
UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 1666

A SOFTWARE FRAMEWORK FOR
INTERACTIVE VISUALIZATION OF

OPTIMIZATION ALGORITHMS

Marija Kalebota Kodžoman

Zagreb, June 2018

I would like to thank my mentor Domagoj Jakobović for facilitating an inviting

environment for the pursuit of knowledge.

I would also like to thank Marko Đurasević for always having the right answer

to all of my questions.

Finally, I would like to thank my family for their continuous support and

encouragement. My accomplishments would not have been possible without

them.

Thank you.

Table of contents

1. Introduction .. 1

2. Optimization ... 2

2.1 Mathematical optimization problems ... 2

2.1.1 Unimodality ... 3

2.1.2 Constraints ... 6

2.2 Optimization algorithms ... 10

3. Technologies .. 11

3.1 Jupyter Notebooks .. 11

3.2 Ipywidgets ... 12

4. Implementation ... 14

5. Using the framework .. 17

5.1 One-dimensional functions .. 17

5.2 Two-dimensional functions .. 22

5.2.1 Contour plots .. 22

5.2.2 Three-dimensional plots .. 27

6. Adding new modules .. 29

6.1 Adding functions.. 29

6.2 Adding algorithms ... 30

6.3 Adding implicit constraints ... 32

6.4 Adding presenters ... 32

7. Conclusion ... 35

8. Bibliography ... 36

1

1. Introduction

Optimization algorithms are widely used in various engineering applications, such

as machine learning and scheduling. Some algorithms work better than others on

certain optimization problems, but it can be difficult to understand why that is,

especially for more complex methods. Understanding how optimization methods

work can be significantly eased by using visualization techniques. Visualizations

provide a more abstract view of an optimization method, which can allow users to

focus more on understanding its underlying idea.

The purpose of this thesis is to develop a modular software framework which would

provide both students and educators with an interactive and practical way of

visualizing how optimization algorithms iterate through possible solutions during

their execution. It should be easy to extend the framework with new components,

so that users can experiment with various new algorithms and optimization

problems.

The first chapter contains an overview of basic terms which are commonly

encountered when dealing with optimization. The second chapter describes some

of the technologies used to develop the framework. The third chapter describes the

implementation of the framework in more detail. The fourth chapter offers practical

examples of how the framework can be used, and the fifth chapter shows how new

modules can be added to it. The sixth, and final, chapter offers a brief conclusion.

2

2. Optimization

As this thesis primarily deals with the optimization of mathematical functions, the

following chapters offer theoretical overview of most commonly used terms.

2.1 Mathematical optimization problems

In mathematics, a minimization problem is the problem of minimizing a function –

finding the point 𝑥 at which the value of the function 𝑓(𝑥) reaches its lowest possible

value – its minimum [1]. Similarly, a maximization problem is the problem of

maximizing a function – finding the point 𝑥 in which the value of the function 𝑓(𝑥)

reaches its highest possible value – its maximum. When referring to either of these

cases in their respective contexts, the terms optimum and optimization are also

used. In these problems, the function 𝑓(𝑥) is called the objective function, because

it is usually a representation of a practical problem – an objective that needs to be

reached. The objective is reached by finding that function’s optimum, which is

achieved through the process of optimization.

Optimization problems are conventionally posed as minimization problems, but the

same methods of solving them also apply to maximization problems. In order to

follow convention, one can easily pose a maximization problem as a minimization

problem by negating the objective function (using −𝑓(𝑥) instead of 𝑓(𝑥)). Therefore,

all future references to optimization will be describing minimization, but it should be

noted that they all equally apply to maximization.

The simplest form of an optimization problem is:

minimize
𝑥

𝑓(𝑥) ∶ ℝ𝑛 → ℝ

In this case, the whole domain of the function 𝑓(𝑥) is the feasible area for finding

the solution. That means that the minimum of the function could be found at any

possible point 𝑥.

3

2.1.1 Unimodality

One important property of functions is whether they are unimodal or multimodal. A

function is unimodal if it only has a single local optimum. If more local optima exist,

it is multimodal. Figure 1 shows the graph of a unimodal function, 𝑓(𝑥) = (𝑥 − 3)2.

This function has only one minimum which is located at the point 𝑥 = 3.

Figure 1 - The graph of the function 𝑓(𝑥) = (𝑥 − 3)2. The green dot represents
the global optimum.

Figure 2 shows the function 𝑓(𝑥) = 𝑥4 − 𝑥2 +
𝑥

10
 , which has two local optima but

only one global optimum, and Figure 3 shows the function 𝑓(𝑥) = 𝑥 ∗ 𝑐𝑜𝑠(𝑥) which

has many local optima, but no global optimum. Both of these functions are

multimodal.

4

Figure 2 - The graph of the function 𝑓(𝑥) = 𝑥4 − 𝑥2 +
𝑥

10
. The blue dot

represents a local optimum, while the green dot represents the global optimum.

Figure 3 - The graph of the function 𝑓(𝑥) = 𝑥 ∗ 𝑐𝑜𝑠(𝑥)

5

The modality of a function significantly impacts the ways in which its optimum can

be found. Unimodal functions can usually be optimized much more easily than their

multimodal counterparts. This is because the presence of local optima can lead

optimization algorithms to mistakenly resolve that they have found the global

optimum. In many such cases, it is difficult or even impossible to know whether the

solution found by the algorithm is indeed the best one. Therefore, solving

optimization problems with multimodal functions is usually quite challenging, and

more advanced optimization algorithms need to be developed as a result.

6

2.1.2 Constraints

Conditions which can restrict the feasible area to a smaller subset of the domain

can also be added to the problem. These conditions are called constraints. There

are two types of constraints – explicit constraints and implicit constraints.

Explicit constraints are defined as:

�⃗�𝑙 ≤ �⃗� ≤ �⃗�𝑢

Therefore, explicit constraints simply define an upper and lower bound to the values

that point 𝑥 can become. They constrain the domain from ℝ to [�⃗�𝑙 , �⃗�𝑢].

Implicit constraints can be divided into two groups – inequality implicit constraints

and equality implicit constraints. They are defined in the following way:

𝑔𝑖(𝑥) ≤ 0 – inequality constraints

ℎ𝑗(𝑥) = 0 – equality constraints

They constrain the feasible area implicitly, by posing conditions on certain

dimensions of the point 𝑥, and stating that they should either equal zero (equality

constraints) or that they should be less than or equal to zero (inequality constraints).

Figure 4 - The graph of the function 𝑓(𝑥) = 𝑥 ∗ 𝑐𝑜𝑠(𝑥). The blue dots represent
local optima.

7

For example, let the objective function be 𝑓(𝑥) = 𝑥 ∗ 𝑐𝑜𝑠(𝑥) (Figures 3 and 4). By

adding the explicit constraint

−4 ≤ 𝑥 ≤ 4

to the problem, the feasible area is reduced to the interval [−4,4], and the objective

function can only obtain the values shown in blue in Figure 5. The optimization

problem did not have a global optimum before, but one does exist when it is

constrained in this way (marked with a green dot in Figure 5).

Figure 5 - The graph of the function 𝑓(𝑥) = 𝑥 ∗ 𝑐𝑜𝑠(𝑥)) with an explicit constraint

By adding the inequality implicit constraint

𝑥2 − 4 ≤ 0,

the feasible area is reduced further, to the interval [−2,2], as shown in Figure 6. It is

interesting to note that the global optimum is now at the edge of the feasible area –

this is a common occurrence with constrained optimization problems.

8

Figure 6 - The graph of the function 𝑓(𝑥) = 𝑥 ∗ 𝑐𝑜𝑠(𝑥) with the implicit constraint

𝑥2 − 4 ≤ 0

Finally, by adding the equality implicit constraint

𝑥2 −
𝜋2

4
 = 0,

the feasible area is reduced to only two points, as shown in Figure 7.

9

Figure 7 - The graph of the function 𝑓(𝑥) = 𝑥 ∗ 𝑐𝑜𝑠(𝑥) with the implicit constraint

𝑥2 −
𝜋2

4
 = 0

10

2.2 Optimization algorithms

Methods for solving optimization problems are called optimization algorithms. One

of the most significant challenges surrounding optimization problems is dealing with

the fact that their domain is ℝ𝑛, a set of infinite cardinality. Because of this, the

number of potential solutions to a problem is infinite, so it is very difficult to find the

best one. Humans may be able to quickly find the minimum of 𝑓(𝑥) = (𝑥 − 3)2, but

functions in optimization problems are generally much more complex than that. With

complex and time-consuming problems, it is only natural that we would utilize any

tools available to us in order to solve them more quickly and more efficiently. The

most convenient such tool available to us is the computer.

Even though computers could try out the possible solutions and compare the

resulting function values significantly more quickly than humans, with a feasible area

of infinite cardinality, they would still never be able to give a definite solution to the

problem – there would always be another point at which to evaluate the function, to

see if the value at that point is lower than any of the ones found previously.

Therefore, methods for solving optimization problems need to work in ways that find

the best solution to the problem in a finite number of steps. Different algorithms work

in different ways, but the goal of all of them is the same – to find the solution to the

problem with as little evaluations of the objective function as possible.

No matter what type of problem an algorithm specializes for, most of them have

several things in common: they try to find the solution to the problem iteratively (step

by step), and after each iteration, there is a point that the algorithm believes to be

the best solution. The algorithm continues to iterate until it reaches its termination

criterion, which is different for every algorithm. Examples of termination criteria are:

• Exceeding a given number of iterations

• Not having found a significantly different solution for a given number of

iterations

• Exceeding a given number of evaluations of the objective function

11

3. Technologies

The primary idea when developing the framework was for it to be used and shared

easily and efficiently, both as a demonstration tool by educators and as an

educational aid for students. Jupyter Notebooks were seen as the most fitting

platform for fulfilling these objectives, because results of executing code can be

viewed instantaneously when using them, and they can be opened in web browsers,

so there are ways of using them that do not require any installation.

The framework was developed in the Python programming language. It was chosen

because it is the programming language most commonly used with Jupyter

Notebooks, and because it provides many existing modules which are particularly

useful for visualization of optimization algorithms, like NumPy for data manipulation

and Matplotlib for plotting graphs. Additionally, the module which was perhaps the

most integral to achieving interactivity within the framework is ipywidgets. It offers a

wide range of different widget elements - interactive graphical elements that can be

used to interface with the framework.

3.1 Jupyter Notebooks

The Jupyter Notebook combines three components [2]:

1. The notebook web application - a web application for writing and running

code interactively, and authoring notebook documents

2. Kernels - “computational engines” that execute the code contained in a

Notebook document. The web application starts a new kernel for each open

notebook document. There are kernels for many different programming

languages, but the default one is for Python.

3. Notebook documents - documents that contain a representation of all

content visible in the notebook web application They are simply files on the

user’s computer which can be moved between folders or shared with others.

Jupyter Notebooks consist of a series of cells, and programming code contained

inside can be executed cell-by-cell. The cells can output HTML, images, video and

12

plots, and all generated output is saved with the notebook document, so it is a

complete record of a computation.

3.2 Ipywidgets

The ipywidgets module offers many different ways of creating widgets, which can

be used for adjusting the input of methods or functions. This is achieved using the

interact method [3].

Its first argument is always an instance of a Python method or function. Depending

on the types of the other arguments it is given, the interact method displays their

corresponding widgets: checkboxes for boolean types, sliders for numbers, text

boxes for strings, dropdown menus for dictionaries and so on. The values obtained

from these interactive elements are used as arguments for the method which was

given as the first argument, and the method is re-executed with new arguments

whenever one of the displayed widgets is modified.

An example of this can be seen in Figure 8, where the interact method is used on

the function f which takes three arguments. Depending on the types of arguments

given to the interact method, different widgets are created for giving input to the

same function. The first call to the interact method provides a slider, a dropdown

menu and a checkbox. The second call, in which all the arguments are boolean

values, provides three checkboxes.

13

Figure 8 – The behaviour of the interact method

Widget objects can also be created independently and stored in variables, which

allows for adjustments to their parameters. For example, executing the line

slider = widgets.IntSlider(min = 0, max = 20, value=10)

creates a slider with a selection range of [0,20] and an initial value of 10. This slider

can then be passed as an argument to the interact method. When creating an

interactive application, this gives the programmer a lot of control over the choices

that a user can make.

14

4. Implementation

The framework was developed in Python, and the main focus when designing it was

to maintain modularity and readability. It was not designed to be finished and never

be edited again, as fewer and fewer programming projects are. Throughout the

entire development process, there was a focus on adhering to the guidelines of

clean code, and on developing a framework that is not only functional but also

written in a way that could later be upgraded with ease.

Figure 9 shows the class diagram of the framework. The following is an overview of

its most significant classes.

Point – a class representing a mathematical point of arbitrary dimensionality. The

user sets the value of every dimension, and the class offers the functionality of

addition, subtraction, multiplication, and operations applicable to mathematical

points.

IFunction – a class designed to be inherited by implementations of specific

mathematical functions. It offers the ability to evaluate the function at feasible points,

to return the gradient and the Hessian at a certain point, and to keep a counter of

the number of evaluations of the function.

Classes representing constraints

• IConstraint – a class designed to be inherited by implementations of specific

mathematical constraints. It offers the ability to check whether the constraint

is satisfied at a given point, and also to return the value or the gradient at that

point.

• IImplicitConstraint – a class which inherits the IConstraint class, and which

is inherited by the classes IEqualityImplicitConstraint and

IInequalityImplicitConstraint

• IEqualityImplicitConstraint and IInequalityImplicitConstraint – classes

that represent the two types of implicit constraints. They directly inherit the

IImplicitConstraint class.

15

• ExplicitConstraintForOneDimension – a class that represents an explicit

constraint for one dimension. It does not inherit the IConstraint class due to

the significant differences in the nature of these two types of constraints.

Logger – a class designed to log all the iterations of an optimization algorithm. This

log contains generic information like the current solution and the value of the

objective function at the current solution, but it can also contain any information

specific to the algorithm. It was designed to hold all the relevant information about

the execution of the algorithm, so that its behaviour can easily be reconstructed and

visualised.

Iteration – a class designed to log all the relevant information about an iteration of

an algorithm’s execution. The Logger holds, among other things, a list of instances

of the Iteration class.

IAlgorithm – a class designed to be inherited by a specific implementation of an

optimization algorithm. When it runs, a complete log of all its iterations is created,

and stored in an instance of the Logger class.

Drawer – a class designed to plot static graphs based on different mathematical

elements like points, functions, and constraints. It offers the functionality of plotting

two-dimensional plots, contour plots and three-dimensional plots.

Animator – a class designed to create all the interactive elements of the

visualization, like checkboxes, sliders, text boxes or different kinds of buttons. The

Presenter uses methods from this class to create the elements it needs in order to

present the final visualization to the user.

Presenter – a class designed to present the final interactive visualization of an

algorithm’s execution to the user. It is responsible for interpreting the data stored in

the Logger and presenting it to the user by utilizing the capabilities of the Drawer

and Animator classes.

16

Figure 9 – The class diagram of the framework

17

5. Using the framework

The framework was designed to be used to visualize the way optimization

algorithms behave when optimizing different mathematical functions. The following

chapters offer an overview of the currently available use cases.

5.1 One-dimensional functions

This example will show how the framework can be used to visualize the behaviour

of an algorithm solving an optimization problem in which the objective function is

one-dimensional. The algorithm used in the example is the Hooke-Jeeves algorithm,

and the objective function is 𝑓(𝑥) = (𝑥 − 3)2.

The user must first import all the necessary modules of the framework:

from FIVOA import *

from FIVOA.Functions import *

from FIVOA.Constraints import *

from FIVOA.Algorithms import *

from FIVOA.Drawing import *

Next, an instance of the class IFunction, which will represent the objective function

of the problem, needs to be created. The framework already contains a class that

inherits IFunction and represents the function 𝑓(𝑥) = (𝑥 − 3)2 – it is called

F3OneDimensional. Therefore, the following line should be executed:

function = F3OneDimensional.F3OneDimensional()

After creating the function, the user needs to create an instance of the class

IAlgorithm which will represent the algorithm that will be used to solve the problem.

The framework contains the class HookeJeeves which inherits the class IAlgorithm

and implements the behaviour of the Hooke-Jeeves optimization algorithm. In order

to create it, the user should execute the following line:

hj_algorithm = HookeJeeves.HookeJeeves(function = function,

step = 1, factor = 0.1, epsilon = 1E-6)

The parameters step, factor and epsilon are specific to the algorithm, and they

are presented here with example values. Other algorithms would have different

parameters.

18

The Hooke-Jeeves algorithm needs to be given an initial point from which to start

its search. A representation of the point 𝑥 = 10 is created by executing the following

line:

point = Point.Point(elements = [10])

Finally, the algorithm can be run using the following line:

solution_hj, logger_hj = hj_algorithm.run(point)

The results of running the algorithm are the solution to the optimization problem

(solution_hj), which is an instance of the Point class, and a complete log of its

iterations saved in an instance of the Logger class (logger_hj).

Now that the log has been created, it can be used to create an interactive

visualization of the steps that the algorithm took.

The Presenter is the class designed to create the interactive visualizations. Upon its

creation, in addition to the logger, it also needs to be given instances of the Drawer

and Animator classes:

presenter = Presenter.Presenter(logger = logger_hj, drawer =

Drawer.Drawer(), animator = Animator.Animator())

Finally, the user should execute the line

presenter.present_2D()

in order to be presented with all the elements needed to achieve an interactive

visualization, as shown in Figure 10.

19

Figure 10 - Elements created by the Presenter for an interactive visualization of an
algorithm for optimizing a one-dimensional function

The user is presented with the following options:

• To start, pause and stop an animation which iterates through all the steps of

the algorithm, showing the solution in each of them

20

• To go through all the steps manually, by either dragging the slider which

represents the iteration number, or by clicking the “Previous” and “Next”

buttons

• To choose the area displayed by the graph by dragging the “X range” or “Y

range” sliders

• To choose the accuracy of the graph by typing in the number of the samples

of the domain which are used to plot the function

• To choose the colours of the function and the point marking the solution at

the chosen step

After interacting with some of the given elements, the graph could change to the

one shown in Figure 11.

21

Figure 11 – The elements created by the Presenter for an interactive visualization
of an algorithm for optimizing a one-dimensional function, after some interaction

22

5.2 Two-dimensional functions

When the objective function is two-dimensional, two possible visualizations of it are

contour plots and three-dimensional plots. The following examples will show how

the framework can be used to visualize the behaviour of an algorithm used to solve

a constrained optimization problem with a two-dimensional objective function, using

those two visualization methods.

The optimization algorithm used is the Box algorithm. The objective function of the

optimization problem is 𝑓(𝑥) = (1 − 𝑥1)2 + 100 ∗ (𝑥2 − 𝑥1
2)2 (Rosenbrock’s

function). The explicit constraints are

𝑥1 ∈ [−100, 100]

𝑥2 ∈ [−100, 100]

and the implicit constraints are

𝑥2 − 𝑥1 ≥ 0

2 − 𝑥1 ≥ 0

5.2.1 Contour plots

In order to use the framework to visualize the algorithm’s execution using contour

plots, the following steps should be taken.

First, after importing all the necessary modules of the framework (as described

previously), the user needs to create an instance of the

F1RosenbrockBananaFunction class which inherits the IFunction class:

function =

F1RosenbrockBananaFunction.F1RosenbrockBananaFunction()

Next, the user needs to create instances of classes which will represent the

necessary constraints. The explicit constraints are created in the following way:

explicit_constraint_on_x1 =

ExplicitConstraintForOneDimension.ExplicitConstraintForOneDim

ension(-100.0, +100.0)

explicit_constraint_on_x2 =

ExplicitConstraintForOneDimension.ExplicitConstraintForOneDim

ension(-100.0, +100.0)

23

Representations of the implicit constraints defined in the problem already exist

within the framework – they are called InequalityImplicitConstraint1 and

InequalityImplicitConstraint2. Therefore, they can be easily created using the

following lines:

implicit_constraint_1 =

InequalityImplicitConstraint1.InequalityImplicitConstraint1()

implicit_constraint_2 =

InequalityImplicitConstraint2.InequalityImplicitConstraint2()

Next, an instance of the BoxAlgorithm class which inherits the IAlgorithm class

needs to be created. In addition to some other parameters, constraints need to be

given to it in lists, so those lists also need to be created:

explicit_constraints =

[explicit_constraint_on_X1, explicit_constraint_on_X2]

implicit_constraints =

[implicit_constraint_1, implicit_constraint_2]

box_algorithm = BoxAlgorithm.BoxAlgorithm(

function = function,

explicit_constraints = explicit_constraints,

implicit_constraints = implicit_constraints,

epsilon = 1E-6,

alpha = 1)

Now the algorithm should be run. Seeing as an initial point is needed for that, one

must be created:

point = Point.Point([-1.9, 2])

solution_box, logger_box = box_algorithm.run(point)

The results of running the algorithm are the solution to the optimization problem

(solution_box), and a log of its iterations saved in an instance of the Logger class

(logger_box). The log can now be given to a Presenter so that the final interactive

visualization can be displayed:

presenter = Presenter.Presenter(logger = logger_box, drawer =

Drawer.Drawer(), animator = Animator.Animator())

24

Executing the line

presenter.present_contour()

presents the user with elements for an interactive visualization which uses contour

plots, as shown in Figure 12.

Figure 12 – An interactive visualization which uses contour plots

25

The available options are very similar to the ones mentioned previously. The

constraints are visualised by the orange shading of the infeasible area - the parts of

the domain which could never be “reached” by the algorithm because they are

excluded from the set of possible solutions by the constraints.

After interacting with some of the given elements, the graph could change to the

one shown in Figure 13.

26

Figure 13 - An interactive visualization which uses contour plots, after some
interaction

27

5.2.2 Three-dimensional plots

The framework can be used to visualise the same problem using three-dimensional

plots simply by executing the following line:

presenter.present_3D()

The user is then presented with the elements shown in Figure 14.

Figure 14 - An interactive visualization which uses three-dimensional plots

28

The constrained area is shown in shades of orange again. After some interaction,

the graph could change to the one shown in Figure 15.

Figure 15 - An interactive visualization which uses three-dimensional plots, after
some interaction

29

6. Adding new modules

One of the most defining features of the framework is the ability to add new modules

that would inherit the existing interfaces. The following chapters offer examples of

how that can be done. It should be noted that, in addition to fully integrating the

classes into the framework as is shown here, the user could also simply declare the

classes inside a Jupyter notebook and use them only for a particular computational

session.

6.1 Adding functions

This example will show how to add the function 𝑓(𝑥) = 𝑥4 − 𝑥2 +
𝑥

10
 to the

framework. It will be called F4TwoLocalOptima. The first step is to create a new

Python file in the Functions folder of the framework and call it F4TwoLocalOptima.

Next, a class of the same name needs to be created inside the folder, and it has to

implement the methods value_at, gradient_at and hessian_at. The following lines of

code show what the file should contain:

from IFunction import *

class F4TwoLocalOptima(IFunction):

def value_at(self, point):

self.increment_number_of_calls()

TODO implement rest of value_at

def gradient_at(self, point):

 # TODO implement gradient

def hessian_at(self, point):

 # TODO implement hessian

The most important parts are shown in bold. The class must inherit the IFunction

class if it is to be used in the framework. In order to do this, the line “from

IFunction import *” needs to be included in the file. It is also important to

include the line “self.increment_number_of_calls()” in the value_at

method. Furthermore, the point argument in all the above methods is an instance

of the Point class, which should be taken into account when using it in the

30

implementations. The following would, therefore, be a fully implemented value_at

method for the current example:

def value_at(self, point):

self.increment_number_of_calls()

value_at_point = point.get_value_at_dimension(0) ** 4 -

point.get_value_at_dimension(0) ** 2 +

point.get_value_at_dimension(0) / 10

 return value_at_point

When all the necessary lines of code have been properly added to the file and when

all the required methods are implemented, the function can be used as an integral

part of the framework.

6.2 Adding algorithms

The process of adding a new algorithm to the framework will be shown here. For the

purposes of this example, a fictional algorithm named NewAlgorithm will be used.

First, a file named NewAlgorithm should be created in the Algorithms folder. A class

named NewAlgorithm should be defined inside it, and the following lines of code

show what it should contain:

from IAlgorithm import *

from Logging import *

class NewAlgorithm(IAlgorithm):

def __init__(self, function,

algorithm_specific_parameters):

self.function = function

self.logger = Logger(self.function)

self.parameters = algorithm_specific_parameters

def run(self, initial_point):

TODO implement run

 return solution_point, self.logger

The most important parts are shown in bold. The algorithm should inherit the class

IAlgorithm. As arguments in its constructor, it should take an instance of the

31

IFunction class (function) and use it to create a Logger, and it should also take

any other parameters specific to it (algorithm_specific_parameters).

Additionally, it should implement the run method, which takes an instance of the

Point class as an argument. The run method should fill the logger with information

about the algorithm’s execution. It should do this by creating an instance of the

Iteration class in each of its iterations, and adding it to the log. When the algorithm

finishes executing, it should return its solution (an instance of the Point class) and

the instance of the Logger containing a comprehensive log of the execution. An

expanded implementation of the run method with some steps described in more

detail is:

Iteration_number = 0

while(!termination_criterion_met):

TODO algorithm-specific implementation - finds the

current solution

log all the relevant information in an instance of the

Iteration class:

current_iteration = Iteration(

iteration_number = iteration_number,

function_value_at_current_solution =

self.function.value_at(current_solution),

current_solution_point = current_solution,

additional_data =

algorithm_specific_additional_data,

number_of_function_calls =

self.function.get_number_of_calls())

self.logger.add_iteration(current_iteration)

iteration_number++

solution_point = current_solution

return solution_point, self.logger

32

6.3 Adding implicit constraints

New implicit constraints can be added to the framework following the same

principles used when adding functions or algorithms. Similarly to what the case was

with them, the new class should be added to the folder Constraints, in a file of the

same name as the class. Regardless of whether an equality or inequality implicit

constraint is being added, they have to implement the same methods – is_satisfied,

value_at and get_gradient. It is only important that inequality constraints inherit the

class IinequalityImplicitConstraint and equality constraints inherit the class

IEqualityImplicitConstraints. This is necessary because these constraints need to

be treated differently when being drawn, and all the other modules in the framework

are designed to use these classes to distinguish between them.

6.4 Adding presenters

The following example will show the creation of a simple presenter, which would

only provide the option of selecting the iteration of the algorithm using a slider, and

which would display a plot that shows only the graph of the function and the

algorithm’s solution in the selected iteration.

It will be created by taking an instance of the Logger, Drawer and Animator classes,

so its constructor will be defined as:

def __init__(self, logger, drawer, animator):

self.logger = logger

self.drawer = drawer

self.animator = animator

Its most important method will be the present method, which will consist of several

parts.

First, it will use the Logger to find the function which it will present, and it will add it

to the Drawer:

function = self.logger.get_function()

self.drawer.add_function(function)

It will also find the number of iterations that the algorithm took:

number_of_iterations = self.logger.get_number_of_iterations()

33

Next, it will use the Animator to create a slider for selecting the displayed iteration.

The number of iterations is the maximum value that the slider should offer, so it will

be created with the following line:

iteration_slider = self.animator.create_int_slider(

min = 0,

max = number_of_iterations - 1,

step=1)

The desired functionality is for the displayed graph to change depending on the

selected iteration – it should always display the graph of the function, but the

displayed solution should be the one corresponding to the iteration number. This will

be done using the interact method, but to achieve it, a new method needs to be

defined – one that takes the iteration number as a parameter and displays its

corresponding graph.

This method will first remove all the points that are present in the Drawer, then

update it with the algorithm’s solution in the chosen iteration. Finally, it will display

the desired graph. The code of that method is the following:

def draw_simple_iteration(self, iteration_number):

self.drawer.clear_points()

self.drawer.add_point(self.logger.get_iteration(iteratio

n_number).get_current_solution())

self.drawer.draw_2D_graph()

After this method is defined, the presenter will have all the components necessary

in order to present the user with an interactive visualization. The line

interact(draw_simple_iteration,

iteration_number=iteration_slider)

will call the draw_simple_iteration method, and the value passed to it as the

iteration_number argument will be the value obtained from the slider, which will

be controlled by the user.

Therefore, the complete code for the SimplePresenter class is the following:

34

from Animator import *

class SimplePresenter:

def __init__(self, logger, drawer, animator):

self.logger = logger

self.drawer = drawer

self.animator = animator

def draw_simple_iteration (self, iteration_number):

self.drawer.clear_points()

self.drawer.add_point(

self.logger.get_iteration(iteration_number).ge

t_current_solution())

self.drawer.draw_2D_graph()

def present(self):

function = self.logger.get_function()

self.drawer.add_function(function)

number_of_iterations =

self.logger.get_number_of_iterations()

iteration_slider =

self.animator.create_int_slider(

min=0,

max=number_of_iterations - 1,

step=1)

interact(self. draw_simple_iteration,

iteration_number=iteration_slider)

35

7. Conclusion

The developed software framework offers the ability of visualizing the execution of

optimization algorithms in an interactive way. It offers visualizations of one-

dimensional objective functions using two-dimensional plots, as well as

visualizations of two-dimensional objective functions using both contour plots and

three-dimensional plots. Furthermore, its modular design allows for the extension

and adaptation of almost all of its components.

This modular design is one of the framework’s most significant benefits. The ease

with which it can be extended makes it more likely that it will continue to be upgraded

over time, and that it will grow into a sought-after educational resource.

Another great benefit of the framework is that it poses very few restrictions on how

it can be used. It is not necessary that additional modules be built into it - they can

simply be defined when they are needed and then used in conjunction with the

framework’s existing capabilities. Whichever function, constraint, algorithm or even

visualization method a user might need, it can be created right inside a Jupyter

Notebook with only a few lines of code, and then used instantly. This makes the

framework suitable for demonstration purposes, because examples can not only be

easily prepared, but also given to users to experiment with. This can help them to

get a better understanding of the execution of the algorithms when they are applied

to different optimization problems.

36

8. Bibliography

[1] Budin, L., Analiza i projektiranje računalom - skripta s predavanjima, Zagreb

[2] Jupyter Team, What is the Jupyter Notebook?, http://jupyter-

notebook.readthedocs.io/en/latest/examples/Notebook/What%20is%20the%20Jup

yter%20Notebook.html, 28 June 2018

[3] Project Jupyter, ipywidgets: User Guide,

https://ipywidgets.readthedocs.io/en/latest/index.html, 28 June 2018

http://jupyter-notebook.readthedocs.io/en/latest/examples/Notebook/What%20is%20the%20Jupyter%20Notebook.html
http://jupyter-notebook.readthedocs.io/en/latest/examples/Notebook/What%20is%20the%20Jupyter%20Notebook.html
http://jupyter-notebook.readthedocs.io/en/latest/examples/Notebook/What%20is%20the%20Jupyter%20Notebook.html
https://ipywidgets.readthedocs.io/en/latest/index.html

A Software Framework for Interactive Visualization of

Optimization Algorithms

Abstract

A software framework for interactive visualization of optimization algorithms has

been developed as part of this thesis. It offers visualizations of one-dimensional

objective functions using two-dimensional plots, as well as visualizations of two-

dimensional objective functions using both contour plots and three-dimensional

plots. It is modular and can be extended with ease. This thesis provides details about

its implementation and the ways it can be used. Instructions and examples for

extending the framework are also provided.

Keywords: optimization algorithms, optimization problems, interactivity,

visualization, modularity, framework, Python, Jupyter Notebook, ipywidgets

Programski okvir za interaktivnu vizualizaciju algoritama

optimizacije

Sažetak

U sklopu ovog rada razvijen je programski okvir za interaktivnu vizualizaciju

algoritama optimizacije. Nudi mogućnost vizualizacije ciljnih funkcija jedne

dimenzije koristeći dvodimenzionalne grafove i mogućnost vizualizacije ciljnih

funkcija dvije dimenzije koristeći grafove kontura i trodimenzionalne grafove.

Modularan je i može se lako nadograđivati. U radu je podrobnije objašnjena njegova

implementacija i načini na koje se može koristiti. Također su ponuđene upute i

primjeri za njegovu nadogradnju.

Ključne riječi: algoritmi optimizacije, problemi optimizacije, interaktivnost,

vizualizacija, modularnost, programski okvir, Python, Jupyter Notebook, ipywidgets

Appendix A

Detailed class diagram of the framework

