs in the unrelated machines environ-
ment with sequence-dependent setup times, release times, and due dates. The
problem of scheduling printed circuit boards on unrelated parallel machines
was considered by Hop & Nagarur (2004). The authors minimised the total
makespan objective by using the proposed composite GA. Logendran et al.
(2007) apply the tabu search algorithm for the unrelated machines scheduling
problem with sequence-dependent setup times. In their paper, the authors have
developed four di�erent initial solution construction mechanisms and measure
their in�uence on the quality of the �nal solution. Vallada & Ruiz (2011) pro-
pose a GA for the unrelated machines environment with sequence-dependent
setup times for optimising the makespan criterion. In their work, the authors
use the machine list encoding to represent the solutions and incorporate a local
search operator to improve the performance of the GA.

Raja et al. (2008) focused on solving the unrelated parallel machines envi-
ronment in which they minimised the total earliness and total tardiness criteria.
For solving the aforementioned problem the authors propose a new technique,
which is a combination of the GA and fuzzy logic. The experimental results
demonstrated the e�ectiveness of this technique when compared to other meth-
ods. Behnamian et al. (2009) propose a hybrid algorithm for optimising the
parallel unrelated machines problem with sequence-dependent setup times. The

4

hybrid algorithm combines the ant colony optimisation method with simulated
annealing and variable neighbourhood search methods. Chyu & Chang (2010)
propose a competitive evolution strategy memetic algorithm for optimising the
total weighted tardiness and �owtime criteria in the unrelated machines envi-
ronment. Balin (2011) used a GA to optimise the makespan criterion in the un-
related machines environment. In this study, the matrix encoding is used to rep-
resent solutions of the scheduling problem. The algorithm was also enhanced by
a new crossover operator, and it performed better than some standard schedul-
ing methods. Chang & Chen (2011) deal with an unrelated machines scheduling
problem with setup times and the objective of minimising the makespan. The
authors develop a set of dominance properties that enables the algorithm to
obtain near-optimal solutions. By combining a GA with these dominance prop-
erties the authors de�ne a new metaheuristic that obtains optimal solutions for
smaller problem instances and outperforms other algorithms for larger ones.

Haddad et al. (2012) consider the minimisation of the makespan criterion in
the unrelated machines environment with setup times. The authors propose a
new method called GARP, which is based on the combination of a GA with the
variable neighbourhood descent and path relinking methods. In this work, the
authors use the machine list encoding to represent the solutions. Costa et al.
(2013) address the problem of scheduling in the unrelated machines environment
with sequence-dependent setup times and limited human resources. In this
work, the authors apply the permutation encoding, but also propose a multi-
encoding scheme in which they use several permutation encodings to denote
the solution. Lee et al. (2013) apply a tabu search algorithm for minimising
the total tardiness criterion in the unrelated machines environment with setup
times. The authors used the machine list encoding to represent the solutions
and showed that the applied tabu search method achieved a better performance
than other tested methods. Lin et al. (2013) applied the ant colony optimisation
algorithm for minimising the total weighted tardiness. The authors introduce
several new ideas by which they enhance the performance of the algorithm.
de C. M. Nogueira et al. (2014) propose a hybrid GRASP heuristic and apply it
to solve the unrelated machines scheduling problem in which they minimise the
earliness and tardiness criteria. The experiments show that the proposed hybrid
GRASP heuristic performs well when compared to other methods. Ðurasevi¢ &
Jakobovi¢ (2016) apply a GA with two solution representations for solving four
scheduling criteria in the unrelated machines environment, and compare the
results and execution times of the tested GA with those of several dispatching
rules.

3. Problem formulation

In the unrelated machines environment the goal is to schedule each of the
n available jobs on one of the m machines. To denote a speci�c job, the index
j will be used, while the index i will be used to denote a speci�c machine. In
the basic de�nition of the problem, each machine can execute only one job at a
time. Once a job is scheduled on a machine it cannot be rescheduled and must

5

be executed until the end on the allocated machine. The particularity of this
environment is that each job has a di�erent execution time de�ned for each of
the available machines. The values for these processing times have no apparent
relation to either jobs or machines, thus making the problem challenging to
solve. The processing times are denoted by pij , where i denotes a machine in
the system, and j denotes a concrete job. Jobs are rarely present from the start
of the execution of the system but are rather expected to arrive at a certain
point in time into the system. This moment in time is called the release time
of the job and is denoted as rj . Besides, jobs usually need to be �nished until
a certain point in time, which is called the due date of a job and is denoted as
dj . Although a job is allowed to �nish after its due date, by doing so it invokes
a certain penalty which needs to be minimised as much as possible. Finally,
depending on the criteria which are optimised, it is also possible to de�ne a
weight for each job, denoted as wj , which speci�es the importance of each job.

The previously outlined job properties denote the input to a certain algo-
rithm when creating a schedule. After the schedule is constructed, a set of
output properties that are calculated based on the constructed schedule, can
be de�ned for each job. These output properties are used to specify di�erent
scheduling criteria. The most basic output property of each job is the time when
the job �nishes with its execution, which is called the completion time and is
denoted as Cj . Based on that property it is possible to calculate the �owtime of
each job, which represents the amount of time that each job spent in the system,
and is calculated as Fj = Cj− rj . For each job it is also possible to calculate its
tardiness as Tj = max(0, Cj − dj), which de�nes the amount of time that the
job spent executing after its due date. Finally, the unit penalty, which denotes

whether the job is tardy or not, is de�ned for each job as Uj =

{
1 : Tj > 0
0 : Tj = 0

.

Based on the previously outlined output properties, various scheduling crite-
ria can be de�ned (Allahverdi et al., 1999; Leung, 2004; Allahverdi et al., 2008;
Pinedo, 2012; Baker & Trietsch, 2013). One of the most commonly optimised
criteria is the makespan Cmax = maxj Cj , which is de�ned as the largest com-
pletion time of all jobs in the system. The total �owtime is de�ned as the sum
of all job �owtimes in the system: Ft =

∑
j Fj . The total weighted tardiness is

de�ned as the sum of the tardiness value of each job multiplied by the weight
of each job: Twt =

∑
j wjTj . Finally, the number of tardy jobs is de�ned as the

sum of weights of all tardy jobs in the system: Nwt =
∑

j wjUj .
All the scheduling problems considered in this paper are executed under

static conditions. This means that all the information about the scheduling
problems are known in advance. The GA is then executed on these problems
to �nd the best possible schedule, based on which jobs will be allocated on the
available machines. Therefore, the schedule is constructed in advance, before
the system even starts with its execution.

6

Table 1: Properties of the problem instance used for analysis

Job index j rj dj wj p0j p1j p2j

0 15 30 0.9 10 7 7
1 10 23 0.07 9 9 8
2 1 13 0.87 11 13 12
3 20 37 0.06 9 6 11
4 22 35 0.06 10 14 11
5 5 25 0.26 11 15 16
6 7 20 0.78 15 12 9

0 10 20 30

M0 2 1 4

M1 5 3

M2 6 0

Figure 1: Example of a schedule for the previous scheduling problem

4. The GA and solution representations

To test di�erent solution representations, a simple GA will be used. At
the start of the algorithm all the individuals are generated randomly, however,
in the individual initialisation process it is always ensured that all individuals
represent feasible solutions. In the evolution process, the GA behaves as a
steady-state GA, with the tournament selection. The tournament size of three
individuals was used, which means that three individuals from the population
are randomly selected into the tournament. Out of these three individuals, the
crossover operator will be performed on the best two to create a new individual
which will be additionally mutated with a certain probability and will then
replace the worst individual in the tournament. This entire procedure will be
performed until a certain number of function evaluations are reached.

The solution representations which will be used by the GA are permutation
encoding, permutation encoding with machine list, permutation encoding with
machine count, random key encoding, �oating point encoding, matrix encoding,
and machine list encoding. To better denote the di�erences between all the
representations, the solution for a small scheduling problem will be represented
by using each of the tested solution representations. Table 1 represents the
properties of the problem instance, while Figure 1 represents a solution to this
scheduling problem. The problem consists out of seven jobs which need to
be scheduled on one of the three available machines. The rest of this section
describes each of the individual solution representations.

7

4.1. Permutation encoding

The permutation encoding (PE) is one of the most simple encodings which
are used (Costa et al., 2013). In this encoding, the entire solution is represented
by using only a single list consisting out of integer numbers. The size of this
list is equal to the number of jobs n, and each number in this list represents
the index j of a concrete job. This list of indices represents the sequence in
which jobs will be scheduled, meaning that the jobs at the start of the list
will be scheduled �rst, while the jobs at the end of the list will be scheduled
last. However, the information in this list is by itself not enough to construct
the complete schedule, since it does not specify the machine on which each job
needs to be scheduled. Therefore, it is essential to de�ne a procedure by which
the machine on which a certain job should be scheduled can be determined. The
procedure that will be used in this paper will schedule the current job on the
machine on which the job would complete with its execution the soonest.

Figure 2 shows the solution represented by using this encoding for the ex-
ample in Table 1. The example shows that job J6 needs to be scheduled �rst.
However, it is still required to determine the machine on which the job will be
executed. Since at the release time of the job all the machines are free, the job
is scheduled on the machine on which it has the smallest processing time, which
would, in this case, be machineM2. The next job in the list is job J2. To decide
on which machine this job should be scheduled, the completion times of the job
on each of the machines are calculated. Since no jobs are scheduled on machines
M0 and M1, the completion time on those machines is calculated as rj + pij .
Therefore, the completion time of job J2 on machine M0 would be 12, while on
machineM1 it would be 14. On the other hand, since at least one job is already
scheduled on machine M2, it is �rst required to determine the time at which all
jobs �nish with their execution on that machine (denoted as mr), which would,
in this case, be 13. The completion time of the job on that machine is calculated
as max(mr, rj) + pij , which would amount to 25. Since the job would complete
the fastest on machineM0, it is scheduled on that machine. The remaining jobs
in the list are scheduled in the same way, which would result in the schedule
presented in Figure 1.

6 2 5 1 0 4 3

Figure 2: Schedule represented by PE

4.2. Permutation encoding with machine list

The permutation encoding with machine list (PEML) is a simple extension
of PE, which also enables the association of each job to a certain machine
(Ðurasevi¢ & Jakobovi¢, 2016). In this representation, in addition to the list
representing the permutation of the jobs, the individual consists of a second
list of numbers, where each number denotes the index of the machine on which

8

the corresponding job should be scheduled. Therefore, it is not required to
determine the associations of jobs to machines heuristically, since it is explicitly
de�ned in this encoding. Figure 3 represents the solution by using this encoding.
The upper list represents the permutation of jobs, while the lower list denotes
the indices of the machines to which the jobs are allocated. The �gure shows
that the �rst job which needs to be executed is job J6 and that this job will be
scheduled on machineM2 (speci�ed by the second list). The rest of the schedule
can be constructed in the same way.

6 2 5 1 0 4 3

2 0 1 0 2 0 1

Figure 3: Schedule represented by PEML

4.3. Permutation encoding with machine count

The permutation encoding with machine count (PEMC) is similar to the
PEML encoding scheme in a way that it extends the permutation list with an
additional integer array Carter & Ragsdale (2006). In this representation, the
length of the integer array is equal to the number of machines. Each number in
the integer array represents the number of jobs that will be associated with the
machine with the corresponding index. This would mean that the �rst number
in the array would represent how many jobs from the start of the permutation
would be associated to the machine with index 0, while the next number would
denote how many jobs from the remaining permutation would be assigned to
the machine with index 1, and so on. The consequence of such an encoding
scheme is that the sum of the elements in the integer array needs to be equal
to the number of jobs, thus imposing an additional constraint that needs to be
satis�ed when applying genetic operators. Figure 4 represents the solution using
this encoding. The upper list represents the permutation of the jobs, while the
lower list represents the integer array that denotes the number of jobs assigned
to each machine. The integer array denotes that machine M0 will contain the
�rst three jobs denoted in the permutation list: J2, J1, and J4. Machine M1

will contain the next two jobs, J5 and J3, since the value on index 1 in the
integer array is equal to 2. Finally, the last index in the integer array is also
equal to 2, which denotes that the next two jobs, which are also the last in the
permutation list, will be scheduled on machine M2.

2 1 4 5 3 6 0

3 2 2

Figure 4: Schedule represented by PEMC

9

2.53 0.31 0.12 1.97 0.81 1.43 2.28

Figure 5: Schedule represented by RKE

4.4. Random key encoding

The random key encoding (RKE) uses a single list of real numbers to rep-
resent the schedule (Bean, 1994; Behnamian et al., 2009). All the numbers in
this encoding must be from the range [0,m >, and the length of the list is equal
to the number of jobs in the scheduling problem. Each of the numbers in the
list is associated with the job with the index that corresponds to the position
of the number in the list. This means that the number at the �rst position
would be associated with job J0, the number at the second position with job
J1, and so on. The number is used to determine both the allocation of this job
to a machine and the sequence of the jobs on that machine. The integer part
of this number denotes the index of the machine on which the job should be
scheduled. The fractional part of the priority value determines the position of
the job on the machine in a way that jobs with a smaller fractional value will
be scheduled earlier, while jobs with a larger priority value will be scheduled at
a later moment in time.

Figure 5 represents the solution encoded by using RKE. The �rst number
denoted in the list corresponds to job J0 and can be used to determine how
this job will be scheduled. Since the integer part of this number is equal to
2, job J0 will be scheduled on machine M2. However, it is still required to
determine when the job will be scheduled. Since job J6 is the only other job in
this list which will be scheduled on machine M2, the fractional parts of these
two numbers are compared, and since job J6 has a smaller fractional value, it
will be scheduled before job J0 on machine M2. The rest of the schedule for the
other two machines is constructed in the same way.

4.5. Floating point encoding

The �oating point encoding (FPE) is a representation that uses a list of
real numbers, similar to RKE (Ðurasevi¢ & Jakobovi¢, 2016). However, in
this representation, the numbers can have values between [0, 1]. Therefore, the
information about the machine on which the job needs to be scheduled is also
encoded in the fractional part of the number. To determine on which machine
the job will be scheduled, the interval [0, 1] is divided into m equal subintervals.
The machine on which the job will be scheduled is selected by determining to
which of the intervals the priority value of the job belongs. For example, if there
are two machines, then the interval for machineM0 would be [0, 0.5 >, while the
interval for machineM1 would be [0.5, 1]. Therefore, if the priority value belongs
to the �rst interval, the job will be scheduled on machine M0. Otherwise, it
will be scheduled on machine M1. After the allocation of jobs to machines
is determined, the sequence of jobs on each of the machines is determined by
arranging them by the values of their priorities in increasing order. This means

10

that jobs with smaller priority values will be scheduled sooner, while those jobs
with a larger priority value will be scheduled towards the end of the schedule.

Figure 6 shows the solution represented by this encoding. Since this problem
consists out of three machines, the intervals will be [0, 0.33 > for machine M0,
[0.33, 0.66 > for machine M1, and [0.66, 1] for machine M2. By using these
intervals it can be determined that jobs J1, J2, and J4 should be scheduled on
machine M0, jobs J3 and J5 on machine M1, and jobs J0 and J6 on machine
M2. The sequence of these jobs is then determined by their priority values. For
machine M0 it is evident that job J2 needs to be scheduled �rst since it has the
smallest priority value out of all the jobs which are scheduled on that machine.
After it, job J1 will be scheduled since it has the second smallest value, whereas
job J4 will be scheduled the last since it has the largest value out of all three
jobs. On machineM1 the �rst job that would be executed is J5, followed by job
J3. Finally, on machine M2 the �rst job that would be executed would be J6
followed by J0, again because of the reason that J6 has a smaller value assigned
to it than J0.

0.85 0.21 0.13 0.57 0.29 0.44 0.71

Figure 6: Schedule represented by FPE

4.6. Matrix encoding

The matrix encoding (ME) uses a matrix of real numbers to represent the
solutions (Balin, 2011). In this encoding rows denote machines, while columns
denote jobs. Thus, the matrix consists of m rows and n columns. Each cell in
the matrix contains a real number in the range [0, 1]. If the value of the cell
is equal to 0, this means that the job with the corresponding column index is
not scheduled on the machine with the corresponding row index. On the other
hand, if the cell contains a value which is larger than 0, the job is then scheduled
to the corresponding machine. The values of the cells specify the sequence in
which the jobs will be scheduled on the machines. If the cell contains a smaller
value the jobs will be scheduled sooner, whereas jobs with a larger value will
be scheduled at a later part of the schedule. When using this encoding, it is
required to introduce additional constraints to ensure that the individual always
represents a feasible schedule. Therefore, in each column, only one cell can have
a value di�erent than 0. If all cells in a column would have the value 0, this
would mean that the job would not be scheduled on any of the machines. On
the other hand, if more than one cell in a column would have a value larger than
0, this would mean that the job would be scheduled on two or more machines.

Figure 7 shows the solution represented by using ME. For the tested schedul-
ing problem instance, the matrix consists out of three rows (which is equal to
the number of machines), and seven columns (which is equal to the number of
jobs). By going through each row in the matrix and determining which cells
have a value larger than 0, it can be deduced which jobs need to be scheduled on

11

0 1 2 3 4 5 6

0 0.5 0.3 0 0.9 0 0

0 0 0 0.8 0 0.2 0

0.7 0 0 0 0 0 0.1

0

1

2

Job index

M
a
ch
in
e
in
d
ex

Figure 7: Schedule represented by ME

which machine. For example, in the row which represents machine M0, the jobs
with indices 1, 2, and 4 have a value larger than zero, meaning that these jobs
need to be scheduled on machine M0. However, it is still required to determine
the sequence in which they will be scheduled. Since in this example job J2 has
the smallest priority value, it will be scheduled �rst, followed by job J1, and
�nally by job J4, which has the largest priority value. The rest of the schedule
is constructed in the same way.

4.7. Machine list encoding

The machine list encoding (MLE) is a simple solution representation in which
each machine has a list that contains the permutation of all jobs scheduled on
that machine (Vallada & Ruiz, 2011). This makes the decoding of this list very
simple since it is required to traverse the list of each machine and schedule
all the jobs in the order in which they are listed. However, when using this
representation, it is required to ensure that each job appears in exactly one list,
otherwise, the individual would not represent a feasible solution.

Figure 8 represents the solution encoded with this representation. Since
the considered scheduling problem consists out of three machines, the solution
representation contains three lists of job permutations. The �rst list denotes
which jobs need to be scheduled on machine M0. In this example jobs with
indices 2, 1, and 4 would be scheduled in that order on machine M0. For the
other two machines, the jobs which need to be scheduled on them and their
order can be determined in the same way.

2 1 4

5 3

6 0

0

1

2

M
ac
h
in
e
in
d
ex

Figure 8: Schedule represented by MLE

12

5. Experimental setup

In this paper the following four scheduling problems will be used to test the
previously described solution representations: Rm|rj |Cmax, Rm|rj |Ft, Rm|rj |Nwt,
and Rm|rj |Twt. As can be seen from the de�nitions, four scheduling criteria
will be optimised independently on problems that contain jobs that are released
over time into the system. Although no additional constraints are considered,
some (like setup times) would be also fairly easy to include since they do not
in�uence the solution representation or genetic operators, but only on how the
�tness function is calculated.

To test the selected solution representations, a set of 60 problem instances
was designed. The design of experiments was performed similarly as in other
studies dealing with a similar problem Lin et al. (2013); Lee et al. (2013); Kim
et al. (2003). The total �tness of each encoding is calculated as the sum of
criteria values of the best solution obtained for solving each problem instance.
The problem set consists of instances with di�erent characteristics, to test the
GA on various scheduling situations. The problem instances contain between
12 and 100 jobs, as well as between 3 and 10 machines. The properties of jobs
in the problem instances are generated in the following way. The processing
times of jobs are generated from the interval

pij ∈ [0, 100],

by using one of the following three probabilistic distributions: uniform, normal
(Gaussian), and quasi-bimodal. The normal distribution is used with the median
value of 50 and a standard deviation of 20, while the quasi bi-modal distribution
is de�ned to have its peaks around values of 15-25 and 80-90. This is done to
simulate that jobs from di�erent sources have processing times which di�er from
each other. It should be noted that these distributions can lead to scenarios that
can be considered unrealistic since the job execution times will not have any
correlation to the machine that is selected for that execution. All job weights
are generated uniformly from the interval

wj ∈< 0, 1].

The release times of jobs are generated by using a uniform distribution from the
interval

rj ∈
[
0,
p̂

2

]
,

where p̂ is de�ned as

p̂ =

∑n
j=1

∑m
i=1 pij

m2
.

The due dates of jobs are also generated by using a uniform distribution from
the interval

dj ∈
[
rj + (p̂− rj) ∗

(
1− T − R

2

)
, rj + (p̂− rj) ∗

(
1− T +

R

2

)]
,

13

where T represents the due date tightness parameter, while R represents the due
date range parameter. The due date range de�nes the dispersion, while the due
date tightness adjusts the amount of jobs that will be late. While generating
the problem set, both of those parameters assumed values of 0.2, 0.4, 0.6, 0.8,
and 1 in various combinations.

To improve the performance of each encoding, the parameters of the GA
were �ne-tuned for each of them. Table 2 denotes the values of all algorithm
parameters that were used by the GA for the di�erent solution representations.
The list of the genetic operators that were used by the di�erent encodings is:

• Floating point

� Crossover operators (for brevity let a denote a gene from the �rst
parent, b a gene from the second parent, and c the value of the child
gene)

∗ Arithmetic - c = (α) ∗ a + (1 − α) ∗ b, where α ∈ [0, 1] and has
the same value for all genes in the individual

∗ Average - c = (a+ b)/2

∗ BGA - generates an o�spring by moving from the better parent
in a speci�ed direction, which is calculated based on the worse
individual and certain random values

∗ BLX-alpha - samples the new value from the interval of the two
parents, however, the interval is increased in both directions by
the factor alpha

∗ Discrete - for each gene it is randomly selected whether it will
be inherited from the �rst or the second parent

∗ Flat - the value of the child gene c is randomly generated from
the interval [a, b]

∗ Heuristic - for each gene a linear interpolation between the values
in the two individuals is performed, but the values closer to the
better parent have a higher chance of being selected

∗ Local - the same as the arithmetic crossover, but the α value is
randomly generated for each gene

∗ onepoint - selects a random point in the individuals and takes all
the genes before this point from one parent, and all genes after
this point from the other parent

∗ SBX - simulates the e�ect of the one point binary crossover

� Mutation operators

∗ simple - selects a random gene in the individual and samples a
new value for it from the domain

• Permutation

� Crossover operators

14

∗ COSA - performs a 2-op mutation on the �rst parent, but uses
the second parent to determine which new element should be
inserted

∗ DPX - detects common sub-paths of the two parents and tries
to reconnect them to produce the child

∗ OBX - random genes are copied from one parent to the child,
while the remaining genes are �lled out from the other parent
starting from the beginning of the individual

∗ OPX - selects a random crossover point, and copies all elements
up to that position from the �rst parent, and �lls out the rest
from the second parent

∗ OX - a part of one parent is copied into the child, whereas the
missing numbers are copied from the other parent in the order in
which they appear in it, but starting from the end of the copied
interval

∗ OX2 - the same as OX, but the genes from the second individual
are copied from the start of the individual

∗ PBX - similar to OX, however, instead of copying a connected
sequence of genes from the �rst parent, random genes are selected
and copied from the parent to the corresponding positions of the
child

∗ PMX - a part of one parent is copied into the child, while the rest
of the individual is �lled out from the second parent, partially
by using a mapping from the transferred part, and partially by
just being copied over

∗ SPX - two positions in both individuals are selected and the
elements at the chosen places are swapped

∗ ULX - each gene is randomly selected from one of the parents,
and the missing entries are then �lled randomly at the end

∗ UPMX - similar to PMX, but instead of using the crossover
points to determine the swaps, they are considered for each po-
sition

∗ Cyclic - creates a number of cycles by using both parents, and
then copies each of the cycles alternatively from each parent to
the child until all the cycles are copied

� Mutation operators

∗ Insert - selects a random element and inserts it at a random
position in the individual

∗ Inverse - selects two random positions and reverses the order of
the elements between them

∗ Toggle - selects two random positions and swaps their values

• Integer genotype

15

� Crossover operators

∗ Uniform - each gene in the child is selected randomly from one
of the parents

� Mutation operators

∗ Simple - the value of a random gene is replaced by a random
value generated from the allowed domain

• Integer genotype (with sum constraints)

� Crossover operators

∗ Crx1x - a random point in the parents is selected and the part
before the point is copied from the �rst parent, while the second
part is copied from the second parent. A repairing procedure,
which increments or decrements randomly selected genes, is ap-
plied until the sum of the elements satis�es the required condition

∗ Crx0x - each element of the child is randomly selected from one
of the parents. The repairing procedure is the same as in Crx1x

� Mutation operators

∗ Leveling - selects the largest number in the individual and decre-
ments it, after which it selects the smallest number and incre-
ments it

∗ LevelingR - same as Leveling, but the amount by which the num-
bers are decremented and incremented is a random number be-
tween 0 and the largest value in the individual

∗ MaxR - �nds the largest element, decrements it by one, and
increments the value of the element to the right

∗ MaxRR - same as MaxR, but the number by which the elements
are decremented and incremented is a random number between
0 and the largest value in the individual

∗ MaxRandom - selects the largest value in the individual, decre-
ments it and then increments one other randomly selected value

∗ MaxRandomR - same as MaxRandom, but the number by which
the elements are decremented and incremented is a random num-
ber between 0 and the largest value in the individual

∗ Randomx2 - selects two random elements, one of which is decre-
mented and the other is incremented

∗ Randomx2R - same as Randomx2, but the number by which the
elements are decremented and incremented is a random number
between 0 and the value of the element which is decremented

• Matrix genotype

� Crossover operators

16

∗ Uniform - each column of the matrix is randomly selected from
one of the parents

� Mutation operators

∗ Cell swap - a random cell with a value di�erent than 0 is selected
and is swapped with a di�erent cell in the same column

∗ Cell value - a new random number is generated for the cell from
the allowed interval

• List genotype

� Crossover operators

∗ Point - for each list a crossover point is selected, and for each lists
the elements before that point are taken from the �rst parent.
The missing elements are then taken from the second parent.

� Mutation operators

∗ Shift - a job is randomly selected and shifted to a di�erent posi-
tion in the same list

∗ Insert - a job is randomly selected and inserted into another
randomly selected list

If more than one operator is de�ned for a certain representation, then one of
the available operators will be randomly selected and used in each iteration.
Furthermore, for PEML which consists out of two genotypes, the operators
are applied independently on each genotype. However, in each iteration, the
operator will be applied only on one of the genotypes. More details about the
genetic operators that were used for the various solution representations, can
be found in the documentation of the Evolutionary Computation Framework
(ECF) in which all the implementations were performed 1.

Table 2: Parameters used by the di�erent representations

Parameter PE PEML PEMC RKE FPE ME MLE

Population
size

30 30 1000 30 30 30 30

Mutation
probability

0.7 0.7 0.7 0.9 0.3 0.9 0.9

Selection Steady state tournament selection with tournament size of 3 individuals
Termination
condition

1 000 000 function evaluations

Operators
permutation

based
operators

permutation
and integer

based
operators

permutation
and integer
(with sum
constraint)

based
operators

�oating
point based
operators

�oating
point based
operators

matrix based
operators

list based
operators

1Evolutionary Computation Framework: http://ecf.zemris.fer.hr/

17

To obtain statistically signi�cant results, the GA was executed 30 times to
optimise the set containing all problem instances. From each run, the best in-
dividual for each problem instance was saved, and based on those values the
minimum, median, and maximum �tness values were calculated for all 30 ex-
ecutions. In addition to those three values, the total minimum value, denoted
as Tmin, was also calculated. This value represents the minimum value which
would be obtained if the best solution for each problem instance would be se-
lected out of all the 30 algorithm executions. This value serves as an indicator
of how good solutions the encodings would be able to obtain, given that they
would be executed several times for each problem instance. To test whether the
results obtained by the methods are signi�cantly di�erent from each other, the
Mann-Whitney statistical test was used. The results are considered statistically
signi�cant if α < 0.05.

6. Results

The results obtained by the tested solution representations are denoted in
Table 3. For each row, the solution representation which achieved the best
result is denoted with a grey colour. To better denote the obtained results, they
are additionally represented as box plots shown in Figure 9. In the box plot,
an additional rhomboid is used to denote the average value, to outline whether
there is a large di�erence between it and the median value.

The table denotes that the GA obtained the best results when using PE
for all four tested criteria. This encoding has proven to be especially e�cient
when optimising the Twt and Ft criteria since for those two it achieved the
best improvements when compared to the other encodings. Furthermore, from
the box plot, it is also evident that the GA achieved the least dispersed results
when using this encoding. Such a behaviour is desirable since it denotes that the
algorithm behaves quite stable and will achieve mostly similar results even upon
several invocations. Extending this encoding with an additional list of integer
numbers, which denote the allocation of jobs to machines, has not proven to
be bene�cial since the GA achieved quite poor results when using PEML. For
this encoding, the GA even achieved the worst results out of all the tested
solution encodings, which consistently happens for all four optimised scheduling
criteria. Furthermore, the GA achieved quite dispersed results when using this
representation, which denotes that for several invocations of the algorithm it is
expected that quite di�erent results will be obtained. PEMC, the alternative
representation which uses an additional integer array, achieves generally much
better results than PEML. For the Twt and Cmax criteria, it even outperformed
one of the �oating point representations. However, when compared to the other
representations, it still achieved inferior results.

By using the solution representations based on a single array of real num-
bers, the GA performs worse than by using PE but much better than when
using PEML. However, the GA does not perform equally well for both of the
encodings. When using FPE, the GA usually achieved worse results than when
using any of the other encodings, except for PEML and PEMC. This can quite

18

Table 3: Results obtained by the tested solution representations

Solution encoding
Criterion

PE PEML PEMC RKE FPE ME MLE

Execution time 681.0 508.1 485.7 436.8 339.1 489.5 505.4

Tmin 36.59 37.14 36.64 36.55 36.79 36.50 36.52
Min 36.74 38.22 37.47 36.91 37.48 36.76 36.75
Med 36.85 38.50 37.62 37.07 37.72 36.91 36.90

Cmax

Max 36.99 38.78 37.92 37.21 38.12 37.08 37.02

Tmin 138.9 151.2 150.74 139.7 140.8 141.0 139.7
Min 140.3 163.8 163.7 144.0 146.4 145.9 144.1
Med 141.4 167.3 165.7 146.9 149.9 149.2 146.3

Ft

Max 143.1 170.5 168.9 149.2 153.1 151.8 147.8

Tmin 5.316 5.615 5.364 5.334 5.340 5.317 5.318
Min 5.316 5.829 5.429 5.335 5.373 5.357 5.323
Med 5.333 5.938 5.480 5.356 5.455 5.403 5.348

Nwt

Max 5.377 6.063 5.694 5.398 5.661 5.592 5.466

Tmin 9.452 9.725 9.585 9.516 9.533 9.525 9.499
Min 9.521 10.34 9.902 9.723 9.917 9.709 9.601
Med 9.584 10.76 10.24 9.968 10.27 9.987 9.846

Twt

Max 9.695 11.35 10.61 10.39 10.90 10.47 10.18

19

easily be seen when optimising the Twt and Cmax criteria, where this encod-
ing did not perform well when compared to the others. The dispersion of the
obtained solutions is larger than when using RKE, or some other solution repre-
sentations. On the other hand, when using RKE the GA achieves better results.
This encoding has proven to be more suitable for some criteria than for others.
For the Ft and Nwt criteria the GA obtained the third best results when using
this encoding. It can even be seen that the di�erences in results between this
encoding and the results obtained by the second-best encoding are similar.

PE PEML PEMC RKE FPE ME MLE

36.6

36.8

37

37.2

37.4

37.6

37.8

38

38.2

38.4

38.6

38.8

(a) Results for optimising the Cmax criterion

PE PEML PEMC RKE FPE ME MLE

140

145

150

155

160

165

170

(b) Results for optimising the Ft criterion

PE PEML PEMC RKE FPE ME MLE

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6

6.1

(c) Results for optimising the Nwt criterion

PE PEML PEMC RKE FPE ME MLE

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

11

11.2

11.4

(d) Results for optimising the Twt criterion

Figure 9: Comparison of the results obtained by the di�erent solution representations

When using ME, the performance of the GA depends on the criterion which
is optimised. Furthermore, this representation also obtained more dispersed
results than the other three aforementioned solution representations. The �nal
encoding, MLE, consistently obtained good results for all four tested scheduling
criteria. The GA achieved the second-best median values of the results for all
the scheduling criteria when using this encoding. It was outperformed only by
the GA which used PE. Although for some optimisation criteria this encoding
achieved quite similar results as others (like ME for the Cmax criterion, or RKE
for the Ft criterion), neither of the other encodings consistently achieved such
good results as this one. An additional bene�t of this encoding is that the GA

20

Table 4: Results of the statistical tests

(a) Results for the Cmax criterion

PE PEML PEMC RKE FPE ME MLE
PE - < < < < < <

PEML > - > > > > >
PEMC > < - > < > >
RKE > < < - < > >
FPE > < > > - > >
ME > < < < < - =
MLE > < < < < = -

(b) Results for the Ft criterion

PE PEML PEMC RKE FPE ME MLE
PE - < < < < < <

PEML > - > > > > >
PEMC > < - > > > >
RKE > < < - < < =
FPE > < < > - = >
ME > < < > = - >
MLE > < < = < < -

(c) Results for the Nwt criterion

PE PEML PEMC RKE FPE ME MLE
PE - < < < < < <

PEML > - > > > > >
PEMC > < - > > > >
RKE > < < - < < >
FPE > < < > - > >
ME > < < > < - >
MLE > < < < < < -

(d) Results for the Twt criterion

PE PEML PEMC RKE FPE ME MLE
PE - < < < < < <

PEML > - > > > > >
PEMC > < - > = > >
RKE > < < - < = >
FPE > < = > - > >
ME > < < = < - >
MLE > < < < < < -

obtains results that are not as heavily dispersed as those obtained by some other
encodings.

To test which of the encodings lead to signi�cantly better results, statistical
tests were performed between the results obtained by the encodings for all four
optimised scheduling criteria, and are presented in Table 4. The tables denote
whether the results obtained by the encodings denoted in rows of the table are
statistically di�erent from the results obtained by the encodings denoted in the
columns of the table. Therefore, cells that contain "<" specify that the encod-
ing denoted in the row achieves signi�cantly better results than the encoding
denoted in the column. Cells that contain ">" specify that the encoding de-
noted in the row achieves signi�cantly worse results than the encoding denoted
in the column. Finally, cells that contain "=" denote that there is no signi�cant
di�erence between the encodings denoted in the row and column. Additionally,
cells in which the encoding denoted in the row performs signi�cantly better
than the encoding denoted in the column are shaded with grey colour to better
denote the best encodings. The statistical tests demonstrate that GA with PE
obtained signi�cantly better results than any of the other encodings, for all four
optimised criteria. On the other hand, for PEML the GA obtained signi�cantly
worse results than by using any of the other encodings. MLE obtains signi�-
cantly better results than any of the other encodings (except for PE) for all but
two situations, where it achieves equally good results as ME and RKE.

Apart from the value of the optimised criteria, the execution time of the
algorithm for each of the encodings also represents an important factor. Table
3 denotes the execution time (denoted in seconds) of each algorithm for all the
tested problem instances. It can immediately be seen that di�erent encodings
have large di�erences between their execution times. The shortest execution
time of the algorithm is achieved when using FPE. On the other hand, the GA
executes the slowest when using PE, and is approximately two times slower than
by using FPE. From the results, it is evident that the type of encoding which
is used will have a large in�uence on the execution time of the algorithm. For

21

example, the encodings which use �oating point numbers to represent solutions,
namely RKE and FPE, lead to a smaller execution time of the algorithm, while
the encodings which use the list of permuted jobs, like PE, PEML, PEMC, and
even MLE, will lead to larger execution times.

The execution times are also plotted together with the median values of the
optimised criteria in Figure 10. This �gure shows how the encodings are ranked
if both the quality of the solutions and the execution time of the GA are of
equal importance. The behaviour which occurs for all criteria is that the best
performance, but also the slowest execution time, is obtained when using PE.
On the other hand, the lowest execution time, but not the worst performance, is
obtained when using FPE. All the other encodings provide a di�erent trade-o�
between the execution time and the performance, usually in a way that if they
obtain a better performance they also have a larger execution time. However,
there are cases in which an encoding is outperformed for both criteria by another
encoding, making it redundant in that case. For example, this is the case with
PEML, since it is always outperformed by all other encodings (except for PE) for
both the execution time and the quality of the constructed schedule. Therefore,
selecting PEML would not be bene�cial in any way. A similar situation occurs
for the PEMC encoding since the RKE encoding always achieves a better result
in less time. The results obtained by using ME are always outperformed by RKE
for both the execution time and the quality of the constructed schedules for all
criteria except Cmax, making this encoding uncompetitive for three scheduling
criteria. On the other hand, RKE and MLE provide the same trade-o� for
all four criteria, with RKE having a smaller execution time, but with MLE
obtaining better values for the optimised criteria. Therefore, when taking both
the quality of the schedule and the execution time of the algorithm into account
it is not as easy to select the best encoding.

Besides testing the methods with a �xed number of function evaluations, it
is also interesting to analyse how the encodings perform if a �xed time limit for
each problem instance is imposed. Therefore, for each problem instance, the GA
will receive a time limit of �ve seconds to �nd the solution for it, and the change
of the �tness values on all problem instances in each moment in time will be
represented in Figure 10. For each criterion, an additional zoomed-in sub�gure
is included to better denote the performance of the encodings, in situations
when they achieve a similar performance. The �rst thing that can be noticed
is that for PEML and PEMC the GA almost consistently achieves the worst
results during the entire execution time, although in the end PEMC does achieve
slightly better results. For PE the GA exhibits a very interesting behaviour.
Except for the Cmax criterion, the results obtained for this encoding are quite
poor at the beginning of the evolution process. However, during the execution
of the algorithm, the �tness value for this encoding decreases faster than when
using other encodings. For three out of the four optimised criteria, this encoding
obtains the best results in the end. Between the other four encodings, there is
not such a large di�erence between the values of their starting solutions. It
is interesting to observe that in some cases the GA with FPE had a better
start than when using RKE, but RKE leads to better convergence, and in the

22

400 500 600 700

37

37.5

38

38.5

PE

PEML

PEMC

RKE

FPE

ME MLE

Time (seconds)

M
ed
ia
n
C

m
a
x
va
lu
e

(a) Relation for the Cmax criterion

400 500 600 700

140

150

160

PE

PEML

PEMC

RKE

FPE ME

MLE

Time (seconds)

M
ed
ia
n
F
t
va
lu
e

(b) Relation for the Ft criterion

400 500 600 700

5.4

5.6

5.8

PE

PEML

PEMC

RKE

FPE
ME

MLE

Time (seconds)

M
ed
ia
n
N
w
t
va
lu
e

(c) Relation for the Nwt criterion

400 500 600 700
9.5

10

10.5

PE

PEML

PEMC

RKE

FPE

ME

MLE

Time (seconds)

M
ed
ia
n
T
w
t
va
lu
e

(d) Relation for the Twt criterion

Figure 10: Relation between the execution time and the performance of the GA when using
various representations

23

end obtained superior results. By using MLE the GA usually started with the
best solutions, which in the end had a good e�ect on the �nal performance of
the algorithm, since it was never outperformed by any other encoding except
for PE. By using ME the GA also obtains good results at the start of the
evolution process. However, it is evident that the results do not improve much,
and therefore this encoding is usually easily outperformed by RKE in the later
iterations. For the Ft, criterion even FPE can obtain a better performance than
ME for some time, but in the end, ME was able to slightly outperform FPE,
although with great di�culty.

To provide a more detailed analysis of each encoding, two additional exper-
iments were performed. In the �rst experiment, the goal was to compare the
evaluation times of each encoding. Therefore, 100 000 random individuals were
evaluated for each problem instance. In that way, the complexity of each de-
coding scheme can be approximated. In the second experiment, the goal was to
obtain a notion of the complexity of genetic operators used for di�erent encoding
schemes. This experiment used only three individuals in the population with
all the genetic operators that were outlined before. Furthermore, the mutation
probability was set to 1 to ensure that in each iteration both the crossover and
mutation operators are applied, while the �tness function was modi�ed to re-
turn a �xed value so that no time is spent on evaluation of the individual. This
experiment was executed until one million function evaluations were performed.
Table 5 represents the obtained results for both experiments. As can be seen,
depending on the representation, the evaluation of the individual can be quite
di�erent. The PEML, PEMC, and MLE encodings have the lowest evaluation
time, which is expected since they are easy to decode and evaluate. The PE and
ME encoding require roughly two times more time to be evaluated than the pre-
vious two encodings. For PE this is a consequence of the fact that the solution
is constructed by a heuristic procedure. On the other hand, although in ME
the allocation of jobs to machines can be easily determined, their order on the
machines needs to be decoded out of the priorities assigned to each job. Finally,
the encodings based on the �oating point representation require the most time
to be decoded. This is a consequence of the numeric operations that need to be
performed to extract the machine allocation and job sequence out of the real
numbered values. As far as the genetic operators are concerned, the situation
is slightly di�erent. The least amount of time needed to perform the genetic
operators is required by the �oating point representations. This was expected
since these operators are based on simple mathematical operations that can be
performed quickly. The most time to perform the operations is required by the
operators for the permutation representation, as well for the custom operators
for the MLE and ME. This happens since the implementation of the operators
is more complex, because the operator has to ensure that it will generate a valid
individual. One thing which might seem surprising at �rst is that the PE en-
coding has a higher execution time than the PEMC encoding. However, this is
the consequence of the fact that when two genotypes are used at the same time,
only one of them will be modi�ed in each iteration, thus reducing the amount
of time that the permutation operators will be performed on the individual.

24

0 1 2 3 4 5
37

38

39

40

41

42
43
44
45
46
47
48
49
50

Execution time (in seconds)

C
m

a
x

PE
PEML
PEMC
RKE
FPE
ME
MLE

(a) Results for the Cmax criterion

0 1 2 3 4 5
37

37.5

38.5

39.5

38

39

40

Execution time (in seconds)

C
m

a
x

PE
PEML
PEMC
RKE
FPE
ME
MLE

(b) Results for the Cmax criterion (zoomed-in)

0 1 2 3 4 5

150
160

180

200

230

250
270

300

350

400

Execution time (in seconds)

F
t

PE
PEML
PEMC
RKE
FPE
ME
MLE

(c) Results for the Ft criterion

0 1 2 3 4 5
145

150

155

160

165

170

175

180

185

190

195

200

Execution time (in seconds)

F
t

PE
PEML
PEMC
RKE
FPE
ME
MLE

(d) Results for the Ft criterion (zoomed-in)

0 1 2 3 4 5

6

7

8

9

10

12

15

17

20

Execution time (in seconds)

N
w
t

PE
PEML
PEMC
RKE
FPE
ME
MLE

(e) Results for the Nwt criterion

0 1 2 3 4 5

5.4

5.5

5.6

5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

Execution time (in seconds)

N
w
t

PE
PEML
PEMC
RKE
FPE
ME
MLE

(f) Results for the Nwt criterion (zoomed-in)

0 1 2 3 4 5
10
12

15

20

25
30

40

50

70

100

Execution time (in seconds)

T
w
t

PE
PEML
PEMC
RKE
FPE
ME
MLE

(g) Results for the Twt criterion

0 1 2 3 4 5

10

10.5

11

11.5

12

13

14

15

Execution time (in seconds)

T
w
t

PE
PEML
PEMC
RKE
FPE
ME
MLE

(h) Results for the Twt criterion (zoomed-in)

Figure 11: Change of the minimum �tness value during the execution of the algorithm

25

Table 5: In�uence of the encoding on the evaluation time and operator execution time

PE PEML PEMC RKE FPE ME MLE

Evaluation time 25.86 12.51 12.49 34.06 28.00 24.18 16.61
Operator execution time 443.7 538.4 398.0 236.4 236.5 359.4 419.6

7. Discussion

This section will provide a short discussion based on the results and �ndings
from the previous section. Table 6 represents an overview of the most impor-
tant characteristics of each encoding. The rank column denotes the total rank
for all the optimised criteria by each encoding, which was calculated based on
the median values obtained by the GA. A lower rank for an encoding denotes
that the GA obtained better values for the criteria when compared with other
encodings. For example, a rank of 1 would denote that for this encoding the GA
obtained the best median value for all four criteria. The execution time column
denotes the total execution time for all encodings when the maximum number
of function evaluations speci�ed in Table 2 is used. The space column denotes
the memory space which is required by each of the encodings to represent a sin-
gle solution. The complete column denotes whether by using the encoding, it is
possible to represent all existing solutions for a certain problem. The default op-
erators column denotes whether a standard solution representation was used for
which standard genetic operators already exist so that it is not required to de�ne
specialised operators for this encoding. The unique column denotes whether any
two encoded solutions always represent two distinct schedules. This means that
each schedule can be mapped to only a single encoded solution. Finally, the
"interpretable" column denotes whether the solution represented by a certain
encoding is easy to interpret by humans. Although classifying the encodings by
this property is quite subjective, the main criterion which was used is whether
it is easy for a human to determine the allocations of jobs to machines and their
sequence on them, without having to decode the encoded solution.

Based on its rank, PE achieved the best results on all four scheduling criteria.
Even more, the statistical tests have demonstrated that the results obtained
by this encoding are signi�cantly better than the results obtained by any of
the other encodings. Thus, if only the quality of the results is of the essence,
then this encoding can be considered superior to all the other tested encodings.
Therefore, specifying only the sequence in which jobs should be scheduled seems
to have a quite good in�uence on the GA, since it has to focus only on �nding
the right sequence of jobs, whereas the simple heuristic proves to be more than
enough to determine a good allocation of these jobs on the available machines.
The change of �tness during the evolution process outlines a very interesting
behaviour of the GA when using this encoding. At the start of the evolution
process, the GA requires a certain amount of time to obtain good solutions.
Thus, it seems to be di�cult for the algorithm to obtain a good permutation
of jobs. However, as soon as a good solution is obtained, it can be seen that

26

Table 6: Properties of the tested solution representations

Encoding Rank Execution time Space Complete Default operators Unique Interpretable

PE 1 681.0 n No Yes No No
PEML 7 508.1 2*n Yes Yes Yes Yes
PEMC 5.5 485.7 n+m Yes No Yes Yes
RKE 3.25 436.8 n Yes Yes No No
FPE 5.5 339.1 n Yes Yes No No
ME 3.75 489.5 m*n Yes No No No
MLE 2 505.4 n+m Yes No Yes Yes

the GA can quickly improve it and obtain some of the best solutions. An
additional bene�t of this encoding is that very little space is required to represent
a solution since only a list of n elements is needed. Finally, since the solution
is simply encoded as a permutation, many existing genetic operators exist and
it is not required to de�ne new ones. However, the simple heuristic that is used
to determine the allocation of jobs on machines has a large in�uence on the
execution time. Namely, when using a �xed number of function evaluations, the
GA obtained the longest execution time for this encoding, which is usually quite
larger than the execution times obtained for the other encodings. Nevertheless,
if the maximum allowed execution time is speci�ed for each of the encodings,
it was evident that, in the given time, this encoding achieved the best results
for three criteria, although the obtained improvements in the results were not
large in comparison with the second-best encoding. One additional drawback
of this encoding is that two di�erent individuals can be used to represent the
same solution, which comes as a consequence of the fact that the allocation of
jobs to machines is not speci�ed. Therefore, a change in the order of two jobs
will not necessarily lead to a di�erent schedule if both jobs are scheduled on
di�erent machines. Finally, it is quite di�cult to immediately determine the
schedule based on this encoding, since the allocation of jobs to machines must
be determined heuristically.

For PEML the GA obtained the worst rank, meaning that it performed
quite poorly for optimising all scheduling criteria. Therefore, adding an ad-
ditional genotype to the individual, which represents the allocation of jobs to
machines, has resulted in a serious degradation of the performance. The reason
for this seems to be twofold. The �rst one is that by adding the additional geno-
type the solution space has increased, making it harder to �nd good solutions.
The other reason is that the genetic operators are performed independently on
both genotypes. This can lead to situations in which a good permutation of
jobs is obtained, but the allocation of jobs on machines is quite poor. Such
a problem could be solved by de�ning genetic operators that would perform
changes on both genotypes at the same time. Adding an additional list to the
individual increases the space required by the individuals to represent solutions
in comparison with PE. On the other hand, by using the additional list it is not
required to use a heuristic to allocate the jobs to machines. This leads to an
easier interpretation of this encoding. However, when using this solution rep-

27

resentation the GA still has a longer execution time in comparison with other
encodings except for PE. Another bene�t of this encoding is that it can repre-
sent all possible solutions. Also, since the encoding uses one permutation and
one integer genotype, it is not required to de�ne any new operators. Finally,
every change which happens in the encoded solution will necessarily result in a
di�erent schedule. For example, a change in the permutation genotype will lead
either to a di�erent sequence of the jobs on a machine or to the placement of
the job on another machine, while a change in the integer genotype will lead to
a di�erent allocation of a job to a machine.

The alternative PEMC encoding, which also uses an additional integer array,
achieves signi�cantly better results than the PEML encoding. Therefore, it
seems easier for the algorithm to work on a more concise representation since
here the integer array will be much shorter than in PEML. One possible reason
for this is that when jobs that are close to each other in the permutation array
are swapped, they will mostly remain on the same machine. This makes it easier
for the algorithm to �nd a good permutations that should be allocated to each
machine. This is an interesting result because one might have expected PEML
to obtain better results simply because it o�ers more diversity of individuals.
This representation has even shown to be competitive to FPE. On two of the
tested criteria, it achieved better results than FPE, while on the other two it
was inferior. Regarding the execution time, the GA had the shortest execution
time when using this encoding out of all the permutation-based encodings. This
encoding even achieves a slightly better execution time when compared to the
ME and MLE encodings, and is only outperformed by the �oating point based
encodings in that regard. The bene�ts of this encoding are that all solutions
can be represented, that it needs only a slightly larger space than PE (usually
the number of jobs is larger than the number of machines), and the solution can
be interpreted relatively easily. Furthermore, each change in the genotype will
also a�ect the solution, meaning that the same solution cannot be represented
by two di�erent individuals. On the other hand, a disadvantage of this encoding
is that for the integer genotype specialised operators, which ensure that all the
numbers in the array sum up to a certain value, need to be de�ned.

By using RKE the GA usually obtained the third best results, which can
be seen from the rank of this encoding. Only for the Cmax criterion, the GA
achieved the fourth best result for this encoding. Thus, encodings based on real
numbers also seem to be quite well suited for representing solutions in scheduling
problems. This result is a bit surprising since the genetic operators which are
applied to the individuals do not have any knowledge about the underlying
problem, and thus can introduce many changes in the solutions at the same
time, or can introduce changes which do not a�ect the underlying solution.
However, this does not seem to signi�cantly in�uence the performance of the
GA. Besides the fact that many existing genetic operators exist which can be
used for this encoding, it has several other bene�ts. When using this solution
representation the GA obtained the second best execution time, meaning that
the decoding of solutions and the entire evolution process are cheaper than
when using other encodings. Furthermore, the entire schedule is encoded by

28

a single list of real numbers, which makes it one of the most memory e�cient
encodings. By using this encoding it is also possible to represent all solutions,
therefore the entire search space can be represented. On the other hand, one
issue associated with this encoding is that small changes to an encoded solution
will not necessarily lead to a di�erent schedule. For example, the fractional part
of a number may be changed only slightly, which does not cause any change to
the sequence in which the jobs are scheduled. This can happen more often on
problems that contain a smaller number of jobs since then larger changes in the
fractional part will be required to invoke a change in the decoded solution. Thus,
a single schedule can be represented by several encoded solutions. Furthermore,
this encoding is not easily interpretable. Even though the allocation of jobs to
machines can easily be determined, the sequence of jobs is not as evident from
the encoding, especially for a larger number of jobs.

The second encoding which is based on real numbers (FPE) has not proven
to be as successful as RKE. By using this encoding the GA constantly achieved
poor results, and the GA obtained consistently worse results only when using
PEML. The cause for this could be because both the allocation and the sequence
of jobs are determined only based on the fractional parts of the number. There-
fore, a small change in the fractional part can lead to both the allocation of a
job on another machine, but also a di�erent position of the job in the sequence.
Also, if there are many machines on which the jobs can be scheduled, then the
intervals for each machine will be quite small, making it harder to allocate a job
on a concrete machine. This kind of encoding seems to be the least computa-
tionally expensive since the GA achieved the fastest execution time when using
it. Furthermore, as was the case with RKE, this encoding is memory e�cient, it
can be used to represent all the solutions, and provides various existing genetic
operators that can be used. However, even when using this solution represen-
tation each schedule will not be represented by only one solution. As was the
case with FPE, there will again be several encoded solutions that represent the
same schedule. Furthermore, this encoding is even less interpretable than RKE,
since even the allocation of jobs to machines is now harder to determine.

ME, which uses a matrix to represent the schedule, usually obtained the
fourth best results for the optimised criteria, except for the Cmax criterion
for which it obtained the third best results. When compared with the other
encodings, the GA obtains average results when using ME. The reason why ME
does not perform as well as for some other representations could be because
very simple genetic operators were used for this encoding. For example, the
applied uniform crossover operator only selects which part of the solution will
be taken from one parent, and which from the other. Therefore, no changes will
occur on the priority values of the individual jobs during the crossover, but only
during the mutation, which could be the cause for a slower convergence and the
poorer results. The only real bene�t of this encoding is that it can represent
all the solutions, whereas in all other properties it is not very competitive with
the other representations. The execution time for this encoding is quite similar
to those of PEML and MLE, meaning that it does not provide any signi�cant
bene�t in this regard since it only signi�cantly outperforms the execution time

29

of PE. Regarding the space consumption of this encoding, it is the encoding
which uses up the most space per individual, since it uses a m ∗n matrix. Since
a matrix is used to represent the solutions, there is not a wide range of operators
that can be used, but rather new genetic operators need to be de�ned, which also
need to ensure that no illegal solution is generated during the evolution process.
Although this encoding also enables that the allocation of jobs to machines can
be easily determined, the sequence of their execution is once again di�cult to
determine if a large number of jobs are present. Finally, since the sequence of
the jobs is again denoted by using real numbers, it is possible to represent the
same schedule with more than one encoded solution.

The �nal solution representation, MLE, leads the GA to obtain quite good
results. With this encoding, the GA obtained the second best performance for
all four optimised scheduling criteria. This representation can also be seen as
a variant of PE since it is still based on using permutations of jobs. However,
instead of using only one permutation list, m permutation lists are used, one for
each machine. Although this did result in the degradation of the performance to
a small extent, it did improve the execution time of the GA when compared to
PE. However, the GA with MLE is still much slower than when using either RKE
or FPE. The space complexity of this encoding can be considered slightly larger
than that of PE since m permutation lists are used to store the permutations
for each of the jobs. Furthermore, with this encoding, it is possible to represent
all the solutions. An additional bene�t is that each encoded solution represents
a di�erent schedule, meaning that each change in the solution will lead to a
di�erent schedule. Aside from that, this encoding can probably be considered
the easiest to interpret, since not only the allocation of jobs to machines is
explicitly encoded, but also the sequence of jobs on those machines can easily
be determined from the encoded solution. On the downside, no standard genetic
operators exist for such an encoding, therefore it is required to implement them.
Even though the implemented genetic operators were quite simple and similar
to those used by ME, by using them the GA nevertheless obtained solutions of
good quality.

8. Conclusion

In this paper, seven solution representations have been tested for solving
problems in the unrelated machines environment with job release times. All
the representations were used for optimising four scheduling criteria to test how
they perform on each of them. Aside from testing the performance of all the
encodings, the execution time of the GA when using each one of them was
also analysed. Furthermore, the encodings were also compared based on some
additional properties like space complexity or availability of standard genetic
operators.

Based on the obtained results it can be concluded that the best results
are obtained when using PE. The statistical tests have shown that the results
obtained by this representation are signi�cantly better than those obtained by
any of the other encodings. And even though when using a �xed number of

30

function evaluations the GA achieved a large execution time, by using a �xed
execution time this encoding has still demonstrated to obtain the best results
for three out of the four optimised scheduling criteria. The only drawback of
this encoding is that it can not represent all the possible solutions to a certain
scheduling problem. From the other encodings MLE has demonstrated to be the
second best one, and also provided quite good results. Thus it can be regarded
as a good alternative to the PE encoding. PEML, FPE, and PEMC have shown
to be the least competitive, while RKE and ME provided average performance
with RKE usually providing better results.

As demonstrated in this paper, the choice of the solution representation has a
signi�cant in�uence on the obtained results. Selecting an inappropriate solution
representation can result in suboptimal performance of the algorithm, which
would in turn lead to conclusions that might not be generally applicable. As
such, selecting the appropriate solution representation is extremely important,
because it eliminates the in�uence which it could have on the result, and leads
to conclusions that are not biased by the underlying solution representation.
The results and discussion presented in this paper should provide guidelines
for selecting the appropriate solution representation for the unrelated machines
environment, depending on the speci�c requirements placed upon the solution
method.

Since the performed experiments denote that the encodings which are based
on the permutation representation lead to better results, further research will
be directed towards improving those representations. For the PE some more
sophisticated heuristics for determining the allocation of jobs to machines will
be proposed and tested. For MLE some sophisticated genetic operators will be
de�ned to try and improve its convergence. Finally, the best encodings from
this study would also be adapted for solving scheduling problems with additional
constraints that were not considered in this paper.

References

Allahverdi, A., Gupta, J. N., & Aldowaisan, T. (1999). A review of scheduling
research involving setup considerations. Omega, 27 , 219�239.

Allahverdi, A., Ng, C., Cheng, T., & Kovalyov, M. Y. (2008). A survey of
scheduling problems with setup times or costs. European Journal of Opera-
tional Research, 187 , 985�1032. URL: http://linkinghub.elsevier.com/
retrieve/pii/S0377221706008174. doi:10.1016/j.ejor.2006.06.060.

Baker, K. R., & Trietsch, D. (2013). Principles of Sequencing and Scheduling .
Wiley.

Balin, S. (2011). Non-identical parallel machine scheduling using genetic al-
gorithm. Expert Systems with Applications, 38 , 6814�6821. URL: http:
//linkinghub.elsevier.com/retrieve/pii/S0957417410014272. doi:10.
1016/j.eswa.2010.12.064.

31

http://linkinghub.elsevier.com/retrieve/pii/S0377221706008174
http://linkinghub.elsevier.com/retrieve/pii/S0377221706008174
http://dx.doi.org/10.1016/j.ejor.2006.06.060
http://linkinghub.elsevier.com/retrieve/pii/S0957417410014272
http://linkinghub.elsevier.com/retrieve/pii/S0957417410014272
http://dx.doi.org/10.1016/j.eswa.2010.12.064
http://dx.doi.org/10.1016/j.eswa.2010.12.064

Bean, J. C. (1994). Genetic algorithms and random keys for sequencing and
optimization. ORSA Journal on Computing , 6 , 154�160. doi:10.1287/ijoc.
6.2.154.

Behnamian, J., Zandieh, M., & Fatemi Ghomi, S. (2009). Parallel-
machine scheduling problems with sequence-dependent setup times using
an ACO, SA and VNS hybrid algorithm. Expert Systems with Applica-
tions, 36 , 9637�9644. URL: http://linkinghub.elsevier.com/retrieve/
pii/S0957417408007252. doi:10.1016/j.eswa.2008.10.007.

Branke, J., Nguyen, S., Pickardt, C. W., & Zhang, M. (2016). Automated
Design of Production Scheduling Heuristics: A Review. IEEE Transactions on
Evolutionary Computation, 20 , 110�124. URL: http://ieeexplore.ieee.
org/document/7101236/. doi:10.1109/TEVC.2015.2429314.

Braun, T. D., Siegel, H. J., Beck, N., Bölöni, L. L., Maheswaran, M., Reuther,
A. I., Robertson, J. P., Theys, M. D., Yao, B., Hensgen, D., & Freund,
R. F. (2001). A Comparison of Eleven Static Heuristics for Mapping a Class
of Independent Tasks onto Heterogeneous Distributed Computing Systems.
Journal of Parallel and Distributed Computing , 61 , 810�837. URL: http:
//linkinghub.elsevier.com/retrieve/pii/S0743731500917143. doi:10.
1006/jpdc.2000.1714.

de C. M. Nogueira, J. P., Arroyo, J. E. C., Villadiego, H. M. M., & Goncalves,
L. B. (2014). Hybrid GRASP Heuristics to Solve an Unrelated Parallel
Machine Scheduling Problem with Earliness and Tardiness Penalties. Elec-
tronic Notes in Theoretical Computer Science, 302 , 53�72. URL: http:

//linkinghub.elsevier.com/retrieve/pii/S1571066114000218. doi:10.
1016/j.entcs.2014.01.020.

Carter, A. E., & Ragsdale, C. T. (2006). A new approach to
solving the multiple traveling salesperson problem using genetic al-
gorithms. European Journal of Operational Research, 175 , 246
� 257. URL: http://www.sciencedirect.com/science/article/pii/

S0377221705004236. doi:https://doi.org/10.1016/j.ejor.2005.04.027.

Chang, P.-C., & Chen, S.-H. (2011). Integrating dominance properties
with genetic algorithms for parallel machine scheduling problems with
setup times. Applied Soft Computing , 11 , 1263 � 1274. URL: http:

//www.sciencedirect.com/science/article/pii/S1568494610000694.
doi:https://doi.org/10.1016/j.asoc.2010.03.003.

Chen, B., Potts, C. N., & Woeginger, G. J. (1998). A review of machine schedul-
ing: Complexity, algorithms and approximability. In Handbook of Combina-
torial Optimization (pp. 1493�1641). Springer US.

Chyu, C.-C., & Chang, W.-S. (2010). A competitive evolution strat-
egy memetic algorithm for unrelated parallel machine scheduling to min-
imize total weighted tardiness and �ow time. In The 40th Inter-
national Conference on Computers & Indutrial Engineering (pp. 1�6).

32

http://dx.doi.org/10.1287/ijoc.6.2.154
http://dx.doi.org/10.1287/ijoc.6.2.154
http://linkinghub.elsevier.com/retrieve/pii/S0957417408007252
http://linkinghub.elsevier.com/retrieve/pii/S0957417408007252
http://dx.doi.org/10.1016/j.eswa.2008.10.007
http://ieeexplore.ieee.org/document/7101236/
http://ieeexplore.ieee.org/document/7101236/
http://dx.doi.org/10.1109/TEVC.2015.2429314
http://linkinghub.elsevier.com/retrieve/pii/S0743731500917143
http://linkinghub.elsevier.com/retrieve/pii/S0743731500917143
http://dx.doi.org/10.1006/jpdc.2000.1714
http://dx.doi.org/10.1006/jpdc.2000.1714
http://linkinghub.elsevier.com/retrieve/pii/S1571066114000218
http://linkinghub.elsevier.com/retrieve/pii/S1571066114000218
http://dx.doi.org/10.1016/j.entcs.2014.01.020
http://dx.doi.org/10.1016/j.entcs.2014.01.020
http://www.sciencedirect.com/science/article/pii/S0377221705004236
http://www.sciencedirect.com/science/article/pii/S0377221705004236
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2005.04.027
http://www.sciencedirect.com/science/article/pii/S1568494610000694
http://www.sciencedirect.com/science/article/pii/S1568494610000694
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2010.03.003

IEEE. URL: http://ieeexplore.ieee.org/document/5668388/. doi:10.
1109/ICCIE.2010.5668388.

Costa, A., Cappadonna, F. A., & Fichera, S. (2013). A hybrid genetic algo-
rithm for job sequencing and worker allocation in parallel unrelated machines
with sequence-dependent setup times. The International Journal of Advanced
Manufacturing Technology , 69 , 2799�2817. URL: http://link.springer.
com/10.1007/s00170-013-5221-5. doi:10.1007/s00170-013-5221-5.

Cota, L. P., Haddad, M. N., Souza, M. J. F., & Coelho, V. N. (2014). AIRP: A
heuristic algorithm for solving the unrelated parallel machine scheduling prob-
lem. In 2014 IEEE Congress on Evolutionary Computation (CEC) (pp. 1855�
1862). IEEE. URL: http://ieeexplore.ieee.org/document/6900245/.
doi:10.1109/CEC.2014.6900245.

Eiben, A., & Smith, J. (2015). Introduction to Evolutionary Computing . Nat-
ural Computing Series. Berlin, Heidelberg: Springer Berlin Heidelberg.
URL: http://link.springer.com/10.1007/978-3-662-44874-8. doi:10.
1007/978-3-662-44874-8.

Fanjul-Peyro, L., & Ruiz, R. (2010). Iterated greedy local search methods
for unrelated parallel machine scheduling. European Journal of Operational
Research, 207 , 55�69. URL: http://linkinghub.elsevier.com/retrieve/
pii/S0377221710002572. doi:10.1016/j.ejor.2010.03.030.

Fanjul-Peyro, L., & Ruiz, R. (2011). Size-reduction heuristics for the unre-
lated parallel machines scheduling problem. Computers & Operations Re-
search, 38 , 301�309. URL: http://linkinghub.elsevier.com/retrieve/
pii/S0305054810001188. doi:10.1016/j.cor.2010.05.005.

Fanjul-Peyro, L., & Ruiz, R. (2012). Scheduling unrelated parallel machines
with optional machines and jobs selection. Computers & Operations Research,
39 , 1745�1753. URL: http://linkinghub.elsevier.com/retrieve/pii/

S0305054811003005. doi:10.1016/j.cor.2011.10.012.

Glass, C., Potts, C., & Shade, P. (1994). Unrelated parallel machine
scheduling using local search. Mathematical and Computer Modelling , 20 ,
41�52. URL: https://doi.org/10.1016/0895-7177(94)90205-4. doi:10.
1016/0895-7177(94)90205-4.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Ma-
chine Learning . (1st ed.). Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. H. G. R. (1979).
Optimization and Approximation in Deterministic Sequencing and Schedul-
ing: a Survey. Annals of Discrete Mathematics, 5 , 287�326. doi:10.1016/
S0167-5060(08)70356-X.

33

http://ieeexplore.ieee.org/document/5668388/
http://dx.doi.org/10.1109/ICCIE.2010.5668388
http://dx.doi.org/10.1109/ICCIE.2010.5668388
http://link.springer.com/10.1007/s00170-013-5221-5
http://link.springer.com/10.1007/s00170-013-5221-5
http://dx.doi.org/10.1007/s00170-013-5221-5
http://ieeexplore.ieee.org/document/6900245/
http://dx.doi.org/10.1109/CEC.2014.6900245
http://link.springer.com/10.1007/978-3-662-44874-8
http://dx.doi.org/10.1007/978-3-662-44874-8
http://dx.doi.org/10.1007/978-3-662-44874-8
http://linkinghub.elsevier.com/retrieve/pii/S0377221710002572
http://linkinghub.elsevier.com/retrieve/pii/S0377221710002572
http://dx.doi.org/10.1016/j.ejor.2010.03.030
http://linkinghub.elsevier.com/retrieve/pii/S0305054810001188
http://linkinghub.elsevier.com/retrieve/pii/S0305054810001188
http://dx.doi.org/10.1016/j.cor.2010.05.005
http://linkinghub.elsevier.com/retrieve/pii/S0305054811003005
http://linkinghub.elsevier.com/retrieve/pii/S0305054811003005
http://dx.doi.org/10.1016/j.cor.2011.10.012
https://doi.org/10.1016/0895-7177(94)90205-4
http://dx.doi.org/10.1016/0895-7177(94)90205-4
http://dx.doi.org/10.1016/0895-7177(94)90205-4
http://dx.doi.org/10.1016/S0167-5060(08)70356-X
http://dx.doi.org/10.1016/S0167-5060(08)70356-X

Haddad, M. N., Coelho, I. M., Souza, M. J. F., Ochi, L. S., Santos, H. G.,
& Martins, A. X. (2012). GARP: A New Genetic Algorithm for the Un-
related Parallel Machine Scheduling Problem with Setup Times. In 2012
31st International Conference of the Chilean Computer Science Society (pp.
152�160). IEEE. URL: http://ieeexplore.ieee.org/document/6694085/.
doi:10.1109/SCCC.2012.25.

Hart, E., Ross, P., & Corne, D. (2005). Evolutionary Scheduling: A
Review. Genetic Programming and Evolvable Machines, 6 , 191�220.
URL: http://link.springer.com/10.1007/s10710-005-7580-7. doi:10.
1007/s10710-005-7580-7.

Hop, N. V., & Nagarur, N. N. (2004). The scheduling problem
of pcbs for multiple non-identical parallel machines. European
Journal of Operational Research, 158 , 577 � 594. URL: http:

//www.sciencedirect.com/science/article/pii/S037722170300376X.
doi:https://doi.org/10.1016/S0377-2217(03)00376-X.

Kim, C. O., & Shin, H. J. (2003). Scheduling jobs on parallel machines: a
restricted tabu search approach. The International Journal of Advanced
Manufacturing Technology , 22 , 278�287. URL: https://doi.org/10.1007/
s00170-002-1472-2. doi:10.1007/s00170-002-1472-2.

Kim, D.-W., Kim, K.-H., Jang, W., & Chen, F. F. (2002). Un-
related parallel machine scheduling with setup times using simu-
lated annealing. Robotics and Computer-Integrated Manufacturing , 18 ,
223 � 231. URL: http://www.sciencedirect.com/science/article/

pii/S0736584502000133. doi:https://doi.org/10.1016/S0736-5845(02)
00013-3. 11th International Conference on Flexible Automation and Intelli-
gent Manufacturing.

Kim, D.-W., Na, D.-G., & Chen, F. F. (2003). Unrelated paral-
lel machine scheduling with setup times and a total weighted tardi-
ness objective. Robotics and Computer-Integrated Manufacturing , 19 ,
173 � 181. URL: http://www.sciencedirect.com/science/article/

pii/S0736584502000777. doi:https://doi.org/10.1016/S0736-5845(02)
00077-7. 12th International Conference on Flexible Automation and Intellig
ent Manufacturing.

Lee, J.-H., Yu, J.-M., & Lee, D.-H. (2013). A tabu search algorithm for un-
related parallel machine scheduling with sequence- and machine-dependent
setups: minimizing total tardiness. The International Journal of Advanced
Manufacturing Technology , 69 , 2081�2089. URL: http://link.springer.
com/10.1007/s00170-013-5192-6. doi:10.1007/s00170-013-5192-6.

Lenstra, J. K., Shmoys, D. B., & Tardos, E. (1990). Approximation algorithms
for scheduling unrelated parallel machines. Mathematical Programming , 46 ,
259�271. URL: http://link.springer.com/10.1007/BF01585745. doi:10.
1007/BF01585745.

34

http://ieeexplore.ieee.org/document/6694085/
http://dx.doi.org/10.1109/SCCC.2012.25
http://link.springer.com/10.1007/s10710-005-7580-7
http://dx.doi.org/10.1007/s10710-005-7580-7
http://dx.doi.org/10.1007/s10710-005-7580-7
http://www.sciencedirect.com/science/article/pii/S037722170300376X
http://www.sciencedirect.com/science/article/pii/S037722170300376X
http://dx.doi.org/https://doi.org/10.1016/S0377-2217(03)00376-X
https://doi.org/10.1007/s00170-002-1472-2
https://doi.org/10.1007/s00170-002-1472-2
http://dx.doi.org/10.1007/s00170-002-1472-2
http://www.sciencedirect.com/science/article/pii/S0736584502000133
http://www.sciencedirect.com/science/article/pii/S0736584502000133
http://dx.doi.org/https://doi.org/10.1016/S0736-5845(02)00013-3
http://dx.doi.org/https://doi.org/10.1016/S0736-5845(02)00013-3
http://www.sciencedirect.com/science/article/pii/S0736584502000777
http://www.sciencedirect.com/science/article/pii/S0736584502000777
http://dx.doi.org/https://doi.org/10.1016/S0736-5845(02)00077-7
http://dx.doi.org/https://doi.org/10.1016/S0736-5845(02)00077-7
http://link.springer.com/10.1007/s00170-013-5192-6
http://link.springer.com/10.1007/s00170-013-5192-6
http://dx.doi.org/10.1007/s00170-013-5192-6
http://link.springer.com/10.1007/BF01585745
http://dx.doi.org/10.1007/BF01585745
http://dx.doi.org/10.1007/BF01585745

Leung, J. Y.-T. (2004). Handbook of scheduling : algorithms, models, and per-
formance analysis. Boca Raton, Fla.: Chapman & Hall/CRC.

Lin, C.-W., Lin, Y.-K., & Hsieh, H.-T. (2013). Ant colony optimization for
unrelated parallel machine scheduling. The International Journal of Advanced
Manufacturing Technology , 67 , 35�45. URL: http://link.springer.com/
10.1007/s00170-013-4766-7. doi:10.1007/s00170-013-4766-7.

Logendran, R., McDonell, B., & Smucker, B. (2007). Scheduling unrelated
parallel machines with sequence-dependent setups. Computers & Opera-
tions Research, 34 , 3420�3438. URL: http://linkinghub.elsevier.com/
retrieve/pii/S0305054806000438. doi:10.1016/j.cor.2006.02.006.

Maheswaran, M., Ali, S., Siegel, H. J., Hensgen, D., & Freund, R. F.
(1999). Dynamic Mapping of a Class of Independent Tasks onto Hetero-
geneous Computing Systems. Journal of Parallel and Distributed Comput-
ing , 59 , 107�131. URL: http://linkinghub.elsevier.com/retrieve/pii/
S0743731599915812. doi:10.1006/jpdc.1999.1581.

Mitchell, M. (1998). An Introduction to Genetic Algorithms. Cambridge, MA,
USA: MIT Press.

Morton, T. E., & Pentico, D. W. (1993). Heuristic Scheduling Systems. John
Wiley And Sons, Inc.

Pinedo, M. L. (2012). Scheduling: Theory, algorithms, and systems:
Fourth edition volume 9781461423614. Boston, MA: Springer US.
URL: http://link.springer.com/10.1007/978-1-4614-2361-4. doi:10.
1007/978-1-4614-2361-4. arXiv:arXiv:1011.1669v3.

Raja, K., Arumugam, C., & Selladurai, V. (2008). Non-identical parallel-
machine scheduling using genetic algorithm and fuzzy logic approach. In-
ternational Journal of Services and Operations Management , 4 , 72�101.
doi:10.1504/IJSOM.2008.015941.

Rocha, P. L., Ravetti, M. G., Mateus, G. R., & Pardalos, P. M. (2008). Ex-
act algorithms for a scheduling problem with unrelated parallel machines and
sequence and machine-dependent setup times. Computers & Operations Re-
search, 35 , 1250�1264. doi:10.1016/j.cor.2006.07.015.

Srivastava, B. (1998). An e�ective heuristic for minimising makespan on un-
related parallel machines. Journal of the Operational Research Society , 49 ,
886�894. doi:10.1057/palgrave.jors.2600547.

Ðurasevi¢, M., & Jakobovi¢, D. (2016). Comparison of solution repre-
sentations for scheduling in the unrelated machines environment. In
2016 39th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO) (pp. 1336�1342).
IEEE. URL: http://ieeexplore.ieee.org/document/7522347/. doi:10.
1109/MIPRO.2016.7522347.

35

http://link.springer.com/10.1007/s00170-013-4766-7
http://link.springer.com/10.1007/s00170-013-4766-7
http://dx.doi.org/10.1007/s00170-013-4766-7
http://linkinghub.elsevier.com/retrieve/pii/S0305054806000438
http://linkinghub.elsevier.com/retrieve/pii/S0305054806000438
http://dx.doi.org/10.1016/j.cor.2006.02.006
http://linkinghub.elsevier.com/retrieve/pii/S0743731599915812
http://linkinghub.elsevier.com/retrieve/pii/S0743731599915812
http://dx.doi.org/10.1006/jpdc.1999.1581
http://link.springer.com/10.1007/978-1-4614-2361-4
http://dx.doi.org/10.1007/978-1-4614-2361-4
http://dx.doi.org/10.1007/978-1-4614-2361-4
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1504/IJSOM.2008.015941
http://dx.doi.org/10.1016/j.cor.2006.07.015
http://dx.doi.org/10.1057/palgrave.jors.2600547
http://ieeexplore.ieee.org/document/7522347/
http://dx.doi.org/10.1109/MIPRO.2016.7522347
http://dx.doi.org/10.1109/MIPRO.2016.7522347

Ðurasevi¢, M., & Jakobovi¢, D. (2018). A survey of dispatching rules for
the dynamic unrelated machines environment. Expert Systems with Appli-
cations, . URL: http://www.sciencedirect.com/science/article/pii/

S0957417418304159. doi:https://doi.org/10.1016/j.eswa.2018.06.053.

Ðurasevi¢, M., & Jakobovi¢, D. (2017a). Comparison of ensemble learning meth-
ods for creating ensembles of dispatching rules for the unrelated machines en-
vironment. Genetic Programming and Evolvable Machines, . URL: https://
doi.org/10.1007/s10710-017-9302-3. doi:10.1007/s10710-017-9302-3.

Ðurasevi¢, M., & Jakobovi¢, D. (2017b). Evolving dispatching rules for optimis-
ing many-objective criteria in the unrelated machines environment. Genetic
Programming and Evolvable Machines, . URL: https://doi.org/10.1007/
s10710-017-9310-3. doi:10.1007/s10710-017-9310-3.

Ðurasevi¢, M., Jakobovi¢, D., & Kneºevi¢, K. (2016). Adaptive scheduling
on unrelated machines with genetic programming. Applied Soft Comput-
ing , 48 , 419�430. URL: http://linkinghub.elsevier.com/retrieve/pii/
S1568494616303519. doi:10.1016/j.asoc.2016.07.025.

Vallada, E., & Ruiz, R. (2011). A genetic algorithm for the unrelated par-
allel machine scheduling problem with sequence dependent setup times.
European Journal of Operational Research, 211 , 612�622. URL: http:

//linkinghub.elsevier.com/retrieve/pii/S0377221711000142. doi:10.
1016/j.ejor.2011.01.011.

Wang, I.-L., Wang, Y.-C., & Chen, C.-W. (2013). Scheduling unrelated par-
allel machines in semiconductor manufacturing by problem reduction and
local search heuristics. Flexible Services and Manufacturing Journal , 25 ,
343�366. URL: http://link.springer.com/10.1007/s10696-012-9150-7.
doi:10.1007/s10696-012-9150-7.

Wotzlaw, A. (2012). Scheduling Unrelated Parallel Machines: Algorithms, Com-
plexity, and Performance. AV Akademikerverlag.

36

http://www.sciencedirect.com/science/article/pii/S0957417418304159
http://www.sciencedirect.com/science/article/pii/S0957417418304159
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2018.06.053
https://doi.org/10.1007/s10710-017-9302-3
https://doi.org/10.1007/s10710-017-9302-3
http://dx.doi.org/10.1007/s10710-017-9302-3
https://doi.org/10.1007/s10710-017-9310-3
https://doi.org/10.1007/s10710-017-9310-3
http://dx.doi.org/10.1007/s10710-017-9310-3
http://linkinghub.elsevier.com/retrieve/pii/S1568494616303519
http://linkinghub.elsevier.com/retrieve/pii/S1568494616303519
http://dx.doi.org/10.1016/j.asoc.2016.07.025
http://linkinghub.elsevier.com/retrieve/pii/S0377221711000142
http://linkinghub.elsevier.com/retrieve/pii/S0377221711000142
http://dx.doi.org/10.1016/j.ejor.2011.01.011
http://dx.doi.org/10.1016/j.ejor.2011.01.011
http://link.springer.com/10.1007/s10696-012-9150-7
http://dx.doi.org/10.1007/s10696-012-9150-7

	Introduction
	Literature overview
	Problem formulation
	The GA and solution representations
	Permutation encoding
	Permutation encoding with machine list
	Permutation encoding with machine count
	Random key encoding
	Floating point encoding
	Matrix encoding
	Machine list encoding

	Experimental setup
	Results
	Discussion
	Conclusion

