
University of Zagreb

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Marko Ðurasević

AUTOMATED DESIGN OF DISPATCHING
RULES IN UNRELATED MACHINES

ENVIRONMENT

DOCTORAL THESIS

Zagreb, 2018

University of Zagreb

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Marko Ðurasević

AUTOMATED DESIGN OF DISPATCHING
RULES IN UNRELATED MACHINES

ENVIRONMENT

DOCTORAL THESIS

Supervisor: Professor Domagoj Jakobović, Ph.D.

Zagreb, 2018

Sveučilište u Zagrebu

FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Marko Ðurasević

AUTOMATIZIRANO OBLIKOVANJE
PRAVILA RASPOREÐIVANJA U OKOLINI

NESRODNIH STROJEVA

DOKTORSKI RAD

Mentor: Prof. dr. sc. Domagoj Jakobović

Zagreb, 2018.

Doctoral thesis has been made at the University of Zagreb, Faculty of Electrical Engineer-

ing and Computing, Department of Electronics, Microelectronics, Computer and Intelli-

gent Systems.

Mentor: Professor Domagoj Jakobović, Ph.D.

Doctoral thesis has: 467 pages

Number of doctoral thesis:

About the Supervisor:

Domagoj Jakobović was born in Našice in 1973. He received B.Sc., M.Sc. and Ph.D. de-

grees in computer science from the University of Zagreb, Faculty of Electrical Engineering and

Computing (FER), Zagreb, Croatia, in 1996, 2001 and 2005, respectively.

From April 1997 he is working at the Department of electronics, microelectronics, computer

and intelligent systems at FER. In January 2018 he was promoted to Full Professor. He led six

scientific projects and was included in several domestic and international projects. Currently he

is a principal investigator of the project "EvoCrypt" financed by the Croatian science founda-

tion. He published more than 80 papers in journals and conference proceedings in the area of

application of stochastic optimization and machine learning in scheduling and cryptography, as

well as development of parallel evolutionary algorithms.

Prof. Jakobović is a member of IEEE and ACM. He is member of a journal editorial board

and he serves as a technical reviewer for various international journals.

O mentoru:

Domagoj Jakobović rod̄en je u Našicama 1973. godine. Diplomirao je, magistrirao i doktori-

rao u polju računarstva na Sveučilištu u Zagrebu Fakultetu elektrotehnike i računarstva (FER),

1996., 2001. odnosno 2005. godine.

Od travnja 1997. godine radi na Zavodu za elektroniku, mikroelektroniku, računalne i in-

teligentne sustave FER-a. U siječnju 2018. godine izabran je u zvanje redovitog profesora.

Vodio je šest znanstvenih projekata i bio suradnik na nekoliko domaćih i med̄unarodnih pro-

jekata. Trenutno je voditelj projekta "EvoCrypt" koji financira Hrvatska zaklada za znanost.

Objavio je više od 80 radova u časopisima i zbornicima konferencija u području primjene sto-

hastičke optimizacije i strojnog učenja u problemima raspored̄ivanja i kriptografiji te razvoja

paralelnih evolucijskih algoritama.

Prof. Jakobović član je stručnih udruga IEEE i ACM. Član je uredničkog odbora znanstvenog

časopisa te sudjeluje kao recenzent u desetak inozemnih časopisa.

Dedicated to my parents and grandparents for
all their love and support.

Acknowledgements

I would like to take this opportunity to express my gratitude and thank all the people who helped

me throughout my life, and without which I would not be able to reach this goal and complete

my thesis. This thesis is not only my own personal success, but rather the success of all the

people who supported me during all the years.

First of all I want to thank my parents, Jasna and Dubravko, who supported me during my

entire life, and did everything they could in order to allow me to focus on my studies and finish

my thesis. Thank you for all the love and care you gave me through life. Thank you for all the

sacrifices you made for me. Thank you for all the support in hard and difficult times. Thank

you for motivating me to pursue my dreams however hard it sometimes might have been. Thank

you for everything you did for me. I also want to thank my grandparents, Stjepan and Pepica,

for the wonderful childhood and for all the time they spent with me, I will forever treasure those

moments. Thank you for all the talks and stories you told me, which helped me to take my

mind of the many difficulties I faced. Thank you for all your love and support, and for always

encouraging me to do my best and never give up. You always wished you could do more to help

me, but you helped me more than you could ever imagine.

I would like to thank my mentor, Professor Domagoj Jakobović, who supported and men-

tored me throughout all my studies. I want to thank him for all the time and effort that he

invested in me, all the talks and discussions we had, as well as all the help and understanding

that he provided. He was always available to me whenever I had questions or problems, and

would do his best to help me in any way he could. Without his guidance I would have never

been able to complete my thesis in such a small period od time. I hope that one day I will be

an equally good mentor as he is. In addition, I want to thank him for recommending me as a

teaching assistant, and thus allowing me to work on what I love the most.

I also want to thank Professor Željka Mihajlović, who undertook a great effort in making it

possible that I stay at the faculty as a teaching and research assistant. She was always available

to me if I had some problems or questions, and always did her best to help me out. Her support

was always valuable, especially in the first years of my employment at the faculty. With her

help it was possible that I also continue collaborating with AVL-AST on interesting projects

even after my full employment at the faculty, for which I am deeply thankful.

I want thank all the colleagues from the Department of Electronics, Microelectronics, Com-

puter and Intelligent Systems, who were always supportive and helped out whenever needed. It

was always an enjoyment to work and collaborate with you during these last several years.

I also want to thank all other professors who motivated me to pursue a career in teaching

and research. I would especially like to thank Associate Professor Josip Knezović, with whom

I have collaborated a lot during my studies. He had a big influence on me, since from the

beginning of my studies he motivated me to read, learn new things, and work on projects outside

the regular courses, which broadened my knowledge and made me a better researcher. I always

regarded him as a second mentor, since he was always available for me when I needed help,

especially when submitting the work for the Rector’s award, where he spent several sleepless

nights working with us on preparing the submission. Without his help I would never have had

the confidence to pursue a PhD degree.

Furthermore, I want to extend my thanks to Goran Mirković, the director of AVL-AST. He

made it possible that I stay at the faculty as a teaching assistant by financing a part of my salary.

In addition, with his support it was also possible to extend the collaboration even after I became

a full employee of the faculty, so that I can continue working on many interesting topics and

projects. I also want to thank Srd̄an Katušić for accepting me in his department, and always

providing support if needed. A big thanks also goes to Gerald Stieglbauer, with whom it was

always an enjoyment to work. He always showed understanding when I needed time to work

on my PhD, and motivated me when I ran into problems. Through our discussions and talks

I learned a lot from him and gained valuable experience. Finally, a big thanks goes to all the

other colleagues with whom I have worked over the years, especially to my former room mate

Dean Gržanić, who motivated me to do my best and finish my thesis as soon as possible.

Finally, I also want to thank all my friends who always supported me during these last

several years. Domagoj, for being a great friend all these years, for all the entertaining and

interesting talks we had, and for always helping me out however he could, especially with

my thesis, but also with many other things as well. Lidija, for all the fun times and endless

discussions which took my mind of the work I had to do, but also for always being there for

me when I needed support and for always listening to me when I needed someone to talk to.

Matea, for all the lunches on which we shared our frustrations about various things. Tomislav,

for always helping out when needed. Katja, Dino, Ivan, Damir, Dario, and Andrija, for their

continuous support and motivation.

Abstract

Scheduling is a decision-making process in which a certain set of activities or tasks needs to

be allocated on one of the available scarce resources, over a given time period. The objective

of the scheduling process is to create a schedule which optimises certain user defined criteria.

Scheduling problems appear in many real world situations, such as in manufacturing processes,

airports, and computer clusters. Unfortunately, most scheduling problem instances belong to

the category of NP-hard problems. Therefore, various heuristic methods are most often used in

order to obtain solutions for different scheduling problems. One of the most commonly used

methods for solving scheduling problems are dispatching rules. Unlike many other methods

which iteratively improve the quality of schedules, dispatching rules create the schedule incre-

mentally by selecting which job should be scheduled on which machine at each decision mo-

ment. This makes dispatching rules especially useful for scheduling under dynamic conditions,

since they can quickly adapt to the changing conditions of the system. However, designing good

dispatching rules is a difficult and tedious task. For that reason, genetic programming is often

used in order to automatically design new dispatching rules.

The main objective of this thesis is to improve the performance of dispatching rules which

are generated by genetic programming. In the first part of the thesis multi-objective and many-

objective optimisation methods were used in order to generate dispatching rules for optimising

several objectives simultaneously. The obtained results demonstrate that the methods generated

new dispatching rules which perform well for various scheduling objectives. In the second part

of the thesis different ensemble learning methods were applied with genetic programming to

generate ensembles of dispatching rules, which can achieve better results than by using only

a single dispatching rule. The third part of the thesis proposes a procedure for selecting the

dispatching rule which is best suited for a concrete problem instance. The aforementioned

procedure achieves a better performance than if only a single dispatching rule would be used to

solve all problem instances. The final part of the thesis analyses the adaptation of dispatching

rules for static scheduling, by using several different methods. The tested methods provide

different trade-offs between the quality of the results and execution times of the methods, with

several methods outperforming results achieved by a genetic algorithm.

Keywords: genetic programming, scheduling problems, unrelated machines environment,

multi-objective optimisation, ensemble learning, dynamic scheduling conditions, static schedul-

ing conditions, machine learning

Prošireni sažetak

Automatizirano oblikovanje pravila raspored̄ivanja u okolini nesrodnih
strojeva

Uvod

Raspored̄ivanje se može definirati kao proces u kojem je kroz odred̄eni vremenski period potreb-

no rasporediti zadani skup aktivnosti, odnosno poslova, na jedan od dostupnih resursa, odnosno

strojeva. Cilj procesa raspored̄ivanje jest izraditi raspored koji optimira odred̄ene korisnički

definirane kriterije. Razlog zbog kojeg su problemi raspored̄ivanja iznimno detaljno prouča-

vani proizlazi iz činjenice da se problemi raspored̄ivanja pojavljuju u mnogim situacijama iz

stvarnog svijeta, kao primjerice raspored̄ivanje u proizvodnim i montažnim linijama, raspored̄i-

vanje aviona po pistama, raspored̄ivanje u raznim proizvodnim pogonima, ili raspored̄ivanju

pacijenata za radioterapiju. Zbog tog razloga, razvojem novih i boljih metoda za rješavanje

problema raspored̄ivanja bilo bi moguće primijeniti ih u mnogim scenarijima iz stvarnog svijeta,

kako bi se primjerice poboljšala proizvodnja u proizvodnim procesima ili povećalo zadovoljstvo

korisnika.

Nažalost, većina problema raspored̄ivanja spada u kategoriju NP-teških problema. Posljed-

ica toga jest da ne postoje efikasni algoritmi koji bi mogli pronaći optimalno rješenja za dani

kriterij optimizacije. Zbog tog razloga, problemi raspored̄ivanja se najčešće rješavaju korišten-

jem različitih heurističkih algoritama, koji se uglavnom dijele u dvije kategorije: unapred̄ivačke

i konstruktivne heuristike. Unapred̄ivačke heuristike započinju s već postojećim rasporedom

kojeg iterativno nastoje poboljšati. Razne metode poput genetskih algoritama ili optimizacije

rojem čestica pripadaju toj kategoriji. Nažalost, navedene metode mogu se primijeniti samo

u statičnim uvjetima raspored̄ivanja, u kojima su sve informacije o problemu raspored̄ivanja

dostupne prije početka rada sustava, pa se onda posljedično i sam raspored može izraditi prije

početka rada sustava. Takav način rada ograničava raspon problema za koje se unapred̄ivačke

heuristike mogu primijeniti, zbog toga što se najčešće ne mogu primijeniti u dinamičnim uvje-

tima, u kojima postoji potreba za konstantnom adaptacijom promjenama koje se kontinuirano

dogad̄aju tijekom rada sustava.

Kako bi se izradili rasporedi za probleme u dinamičnim uvjetima, u kojima informacije o

problemu postaju dostupne tijekom rada sustava, razvijen je veliki broj različitih konstruktivnih

heuristika. U većini slučajeva te heuristike su definirane u obliku pravila raspored̄ivanja koja

ne pretražuju čitav prostor rješenja, već inkrementalno konstruiraju raspored za neki problem.

Kada izrad̄uju raspored, pravila raspored̄ivanja započinju s praznim rasporedom kojeg onda it-

erativno izgrad̄uju. Svaki put kada je potrebno rasporediti neki posao, pravilo raspored̄ivanja

na temelju različitih parametara poslova i sustava (trajanje izvod̄enja posla, vrijeme dolaska

u sustav, važnost posla) odabire koji će se posao u danom trenutku rasporediti na odabrani

stroj. Pravila raspored̄ivanja mogu se podijeliti na dvije cjeline, shemu za izradu rasporeda i

prioritetnu funkciju. Shema za izradu rasporeda definira kako će se čitav raspored izgraditi,

primjerice u kojim trenucima će se poslovi raspored̄ivati, ili na koji stroj će se pojedini posao

rasporediti. S druge strane prioritetna funkcija se koristi kako bi se mogao odabrati posao koji

će se idući rasporediti. Pomoću prioritetne funkcije odrede se prioriteti svih dostupnih poslova

na temelju njihovih karakteristika te shema za izradu rasporeda odabere najprikladniji posao

s obzirom na vrijednosti njihovih prioriteta te ga rasporedi na neki od strojeva. Korištenjem

pravila raspored̄ivanja moguće je iznimno brzo reagirati na različite promjene koje se mogu do-

goditi u sustavu. Dodatno, trajanje izvod̄enja pravila raspored̄ivanja može se u većini slučajeva

smatrati zanemarivom u usporedbi s trajanjem izvod̄enja unapred̄ivačkih heuristika. Med̄utim,

pravila raspored̄ivanja takod̄er imaju odred̄ene nedostatke. Jedan od najbitnijih nedostataka jest

da je ručna izrada pravila raspored̄ivanja iznimno težak i dugotrajan proces koji se najčešće

obavlja od strane eksperata za pojedinu domenu. Dakle, ako za dani problem ne postoji prik-

ladno pravilo raspored̄ivanja, bit će ga potrebno prethodno izraditi, što s obzirom na veliki broj

kriterija i različitih ograničenja nije nimalo jednostavno. Dodatan problem kod pravila ras-

pored̄ivanja jest da ona najčešće ne mogu pronaći rješenja jednake kvalitete kao unapred̄ivačke

heuristike koje se mogu primijeniti samo za probleme u statičnim uvjetima. Konačno, kako

postoji iznimno velik broj razvijenih pravila raspored̄ivanja, teško je unaprijed znati koje od tih

pravila raspored̄ivanja će postići najbolje rezultate za pojedini problem raspored̄ivanja.

Da bi se izbjegla potreba za ručnom izradom pravila raspored̄ivanja, velik dio istraživanja

usmjeren je na primjenu različitih metoda strojnog učenja i evolucijskog računarstva za au-

tomatsku izradu novih pravila raspored̄ivanja. Prilikom automatske izrade pravila raspored̄i-

vanja ne izrad̄uje se čitavo pravilo raspored̄ivanja, već se shema za izradu rasporeda najčešće

definira ručno, dok se same prioritetne funkcije izrad̄uju korištenjem nekog algoritma strojnog

učenja. Razlog tome je što se ista shema za izradu rasporeda može koristiti za rješavanje različi-

tih problema raspored̄ivanja uz odabir prikladne prioritetne funkcije. Prioritetne funkcije mogu

se izraditi korištenjem različitih postupaka, primjerice genetskog programiranja, umjetnih neu-

ronskih mreža, stabala odluke i mnogih drugih. U dosadašnjem istraživanju najčešće se je ipak

koristilo genetsko programiranje za izradu novih pravila raspored̄ivanja. Razloga tome je što su

korištenjem ovog postupka postignuti najbolji rezultati za dani problem, ali i zbog toga što se

pomoću genetskog programiranja mogu razviti pravila raspored̄ivanja koje je lakše interpretirati

od pravila raspored̄ivanja izrad̄enih korištenjem drugih postupaka. Genetsko programiranje je

postupak evolucijskog računarstva koji se može koristiti za rješavanje različitih optimizacijskih

problema, i koji se je zbog svoje sposobnosti da razvije kompleksne funkcije i izraze pokazao

veoma prikladnim za izradu novih pravila raspored̄ivanja. Primjenom genetskog programiranja

moguće je jednostavno i efikasno izraditi nova pravila raspored̄ivanja za rješavanje različitih

problema raspored̄ivanja. Pokazano je takod̄er da automatski izrad̄ena pravila raspored̄ivanja

veoma često postižu rezultate koji su bolji od rezultata dobivenih korištenjem ručno izrad̄enih

pravila raspored̄ivanja. Dakle, korištenjem genetskog programiranja nije moguće samo au-

tomatski izraditi nova pravila raspored̄ivanja, već razviti i pravila raspored̄ivanja koja postižu

bolje rezultate od već postojećih pravila raspored̄ivanja.

Iz navedenih razloga tijekom zadnjih dvadeset godina velik dio istraživanja bio je fokusiran

upravo na automatsku izradu pravila raspored̄ivanja za rješavanje različitih problema raspored̄i-

vanja. Tako su u prethodnom istraživanju bili rješavani problemi raspored̄ivanja u kojima je bilo

potrebno optimirati različite kriterije i pod različitim ograničenjima. Dodatno, bili su isprobani

i uspored̄eni različiti algoritmi za izradu novih pravila raspored̄ivanja, kako bi se odredilo koji

od tih algoritama postižu najbolje rezultate za izradu novih pravila raspored̄ivanja. Osim toga,

isprobane su i različiti postupci za poboljšanje efikasnosti razvijenih pravila raspored̄ivanja, ali i

njihove interpretabilnosti kako bi bilo lakše odrediti na koji način pravila raspored̄ivanja donose

svoje odluke i izrad̄uju raspored. No iako je napravljeno već mnogo istraživanja u području au-

tomatske izrade pravila raspored̄ivanja, postoji još mnogo otvorenih područja i problema koji u

dosadašnjim istraživanjima nisu adekvatno pokrivena.

Motivacija

Glavna motivacija disertacije jest ostvariti nove znanstvene doprinose u područjima automatske

izrade pravila raspored̄ivanja koja do sada u postojećoj literaturi nisu bila adekvatno istražena.

Područja koja su bila u fokusu ove disertacije su: izrada pravila raspored̄ivanja za optimizaciju

više kriterija istodobno, izrada skupova pravila raspored̄ivanja, definiranje procedure za odabir

automatski izrad̄enih pravila raspored̄ivanja s obzirom na karakteristike instance problema, i

izrada pravila raspored̄ivanje za optimizaciju problema raspored̄ivanja u statičnim uvjetima.

Problemi višekriterijske optimizacije su često proučavani u sklopu evolucijskog računarstva.

Osim primjene postojećih algoritama na različite probleme, velik dio istraživanja usmjeren je

i na razvoj novih algoritama za višekriterijski i mnogokriterijsku optimizaciju. Razlog zašto

su višekriterijski i mnogokriterijski problemi često proučavani leži u činjenici da je u prob-

lemima iz stvarnog svijeta najčešće potrebno optimirati nekoliko kriterija istodobno. Upravo iz

tog razloga postoji potreba za razvojem pravila raspored̄ivanja koje će moći izraditi rasporede

kojima se optimira ne samo jedan, već nekoliko kriterija istodobno. Kako je već iznimno za-

htjevno ručno izraditi pravila raspored̄ivanja koja optimiraju samo jedan kriterij, razviti pravila

raspored̄ivanja koja optimiraju nekoliko kriterija istodobno je svakako još teži problem. Zbog

toga je bitno istražiti mogu li se korištenjem različitih algoritama evolucijskog računarstva izra-

diti pravila raspored̄ivanja koja su prikladna za rješavanje višekriterijskih problema raspored̄i-

vanja. Iako je već odred̄eni dio istraživanja bio usmjeren na rješavanje i analizu ovog problema,

nažalost većina istraživanja bila je fokusirana na optimizaciju dva ili tri višekriterijska problema.

Na temelju isključivo tih rezultata teško je dati ocjenu o tome mogu li se izraditi prikladna prav-

ila raspored̄ivanja za različite višekriterijske probleme koji se sastoje ne samo od različitog broja

kriterija, već i od različitih kombinacija kriterija koji se med̄usobno zajedno optimiraju. Osim

toga, rijetko su rad̄ene usporedbe izmed̄u automatski izrad̄enih pravila raspored̄ivanja i ručno

izrad̄enih pravila raspored̄ivanja za optimizaciju više kriterija istodobno, kako bi se pokazalo

mogu li automatski izrad̄ena pravila raspored̄ivanja uistinu ostvariti bolje rezultate od ručno

izrad̄enih pravila raspored̄ivanja. Upravo iz prethodno navedenih razloga, jedan od ciljeva ove

disertacije jest pobliže proučiti problem izrade pravila raspored̄ivanja prikladnih za optimizaciju

više kriterija istodobno.

Jedan od najvećih izazova u izradi pravila raspored̄ivanja jest poboljšanje njihovih perfor-

mansi, jer kao što je prethodno pokazano u literaturi, pravila raspored̄ivanja najčešće ne postižu

jednako dobre rezultate kao složenije unapred̄ivačke heuristike. Osim toga, poboljšanjem per-

formansi automatski izrad̄enih pravila raspored̄ivanja ona postaju prikladnija za primjenu u

stvarnim sustavima za raspored̄ivanje. Iako su se performanse pravila raspored̄ivanja izrad̄enih

genetskim programiranjem nastojale poboljšati korištenjem različitih prikaza rješenja ili postu-

paka lokalne pretrage pri njihovoj izradi, ipak postoji ograničenje do kojeg je moguće poboljša-

vati performanse jednog pravila raspored̄ivanja prije nego dod̄e do njegove prenaučenosti na

skupu za učenje. Zbog toga javlja ideja da se umjesto korištenja samo jednog pravila raspored̄i-

vanja koristi skup pravila raspored̄ivanja kako bi se donijele odluke o tome koji će se posao idući

rasporediti. Kako je skupno učenje već pokazalo iznimno dobre rezultate prilikom rješavanja

različitih problema iz strojnog učenja (primjerice za poboljšanje performansi različitih klasi-

fikacijskih postupaka), veoma je vjerojatno da se pomoću skupnog učenja mogu postići bolji

rezultati kod problema raspored̄ivanja. U prethodnih nekoliko istraživanja već su demonstrirane

prednosti korištenja skupova pravila raspored̄ivanja, jer su njima postignuti bolji rezultati nego

korištenjem individualnih pravila raspored̄ivanja. No korištenje skupova pravila raspored̄ivanja

radi postizanja boljih performansi je započelo tek nedavno, zbog čega još nije obavljeno mnogo

istraživanja u ovom području. Tako su u dosadašnjem istraživanju primijenjene samo dvije

metode za izradu skupova pravila raspored̄ivanja, koji su uglavnom bili primijenjeni za rješa-

vanje problema raspored̄ivanja pod statičnim uvjetima. Zbog navedenih razloga jedan od ciljeva

ove disertacije jest izraditi skupove pravila raspored̄ivanja koji se mogu koristiti za rješavanje

problema raspored̄ivanja u dinamičnim uvjetima. Za izradu skupova pravila raspored̄ivanja

isprobat će se nekoliko različitih postupaka, neki od kojih su izrad̄eni na temelju popularnih

postupaka iz strojnog učenja.

Iako je korištenjem genetskog programiranja riješen problem oko potrebe za ručnom izradom

pravila raspored̄ivanja, još uvijek postoje odred̄eni problemi koji time nisu riješeni. Jedan od

takvih problema, prouzročen činjenicom da postoji mnogo pravila raspored̄ivanja razvijenih za

različite situacije, jest da unaprijed nije poznato koje pravilo raspored̄ivanja bi bilo najpriklad-

nije za rješavanje koje instance problema. Čak iako se pravila raspored̄ivanja izrade na temelju

problema s različitim karakteristikama, ne postoji garancija da će razvijeno pravilo raspored̄i-

vanja ostvariti dobre rezultate na svim vrstama problema nad kojima je bilo učeno. Štoviše,

nemoguće je razviti pravilo raspored̄ivanja koje postiže dobre rezultate na svim mogućim in-

stancama problema. Upravo zbog toga, čak iako se genetskim programiranjem razvije kvalitetno

pravilo raspored̄ivanja, uvijek će biti moguće izraditi instancu problema nad kojom će dobiveno

pravilo raspored̄ivanja ostvariti loše rezultate. Zato i kvalitetna pravila raspored̄ivanja mogu

ostvariti loše rezultate ako su primijenjena za rješavanje neprikladnih instanci problema. Zbog

navedenih razloga postoji potreba za definiranjem procedure koja će na temelju karakteristika

instanci problema moći odabrati koje bi bilo prikladno pravilo raspored̄ivanja upravo za njeno

rješavanje. Iako je na ovu temu je već obavljen veliki broj istraživanja, ono je isključivo bilo

fokusirano na odabir jednog od nekoliko jednostavnih ručno izrad̄enih pravila raspored̄ivanja.

Zbog toga je jedan od ciljeva ove disertacije definirati proceduru koja na temelju karakteristika

instanci problema može odabrati najprikladnije automatski izrad̄eno pravilo raspored̄ivanja. U

sklopu ove teme želi se isprobati može li se korištenjem ovakve procedure dodatno poboljšati

efikasnost automatski izrad̄enih pravila raspored̄ivanja te kako će se procedura ponašati kada je

potrebno napraviti odabir izmed̄u većeg broja složenih pravila raspored̄ivanja koja već i sama

po sebi mogu ostvariti dobre rezultate.

Većina istraživanja koje je bilo do sada obavljeno u sklopu automatizirane izrade pravila

raspored̄ivanja je bilo fokusirano na rješavanje problema u statičnim uvjetima. Iako su u di-

jelu istraživanja bili korišteni problemi pod statičnim uvjetima, veoma malo istraživanja je bilo

fokusirano upravo na izradu novih metoda koje bi unaprijedile kvalitetu pravila raspored̄ivanja

u statičnim uvjetima. Naime, kako su pravila raspored̄ivanja uglavnom izrad̄ena za rješavanje

problema u dinamičnim uvjetima, ona postižu lošije rezultate nego drugi postupci koji su pri-

lagod̄eni rješavanju problema raspored̄ivanja u statičnim uvjetima (kao primjerice genetski al-

goritmi ili slične unapred̄ivačke heuristike). Razlog tome je što pravila raspored̄ivanja ne koriste

statične informacije o problemu, upravo kako bi bila primjenjiva u dinamičnim okruženjima.

Naravno, time imaju uži pogled na problem i postižu lošije rezultate nego postupci koji koriste

takve informacije. No pravila raspored̄ivanja imaju odred̄ene prednosti nad unapred̄ivačkim

heuristikama. Prva prednost jest ta da mogu izraditi raspored u mnogo kraćem vremenu od un-

apred̄ivačkih heuristika. Osim toga, pravila raspored̄ivanja izrad̄uju raspored inkrementalno, što

znači da se dio rasporeda koji je već izrad̄en može izvoditi dok se ostatak rasporeda izgrad̄uje.

Zbog navedenih razloga pravila raspored̄ivanja bi se mogla pokazati korisnima i za rješavanje

problema raspored̄ivanja u statičnim uvjetima, ako je brzina izrade rasporeda takod̄er od velike

važnosti. No kako bi se postigli što bolji rezultati korištenjem pravila raspored̄ivanja, potrebno

ih je prilagoditi na način da prilikom odabira idućeg posla kojeg će rasporediti, osim informa-

cija koje bi im bile dostupne u dinamičnim uvjetima, koriste i dodatne statične informacije o

problemu. Kao što je ranije spomenuto, do sada je iznimno malo istraživanja bilo napravljeno

kako bi se pravila raspored̄ivanja prilagodila za rješavanje problema u statičnim uvjetima, zbog

čega jedan od ciljeva ove disertacije pobliže proučiti postupke kojima se pravila raspored̄ivanja

mogu prilagoditi za rješavanje problema pod statičnim uvjetima.

Pregled disertacije

Disertacija je podijeljena na devet poglavlja, pri čemu prva četiri poglavlja daju uvod i moti-

vaciju za automatsku izradu pravila raspored̄ivanja, dok iduća četiri poglavlja opisuju dobivene

rezultate i ostvarene znanstvene doprinose. U posljednjem poglavlju dan je kratak zaključak

o obavljenom istraživanju te smjernice za buduća istraživanja u automatskoj izradi pravila ras-

pored̄ivanja.

Prvo poglavlje daje kratak uvod u disertaciju. U navedenom poglavlju ukratko su opisani

problemi raspored̄ivanja te je izložena motivacija za proučavanje tih problema. Nadalje, u

poglavlju je takod̄er izložena motivacija za automatsku izradu pravila raspored̄ivanja. Kroz

poglavlje je istaknuto nekoliko otvorenih pitanja u tom području koja su proučavana u sklopu

disertacije. U poglavlju je takod̄er dan i pregled izvornih znanstvenih doprinosa koji su ost-

vareni u sklopu disertacije. Konačno, poglavlje je zaključeno kratkim pregledom disertacije.

U drugom poglavlju dana je formalna definicija problema raspored̄ivanja. Osim što je

opisana notica za definiranje problema raspored̄ivanja, istaknuti su različiti kriteriji koji se

mogu optimirati, kao i ograničenja te uvjeti pod kojima se proces raspored̄ivanja može obavl-

jati. Takod̄er, u ovom poglavlju opisani su različiti postupci optimizacije koji se mogu primi-

jeniti za rješavanje problema raspored̄ivanja te su istaknute prednosti i nedostaci svakog od tih

postupaka. U poglavlju se posebice stavlja naglasak na problem raspored̄ivanja u okruženju

nesrodnih strojeva, koji je centralni problem koji se je rješavao u disertaciji. Za dani problem

raspored̄ivanja nabrojana su i opisana ručno izrad̄ena pravila raspored̄ivanja dostupna u litera-

turi, koja su se u daljnjim poglavljima koristila za dobivanje referentnih rezultata s kojima su se

uspored̄ivali rezultati dobiveni automatski izrad̄enim pravilima raspored̄ivanja.

Treće poglavlje detaljno opisuje algoritam genetskog programiranja, koje se je u disertaciji

koristilo kao primarna metoda za automatsku izradu novih pravila raspored̄ivanja. U ovom

poglavlju opisani su svi bitni dijelovi genetskog programiranja, kao što su inicijalizacija, se-

lekcija, prikaz rješenja, parametri algoritma te genetski operatori križanja i mutacije. Osim

standardnog genetskog programiranja, u poglavlju su opisane i dvije varijante, naime gene ex-

pression programming i dimensionally aware genetic programming, koje su takod̄er bile upotri-

jebljene za automatsku izradu pravila raspored̄ivanja.

U četvrtom poglavlju opisan je način na koji se genetsko programiranje može koristiti za

izradu novih pravila raspored̄ivanja. Na početku poglavlja izloženi su detalji o tome kako se

genetsko programiranje može prilagoditi za izradu prioritetnih funkcija koje će se koristiti u

sklopu novih pravila raspored̄ivanja. Nadalje, u poglavlju je dan iscrpni pregled postojeće liter-

ature koja je fokusirana upravo na automatsku izradu pravila raspored̄ivanja korištenjem genet-

skog programiranja i sličnih postupaka. Takod̄er, u poglavlju su navedeni i optimalni parametri

genetskog programiranja koji su korišteni za izradu novih pravila raspored̄ivanja, kao i postu-

pak izrade problema koji je korišten za izradu novih pravila raspored̄ivanja, ali i za njihovu

evaluaciju tijekom čitave disertacije. Poglavlje završava s pregledom rezultata koji su dobiveni

automatski razvijenim pravilima raspored̄ivanja. Dobiveni rezultati su uspored̄eni s rezultatima

dobivenim korištenjem dostupnih ručno izrad̄enih pravila raspored̄ivanja, kao i jednog genet-

skog algoritma koji je odabran kao predstavnik unapred̄ivačkih heuristika. Prikazani rezultati

koristili su se kao referentni rezultati s kojima su uspored̄ivani rezultati ostvareni svim meto-

dama korištenim u disertaciji, kako bi se pokazalo mogu li se korištenjem odabranih i pred-

loženih metoda poboljšati performanse automatski generiranih pravila raspored̄ivanja.

Peto poglavlje bavi se problemom izrade pravila raspored̄ivanja koja se mogu primijeniti za

optimizaciju više kriterija istodobno. U poglavlju su prvo izloženi temelji višekriterijske opti-

mizacije i način na koji se genetsko programiranje može prilagoditi za rješavanje ovog prob-

lema. Kako bi se isprobala prikladnost genetskog programiranja za izradu pravila raspored̄i-

vanja koja optimiraju viče kriterija istodobno, isprobana su četiri algoritma za višekriterijsku

optimizaciju. Sve četiri algoritma su primijenjena za rješavanje 14 različitih višekriterijskih

problema gdje se je broj kriterija kretao izmed̄u tri i devet. Za većinu testiranih višekriterijskih

problema algoritmi su izradili pravila raspored̄ivanja koja su postigla bolje rezultate od dostup-

nih ručno izrad̄enih pravila raspored̄ivanja. Iako su najbolji rezultati postignuti prilikom opti-

mizacije problema koji su se sastojali od šest ili manje kriterija, razvijena su kvalitetna pravila

raspored̄ivanja i za probleme s većim brojem istodobno optimiranih kriterija. Jedan od problema

koji je uočen prilikom optimizacije višekriterijskih problema raspored̄ivanja jest taj da su algo-

ritmi pokazali iznimno veliku osjetljivost s obzirom na to koji se kriteriji med̄usobno zajedno

optimiraju. Naime, ako se optimiraju konfliktni kriteriji, performanse algoritama su često bile

lošije nego u slučajevima kada se optimiraju kriteriji koji nisu izrazito med̄usobno konfliktni.

Osim toga, pomoću dobivenih rezultate bilo je moguće odrediti koreliranost različitih kriterija,

što se može pokazati korisnim u budućim istraživanjima prilikom izrade novih višekriterijskih

problema koji će se optimirati. Na temelju rezultata ostvarenih u ovom poglavlju pokazano je

kako se pomoću genetskog programiranja mogu razviti pravila raspored̄ivanja koja su prikladna

za rješavanje višekriterijskih problema raspored̄ivanja.

Šesto poglavlje fokusirano je na izradu skupova pravila raspored̄ivanja, kako bi se poboljšale

performanse razvijenih individualnih pravila raspored̄ivanja. U poglavlju je prvo opisano pet

metoda koje će se koristiti za izradu skupova pravila raspored̄ivanja. Od tih pet metoda, tri

metode su preuzete iz literature (BoostGP, BagGP i kooperativna koevolucija), dok su dvije

metode predložene u disertaciji (Simple Ensemble Combination (SEC) i Ensemble subset search

(ESS)). Osim navedenih metoda za izradu skupova pravila raspored̄ivanja, korištene su i dvije

metode pomoću kojih se donosi odluka na temelju skupa pravila raspored̄ivanja: sum i vote.

Kako je SEC metoda predložena u disertaciji, prvi dio poglavlja bio je fokusiran na testiranje te

metode uz različite kombinacije parametara kako bi se ispitale njene performanse. Nakon što

su odred̄eni optimalni parametri za SEC metodu, ona i preostale četiri metode korištene su za

izradu skupova pravila raspored̄ivanja, pri čemu su metode primijenjene za optimiranje četiri

kriterija. Za sva četiri testirana kriterija korištenjem skupova pravila raspored̄ivanja postignuti

su bolji rezultati nego korištenjem individualnih ručno ili automatski izrad̄enih pravila ras-

pored̄ivanja. Najbolji rezultati za sva četiri kriterija postignuti su od strane skupova koji su

bili generirani korištenjem metoda predloženih u disertaciji. Kroz detaljniju analizu generiranih

skupova pravila raspored̄ivanja uočeno je kako skupovi pravila raspored̄ivanja za većinu instanci

problema postižu jednako dobre ili čak i bolje rezultate od najboljeg individualnog pravila ras-

pored̄ivanja, što zapravo dovodi do toga da onda i na ukupnom skupu problema skupovi pravila

raspored̄ivanja postižu bolje rezultate od individualnih pravila raspored̄ivanja. Osim toga, na-

jbolji rezultati su najčešće postignuti od strane skupova koji se sastoje od manjeg broja pravila

raspored̄ivanja. Na temelju svih ostvarenih rezultata u sklopu ovog poglavlja može se zaključiti

kako skupovi pravila raspored̄ivanja predstavljaju efikasan mehanizam za poboljšanje perfor-

mansi pravila raspored̄ivanja.

U sedmom poglavlju analizirano je kako se različiti postupci strojnog učenja mogu prim-

ijeniti za definiranje procedure koja bi na temelju karakteristika pravila raspored̄ivanja mogla

odabrati prikladno pravilo raspored̄ivanja za rješavanje konkretne instance problema. Na početku

poglavlja dan je pregled literature koja se je bavila odabirom prikladnog ručno izrad̄enog prav-

ila raspored̄ivanja. Nakon toga, detaljno je opisana predložena procedura za odabir automatski

izrad̄enih pravila raspored̄ivanja, koja je primijenjena u statičnim i dinamičnim scenarijima

za odabir prikladnog pravila raspored̄ivanja. U statičnim scenarijima radi se s pretpostavkom

da su odred̄ene karakteristike instance problema dostupne prije početka rada sustava (iako se

raspored̄ivanje obavlja u dinamičnim uvjetima) i da je korištenjem tih karakteristika moguće

odrediti koje pravilo raspored̄ivanja bi bilo prikladno za njeno rješavanje. S druge strane, u

dinamičnim uvjetima radi se s pretpostavkom da nikakve karakteristike o instance problema

nisu dostupne niti poznate prije početka rada sustava, pa ih je posljedično potrebno aproksimi-

rati tijekom rada sustava i tek onda donijeti odluku o tome koje bi pravilo raspored̄ivanja bilo

najprikladnije. U nastavku poglavlja opisan je način provod̄enja eksperimenata, kao i način

izrade instanci problema, pri čemu će kod nekih problema karakteristike biti konstante tijekom

čitavog rada sustava, dok će se kod nekih karakteristike mijenjati tijekom rada sustava. Pred-

ložena procedura primijenjena je nad nekoliko različitih problema te su rezultati uspored̄eni s

jednim ručno odabranim pravilom raspored̄ivanja. Dobiveni rezultati pokazuju kako predložena

procedura može postići bolje rezultate od ručno odabranog pravila raspored̄ivanja, zbog toga što

uspijeva odrediti prikladna pravila raspored̄ivanja za pojedine trenutke. No ozbiljni nedostatak

predložene procedure jest činjenica da je potrebno odrediti optimalne vrijednosti za veliki broj

parametara, jer u suprotnom procedura postiže iznimno loše rezultate. Kroz ostvarene rezul-

tate pokazano je kako predložena procedura može ostvariti bolje rezultate odabirom prikladnih

pravila raspored̄ivanja za trenutnu situaciju, nego kad bi se koristilo samo jedno ručno odabrano

pravilo raspored̄ivanja za rješavanje svih instanci.

Osmo poglavlje bavi se problemom prilagodbe automatski generiranih pravila raspored̄i-

vanja za probleme raspored̄ivanja u statičnim okruženjima. U tu svrhu bit će iskorištene četiri

metode koje su opisane u početnom dijelu poglavlja: statični terminalni čvorovi, look-ahead

metoda, iterativna pravila raspored̄ivanja i rollout algoritam. U nastavku poglavlja prvo se

analizira kvaliteta rješenja dobivenih svakim od ovih postupaka i njihovim med̄usobnim kom-

binacijama. Osim ispitivanja same kvalitete izrad̄enih rasporeda, mjereno je i vrijeme potrebno

za izradu rasporeda te su svi postupci ocijenjeni i s obzirom na taj kriterij. Takod̄er je napravl-

jena i analiza ponašanja pojedinih postupaka prilikom rješavanja jedne instance problema, kako

bi se odredile prednosti i nedostaci svakog od postupka. Dobiveni rezultati pokazuju da je look-

ahead metoda najprikladnija ako su kvaliteta rasporeda i vrijeme potrebno za njegovu izradu

jednako bitni. Naime, pri usporedbi s automatski izrad̄enim pravilima raspored̄ivanja za di-

namične uvjete vidljivo je da pravila raspored̄ivanja s look-ahead metodom postižu značajno

bolje rezultate, uz samo dvostruko dulje trajanje izvod̄enja. Takod̄er, u usporedbi s referentnim

genetskim algoritmom navedena metoda pokazala je da može postići relativno dobre rezultate

no u mnogo kraćem vremenu. S druge strane, rollout algoritam ostvaruje najbolje rezultate od

svih testiranih postupaka. Naravno, posljedica toga je da je tom algoritmu potrebno i značajno

više vremena da izgradi raspored nego primjerice automatski izrad̄enim pravilima raspored̄i-

vanja za dinamična okruženja. No u usporedbi s referentnim genetskim algoritmom pokazano

je kako rollout algoritam postiže bolje rezultate i to najčešće u kraćem vremenu. Zbog toga

se rollout algoritam nameće kao najprikladniji postupak ako je isključivo kvaliteta rasporeda

bitna. Takod̄er je pokazano kako se korištenjem različitih kombinacija postupaka mogu postići

još bolji rezultati, no uz dulje trajanje izrade rasporeda. Bez obzira na to, podešavanjem param-

etara testiranih postupaka moguće je napraviti kompromis izmed̄u kvalitete izrad̄enog rasporeda

i vremena potrebnog za njegovu izradu. S obzirom na rezultate ostvarene u ovom poglavlju

može se zaključiti kako je korištenjem isprobanih postupaka za prilagodbu pravila raspored̄i-

vanja za probleme u statičnim uvjetima moguće postići iznimno dobre rezultate, koji nerijetko

nadmašuju i rezultate dobivene korištenjem referentnog genetskog algoritma.

U devetom poglavlju dan je kratak zaključak disertacije te su istaknuti izvorni znanstveni

doprinosi koji su ostvareni kroz disertaciju. Nadalje, dan je pregled tema za buduće istraživanje

u automatskoj izradi pravila raspored̄ivanja, kao što su unapred̄enje interpretabilnosti pravila

raspored̄ivanja, definiranje novih shema za izradu rasporeda, kombiniranje različitih postupaka

isprobanih u sklopu disertacije te mnoge druge.

Zaključak

Glavni cilj disertacije je poboljšati kvalitetu pravila raspored̄ivanja generiranih korištenjem

genetskog programiranja te omogućiti izradu pravila raspored̄ivanja koja su prikladna za prim-

jenu u različitim uvjetima i situacijama. U sklopu disertacije ostvarena su sljedeća četiri izvorna

znanstvena doprinosa:

∙ Postupak oblikovanja prioritetnih funkcija za višekriterijske i mnogokriterijske probleme

raspored̄ivanja temeljen na evolucijskim algoritmima

∙ Metoda skupnog učenja s ciljem poboljšanja kvalitete pravila raspored̄ivanja

∙ Postupak odabira pravila raspored̄ivanja prilagod̄enih svojstvima instance problema

∙ Postupak oblikovanja pravila raspored̄ivanja primjenjivih u statičnoj okolini raspored̄i-

vanja

Kroz postignute rezultate može se zaključiti kako je za sve testirane probleme, kriterije i

uvjete raspored̄ivanja genetsko programiranje pokazalo veliku uspješnost u izradi novih prav-

ila raspored̄ivanja, koja nerijetko postižu bolje rezultate od postojećih ručno izrad̄enih pravila

raspored̄ivanja. Osim toga, korištenjem postupaka koji su bili testirani i predloženi u sklopu

disertacije moguće je dodatno poboljšati kvalitetu automatski izrad̄enih pravila raspored̄ivanja

u usporedbi s pravilima raspored̄ivanja koja su izrad̄ena korištenjem standardnog genetskog

programiranje, i time ostvariti još bolje rezultate u usporedbi s ručno izrad̄enim pravilima

raspored̄ivanja. Upravo zbog svih izloženih zaključaka i ostvarenih rezultata moguće je za-

ključiti kako je genetsko programiranje pokazalo iznimno veliki potencijal za primjenu u au-

tomatskoj izradi pravila raspored̄ivanja u okruženju nesrodnih strojeva. Osim toga, ostvareni

rezultati takod̄er pokazuju i veliki potencijal za provod̄enje daljnjeg istraživanja, kao i za daljnje

poboljšanje postojećih postupaka u području automatske izrade pravila raspored̄ivanja.

Ključne riječi: genetsko programiranje, okolina nesrodnih strojeva, višekriterijska opti-

mizacija, skupno učenje, dinamični uvjeti raspored̄ivanja, statični uvjeti raspored̄ivanja, strojno

učenje

Contents

1. Introduction . 1

1.1. Research motivations . 2

1.2. Major contributions of the thesis . 5

1.3. Outline of the thesis . 7

2. Scheduling problems . 11

2.1. Notation of scheduling problems . 11

2.2. Scheduling conditions . 16

2.3. Methods for solving scheduling problems . 17

2.4. The unrelated machines environment . 18

2.4.1. Improvement heuristics . 18

2.4.2. Dispatching rules . 20

3. Genetic programming . 29

3.1. Standard genetic programming . 29

3.1.1. Solution representation . 30

3.1.2. Initialisation . 32

3.1.3. Evaluation . 33

3.1.4. Selection . 34

3.1.5. Genetic operators . 35

3.1.6. Termination criteria . 42

3.2. Dimensionally aware genetic programming 43

3.3. Gene expression programming . 44

4. Design of dispatching rules by genetic programming for the unrelated machines
environment . 49

4.1. Designing dispatching rules with genetic programming 49

4.2. Literature overview . 53

4.3. Parameters and experimental design . 70

4.3.1. GP parameters . 70

4.3.2. Experimental design . 71

4.4. Results . 75

4.4.1. Performance of automatically generated DRs 75

4.4.2. Comparison of GP approaches . 78

5. Automatic development of dispatching rules for multi-objective and many-objective
problems . 81

5.1. Multi-objective optimisation . 83

5.1.1. Multi-objective GP . 84

5.2. Experimental design . 88

5.3. Parameter tuning . 89

5.3.1. Optimisation of the number of function evaluations 89

5.3.2. Population size optimisation . 90

5.3.3. Mutation probability optimisation . 93

5.3.4. Algorithm specific parameter optimisation 93

5.4. Results . 96

5.4.1. Comparison of results achieved by MOGP and SOGP 97

5.4.2. Performance comparison of MOGP algorithms 119

5.5. Comparison with standard DRs . 137

5.5.1. Comparison of automatically generated DRs with MCT 137

5.5.2. Comparison of automatically generated DRs with ATC 138

5.5.3. Comparison of automatically generated DRs with RC 141

5.5.4. Comparison of automatically generated DRs with COVERT 143

5.5.5. Comparison of automatically generated DRs with the sufferage rule . . 143

5.6. Analysis of the correlation between the scheduling criteria 145

5.7. Conclusion . 157

6. Designing ensembles of dispatching rules . 161

6.1. GP ensemble learning methods . 162

6.1.1. Simple ensemble combination . 162

6.1.2. BagGP . 168

6.1.3. BoostGP . 169

6.1.4. Cooperative coevolution . 170

6.1.5. Ensemble subset search . 170

6.2. Experimental design . 172

6.3. Performance analysis of the SEC approach . 173

6.3.1. Influence of different ensemble construction methods 173

6.3.2. Influence of the method used for the generation of DRs 181

6.3.3. Influence of the size of the generated DRs 187

6.4. Results obtained by different ensemble learning methods 190

6.4.1. Results obtained by the SEC approach 192

6.4.2. Results obtained by the BagGP approach 196

6.4.3. Results obtained by the BoostGP approach 202

6.4.4. Results obtained by the cooperative coevolution approach 210

6.4.5. Performance comparison of ensemble learning approaches 214

6.5. Discussion . 225

6.5.1. SEC . 225

6.5.2. BagGP . 226

6.5.3. BoostGP . 226

6.5.4. Cooperative coevolution . 227

6.5.5. ESS . 228

6.5.6. Influence of the ensemble combination methods 229

6.5.7. Influence of the ensemble size . 229

6.6. Analysis of the generated ensembles . 230

6.6.1. Analysis of the frequency of DRs in the ensembles generated by SEC . 230

6.6.2. Analysis of ensembles generated by SEC 234

6.6.3. Analysis of ensembles generated by BagGP 239

6.6.4. Analysis of ensembles generated by BoostGP 247

6.6.5. Analysis of ensembles generated by cooperative coevolution 259

6.7. Conclusion . 264

7. Selection of DRs based on problem instance characteristics 267

7.1. Overview of DR selection literature . 268

7.2. DR selection procedure . 269

7.2.1. Problem instance features . 269

7.2.2. The learning process . 270

7.2.3. The decision process . 273

7.3. Static DR selection procedure . 275

7.3.1. Parameter analysis of the DR selection procedure 275

7.3.2. Performance comparison with a manually selected DR 279

7.4. Dynamic DR selection procedure . 282

7.4.1. Experimental design . 282

7.4.2. Results obtained for experiments with constant problem parameters . . 284

7.4.3. Results obtained for experiments with changing due dates 289

7.4.4. Results obtained for experiments with changing due dates and release

times . 296

7.5. Analysis of the rule selection procedure . 303

7.5.1. Analysis of the static selection procedure 303

7.5.2. Analysis of the dynamic selection procedure 309

7.6. Discussion . 313

7.7. Conclusion . 315

8. Design of DRs for static scheduling conditions 317

8.1. Design and adaptation of DRs for static scheduling 318

8.1.1. Terminal nodes with static information 318

8.1.2. Look-ahead . 322

8.1.3. Iterative dispatching rules . 325

8.1.4. Rollout algorithm . 327

8.1.5. Combination of static methods . 328

8.2. Results . 330

8.2.1. Results obtained by DRs with static terminal nodes 330

8.2.2. Results obtained by DRs with look-ahead 334

8.2.3. Results obtained by look-ahead with static terminal nodes 337

8.2.4. Results obtained by IDRs . 344

8.2.5. Results obtained by IDRs with static terminal nodes 346

8.2.6. Results obtained by IDRs with look-ahead 349

8.2.7. Results obtained by IDRs with static terminals and look-ahead 353

8.2.8. Results obtained by the rollout algorithm 358

8.2.9. Results obtained by the rollout algorithm with static terminals 361

8.2.10. Results obtained by the rollout algorithm with look-ahead 366

8.2.11. Results obtained by the rollout algorithm with static terminals and look-

ahead . 370

8.2.12. Comparison of all static scheduling methods 379

8.3. Execution time analysis . 384

8.3.1. Influence of the parameter values of static methods on the execution time 386

8.3.2. Execution time comparison of all methods 388

8.4. Analysis of the static scheduling methods . 393

8.5. Conclusion . 402

9. Conclusion . 405

9.1. Achieved contributions and main conclusions 406

9.1.1. Design of dispatching rules for simultaneous optimisation of multiple

criteria . 406

9.1.2. Designing ensembles of dispatching rules 407

9.1.3. Procedure for the selection of dispatching rules based on problem in-

stance characteristics . 407

9.1.4. Developing dispatching rules for the static scheduling environment . . 408

9.2. Future research . 409

Bibliography . 411

List of Figures . 447

List of Tables . 457

List of Algorithms . 463

Biography . 465

Životopis . 467

Chapter 1

Introduction

Scheduling is a decision-making process in which a certain set of activities or tasks needs to be

allocated on one of the available scarce resources, over a given time period [1]. The objective

of the scheduling process is to create a schedule which optimises certain user defined crite-

ria. The reason why scheduling problems are widely researched originates from the fact that

these problems appear in many real world situations, like scheduling planes on runways [2, 3],

scheduling in manufacturing and assembly lines [4, 5], scheduling in wafer fabrication [6] and

production plants [7], or scheduling for radiotherapy pre-treatment [8]. Therefore, by obtaining

better methods for solving scheduling problems it would also be possible to apply them for

many real world scenarios in order to, for example, increase user satisfaction or production in

manufacturing environments.

Unfortunately, most scheduling problems belong to the category of NP-hard problems [1].

As a consequence, no efficient algorithms which could obtain the optimal solution for a given

objective are available. Therefore, solutions are most often obtained by using various heuristic

algorithms, which are usually divided into two groups: improvement heuristics and constructive

heuristics. Improvement heuristics start with an initial schedule, which they try to iteratively im-

prove. Various metaheuristic methods, like genetic algorithms or particle swarm optimisation,

belong to this category [9]. However, these methods can only be applied for static schedul-

ing environments, in which all the information about the scheduling problem is present before

the system starts with its execution. This heavily limits the range of problems on which im-

provement heuristics can be applied, since they usually can not be used in dynamic scheduling

environments, in which a constant adaptation to the changing conditions is needed.

In order to create schedules in dynamic scheduling environments, where the information

about the system becomes available during its execution, a vast number of constructive heuris-

tics have been developed. In most cases these heuristics are defined in the form of dispatching

rules, which do not search the entire space of solutions, but rather build up the schedule incre-

mentally [10, 11, 12, 13]. When creating schedules, the dispatching rules start with an empty

1

1. Introduction

schedule, and each time a scheduling decision needs to be performed they use the currently

available information from the system to determine which job should be scheduled on which

machine at the current moment in time. This allows dispatching rules to quickly react to the

changing conditions in the scheduling environment. In addition, their time complexity is in

most cases almost negligible when compared to the time complexity of improvement heuristics.

However, dispatching rules also cope with a certain number of problems. The most serious

problem is that good dispatching rules are quite hard to design, which means that in each case

an adequate dispatching rule is not available, a new rule would need to be designed.

To deal with the problem of having to design new dispatching rules manually, a large num-

ber of research was conducted, in which various machine learning and evolutionary computation

methods were used for automatic design of new dispatching rules [14, 15]. In most cases genetic

programming [16] was used to automatically design new dispatching rules. Genetic program-

ming is a metaheuristic optimisation procedure which is capable of evolving complex functions

and expressions, and therefore it is more than suitable for creating new dispatching rules. With

the use of genetic programming it is possible to automatically design new dispatching rules

for various scheduling criteria and conditions. In addition to this, in most cases automatically

designed dispatching rules achieve a significantly better performance than any of the manually

designed dispatching rules from the literature. Therefore, by using genetic programming it is

not only possible to automatically design new dispatching rules, but also to acquire rules which

provide superior performance when compared to already existing dispatching rules.

Through the years a large amount of research was performed in the field of automatically

designing new dispatching rules. This can best be seen from the two recent surveys which

give an overview of the research which was performed in this area [14, 15]. In addition, three

PhD theses by Jakobović [17], Nguyen [18], and Hunt [19] also demonstrate that the field

of automatically designing new dispatching is actively researched. Although a great deal of

research has already been performed in this area, there are still many open issues which are not

yet adequately covered in the literature.

1.1 Research motivations

This section will give an overview of several currently open issues in the field of automatic

design of dispatching rules. Dealing with these issues will be the main objective of this thesis.

Multi-objective and many-objective optimisation are currently one of the most investigated

areas in evolutionary computation, with many new methods being constantly proposed [20].

Various scheduling problems, in which several criteria were optimised simultaneously, were

examined by numerous researchers [21, 22, 23, 24, 25]. Therefore, designing dispatching rules

for simultaneous optimisation of several scheduling criteria is also an interesting field of re-

2

1.1. Research motivations

search which was investigated by several researchers [26, 27, 28, 29, 30, 31, 32]. The reason

for this area being of interest is because in real world scenarios it is rarely the case that only a

single objective needs to be optimised. Therefore it is very important to analyse the possibility

of automatically designing dispatching rules suited for the simultaneous optimisation of several

criteria, and to propose methods which can be used to automatically generate them. Some re-

search has already been performed in this field, and the obtained results demonstrate that there

is a high potential of automatically developing dispatching rules for optimising several criteria

simultaneously. Unfortunately, most of the research which was performed on this topic focused

on optimising only one or two combinations of criteria. Therefore, no study provides a notion

of how the performance of methods for designing dispatching rules, which optimise multiple

objectives simultaneously, depends on the number or composition of the criteria which make up

the multi-objective problem. In addition, in only one study did the authors provide a compari-

son of dispatching rules generated for optimising multiple objectives with manually developed

dispatching rules, in order to give an impression of the quality of automatically developed dis-

patching rules. The other studies provided only the values of the multi-objective metrics which,

although are informative when comparing different multi-objective algorithms, do not provide

any information about the quality of the obtained dispatching rules.

Since dispatching rules are unable to perform equally well as the more complex improve-

ment heuristics, it is important to improve their performance as much as possible. For that

purpose many methods for obtaining better dispatching rules were developed, including the

introduction of new terminal nodes [33], using different representations [34], and using local

search operators [29]. However, another possibility of improving the performance of dispatch-

ing rules would be to create ensembles of dispatching rules. This would mean that instead of

using only one DR to perform the scheduling decision, a group of DRs which form the ensemble

would jointly perform the scheduling decision. Since ensemble learning methods have shown

to achieve good performance on certain machine learning problems, it is also highly probable

that by applying them for automatic generation of dispatching rules could also lead to improved

results. This was already demonstrated in several occasions in which ensembles of dispatch-

ing rules were constructed [35, 36, 37, 38]. However, in most occasions the ensemble learning

methods were applied only in the static scheduling environment. In addition, ensemble learning

approaches which are based on some popular methods from machine learning, like bagging and

boosting, were also not applied yet. There is also a lot of possibility to define new ensemble

learning methods, or procedures which could be used in order to improve the performance of

already existing methods.

Although generating dispatching rules by genetic programming does solve some important

problems associated with dispatching rules, there is still one serious problem remaining. The

problem is that in dynamic environments it is not known which of the available dispatching

3

1. Introduction

rules is most suited to be used for the given problem instance. Although dispatching rules can

be generated by using a training set consisting of problems with different characteristics, this

still does not guarantee that the DRs generated by genetic programming will perform well on all

problem instances on which they were trained. On the contrary, it is rather impossible to create

a dispatching rule which will perform well on all possible problem instances. Therefore, even if

a good dispatching rule is obtained by genetic programming, it will always be possible to define

a problem for which that rule will perform poorly. Even if many good rules for different types

of problems are obtained by genetic programming, they will still not be able to perform well

if selected for inappropriate problem instances. For that reason a procedure for determining

which dispatching rule should be applied at which moment would be required. A great deal

of research was already conducted on this topic, however, the entire research focused solely on

using simple manually defined dispatching rules [39, 40, 41]. Furthermore, most of the research

focuses on using only a few dispatching rules out of which the appropriate one needs to be

selected. Therefore, it is not known how these procedures would perform when used with a large

number of complex automatically generated dispatching rules. However, if combining such a

procedure with automatically generated dispatching rules would lead to improved results, this

would resolve another important issue still associated with automatically generated dispatching

rules, and certainly lead to an even greater automation of the entire process.

Even though much of the research on automatic design of dispatching rules was performed

in the static scheduling environment, only a few studies focused on methods of adapting dis-

patching rules for the static scheduling environment [42, 43]. Although it might seem unneces-

sary to perform such research, since improvement heuristics will generally achieve much better

results for static scheduling environments, dispatching rules still have several advantages over

improvement heuristics. One of the most important advantages is their superior execution time.

The second advantage is that dispatching rules create the schedule incrementally, which means

that the part of the schedule which is already created by the rule can be executed, while the the

rest of the schedule is being constructed incrementally by the dispatching rule. Because of these

reasons, dispatching rules can also prove to be useful for scheduling in static environments if it

is necessary to build the schedule and start executing the system as soon as possible. Unfortu-

nately, dispatching rules are mostly suited for dynamic environments, and therefore they do not

use static information about the problem. Thus it is important to adapt those dispatching rules

to make them more suitable for scheduling in static environments, and to allow them to achieve

a better performance. However, as previously outlined, very little research has been done in this

area, meaning that there is still a lot of possibility for improving the results of automatically

generated dispatching rules for the static scheduling environment.

4

1.2. Major contributions of the thesis

1.2 Major contributions of the thesis

The overall objective of this thesis is to apply genetic programming to automatically design new

dispatching rules for the unrelated machines environment. The main focus of this research is

to improve the performance of dispatching rules generated by genetic programming, and make

them more robust for solving different scheduling problem instances. In order to achieve this

objective, the standard genetic programming algorithm and the schedule generation scheme will

be extended with various methods that lead to better performance of the automatically designed

dispatching rules. By using the methods proposed in this thesis, genetic programming should

be able to automatically design dispatching rules which can perform well on a wide range of

different problem instances, for both the static and dynamic scheduling environment, and for

optimising one or multiple criteria.

The first objective of this thesis is the development of dispatching rules for simultaneous

optimisation of multiple objectives. The goal here is to couple genetic programming with multi-

objective and many-objective algorithms to design dispatching rules for simultaneous optimi-

sation of several criteria. For that purpose, four prominent multi-objective and many-objective

genetic algorithms will be selected and combined with genetic programming. Such a procedure

will then be used to develop dispatching rules for optimising multiple scheduling criteria simul-

taneously. The benefit of such an approach is that it will not only provide a single dispatching

rule as a result, but rather an array of dispatching rules where each of the obtained rules provides

a different trade off between the objectives for which it was optimised. The main intention in

this thesis is to test whether such a procedure can be used to generate new dispatching rules

for multi-objective and many-objective problems of various sizes and combinations of different

scheduling criteria. Therefore the automatically generated dispatching rules will be compared

to several manually designed dispatching rules, to test whether they can outperform them when

multiple criteria are optimised. In addition, the correlation between the different scheduling

criteria will also be analysed to obtain the knowledge about which criteria are most appropriate

for simultaneous optimisation.

The second objective of the thesis is to increase the performance of the automatically gen-

erated dispatching rules. This is an important goal, since improving the performance of the

approach makes it more viable for application in real environments. To achieve this goal, sev-

eral ensemble learning approaches are selected and combined with genetic programming to

generate ensembles of dispatching rules. The benefit of ensembles is that they allow for several

dispatching rules to have an influence on each scheduling decision. This reduces the probability

of performing bad decisions, since it will rarely happen that all the rules in the ensemble will

perform a bad scheduling decision. In order to create ensembles of dispatching rules, two en-

semble learning methods will be proposed in this thesis, while three prominent ensemble learn-

5

1. Introduction

ing methods will be selected from the literature. The thesis will investigate the performance of

all the selected ensemble learning methods on several scheduling criteria. In addition, several

ensembles will be analysed in more detail to extract certain knowledge from their structure,

which could possibly provide useful in the process of creating new ensembles.

The third objective of this thesis is to deal with the problem of selecting the appropriate

dispatching rule for solving the current problem instance. This issue is quite important since

applying an inappropriate dispatching rule for a scheduling problem can lead to the creation of

a schedule which performs poorly for the optimised objective. Therefore, the thesis proposes

a procedure which can, based on certain features of the current scheduling problem instance,

determine the dispatching rule which should be most appropriate for solving the current prob-

lem instance. The procedure is based on using a machine learning method that can learn the

association between problem instances of different characteristics and dispatching rules. This

knowledge can later be used for determining which dispatching rule should be executed for

the current problem instance. The procedure will be tested on two scenarios, one in which the

needed problem instance characteristics are available up front, and the other where the proce-

dure needs to approximate them during the execution of the system. In addition, to gain insights

about the procedure, the thesis also provides a detailed analysis of its behaviour on several dif-

ferent problem types.

The final objective with which the thesis deals is the adaptation of automatically designed

dispatching rules for solving problems in static scheduling conditions. Four scheduling methods

will be used to adapt dispatching rules for static scheduling conditions. In this thesis, a number

of terminal nodes which provide static information to dispatching rules will be proposed. In

addition, a method of combining the rollout algorithm with automatically generated dispatching

rules is also proposed. The selected methods are tested on several problem instances in order

to validate their performance. In addition, combinations of different methods are also tested

to further improve the performance of individual methods. All tested methods are compared

to the results achieved by dispatching rules generated for dynamic scheduling conditions, but

also with a genetic algorithm, to analyse how the performance of dispatching rules compares

to those of improvement heuristics. The goal of the thesis is also to provide an analysis of the

execution time of the applied methods, to illustrate how the different methods balance between

execution time and the quality of the obtained results.

Based on the previous descriptions, the major contributions of this thesis can be summarised

through the following four points:

1. Priority function design procedure for multi-objective and many-objective scheduling

problems based on evolutionary algorithms.

2. Ensemble learning method with the objective of improving the quality of dispatching

rules.

6

1.3. Outline of the thesis

3. Selection procedure of dispatching rules adapted to the features of the problem instance.

4. Design procedure of dispatching rules applicable in the static scheduling environment.

1.3 Outline of the thesis

The thesis is divided into to nine chapters. While Chapters 2, 3, and 4 give a detailed introduc-

tion of the problem and the methods which are applied for solving it, Chapters 5, 6, 7, and 8

present the contributions of this thesis.

Chapter 1 represents the introductory chapter of the thesis. This chapter first gives a short

introduction of the problem and outlines the motivations for researching it. In addition, the

chapter also gives a summary of the major contributions achieved in this thesis. The chapter

concludes with an overview of the entire thesis.

Chapter 2 gives a formal description of scheduling problems. In this chapter, the notation

of scheduling problems, and the different conditions under which scheduling can be performed

are described. The various methods which are most often used for solving different kinds of

scheduling problems are also outlined with their strengths and weaknesses. The chapter also

provides a closer overview of the unrelated machines scheduling environment. This part in-

cludes a detailed overview of the most prominent dispatching rules collected from the literature,

which are used for solving scheduling problems in the unrelated machines environment.

Chapter 3 gives a detailed description of the genetic programming algorithm. The chap-

ter describes all the main parts of the algorithm, like solution representation, genetic operators

and selection. Aside from the standard genetic programming algorithm, two of its variants, di-

mensionally aware genetic programming and gene expression programming, are also described

since these algorithms are used in some parts of the thesis.

Chapter 4 describes how genetic programming can be used for automatic design of new

dispatching rules for the unrelated machines environment. The chapter first describes the details

of adapting genetic programming in order to create new priority functions. An extensive survey

of the literature dealing with automatic design of dispatching rules is also presented in the

chapter. Details about the parameters of genetic programming and the experimental design,

which are used throughout the thesis, are described. The section concludes with an overview of

the current state of the art results of automatically generated dispatching rules for the unrelated

machines environment, as well as an overview of the performance of the selected manually

designed dispatching rules. These results will be used in subsequent chapters of the thesis in

order to demonstrate how the achieved results compare to those obtained by methods already

proposed in the literature.

Chapter 5 deals with the problem of automatic design of dispatching rules for optimising

several scheduling criteria simultaneously. The chapter first gives a short introduction of multi-

7

1. Introduction

objective optimisation, and describes the details of how genetic programming can be adapted

to cope with this problem. The experimental design for multi-objective optimisation is also

described, since there are small differences in evaluating the performance of solutions when

compared to the case of optimising only a single objective. Four prominent multi-objective

and many-objective genetic algorithms are combined with genetic programming for solving

the problem, and their parameters are fine tuned to obtain the best possible results. The four

selected methods are applied on several multi-objective and many-objective scheduling prob-

lems, and their performance is compared to that of dispatching rules generated for optimising a

single objective. Several performance metrics are used to compare the results achieved by the

individual multi-objective and many-objective algorithms. To gain further insights on how the

generated dispatching rules perform, several rules which optimise various criteria combinations

are selected and compared to five manually designed dispatching rules. Finally, the chapter also

provides a correlation analysis of various scheduling criteria.

Chapter 6 proposes the application of different ensemble learning methods for the construc-

tion of ensembles of dispatching rules, which should lead to an improved performance over

individual dispatching rules. The chapter first describes five ensemble learning methods which

are used for designing ensembles of dispatching rules, two of which are proposed in this thesis,

while the other three are selected from the literature. Furthermore, the adjusted experimental

design for the ensemble learning methods is also described. Since the simple ensemble combi-

nation method is proposed in this thesis, its performance is analysed in more detail to determine

how the different parameters influence the quality of the generated ensembles. After determin-

ing the optimal parameter values for the simple ensemble combination approach, all approaches

are applied for solving different scheduling problem instances, in order to compare their per-

formance. Based on the observed results, a discussion about the strengths and weaknesses of

the applied approaches is presented. In the end of the chapter, several ensembles constructed by

different approaches are collected and analysed in more detail, to gain a deeper insight on how

the different approaches construct the ensembles.

Chapter 7 describes how dispatching rules generated by genetic programming can be com-

bined with different machine learning methods to provide a procedure which can, based on the

current characteristics of the problem instance, determine the appropriate dispatching rule that

should be applied. First, a survey of the literature dealing with the automatic selection of dis-

patching rules, based on characteristics of problem instances, is given. After that, a procedure

for selecting automatically generated dispatching rules is proposed. The proposed procedure is

applied in a static and dynamic scenario. In the static scenario the characteristics of the prob-

lems are known in advance and can be used by the procedure, while in the dynamic scenario the

characteristics are not known in advance and need to be approximated during the execution of

the system. The results achieved by the proposed procedure are compared to the results which

8

1.3. Outline of the thesis

would be achieved if only a single manually selected dispatching rule would be used for all

problem instances. In addition, the rule selection procedure is analysed in more detail on a few

selected problem instances to gain a deeper insight into the details of the procedure. The chapter

is concluded with a short discussion about the proposed procedure.

Chapter 8 deals with the adaptation of dispatching rules to make them more appropriate

for solving scheduling problems in static conditions. Four methods for adapting dispatching

rules to static scheduling conditions are described. An extensive set of terminal nodes, which

provide information about the static characteristics of the problem to dispatching rules, are

proposed. The application of the rollout algorithm with automatically designed dispatching

rules is also proposed. All four methods are applied on several scheduling problem instances

in order to measure their performance. In addition, combinations of different methods are

also tested to analyse whether it is possible to obtain improved results by combining different

methods for adapting dispatching rules for static conditions. An analysis of the execution times

of the applied methods is also performed to obtain a notion of how the time needed to create

the solution depends on the selected methods. Finally, the chapter concludes with an additional

analysis of the different methods, which provides further insights on how the different methods

construct the schedule, and outlines the reasons because of which some methods perform better.

Chapter 9 gives the conclusion of the thesis, and provides an overview of the achieved

scientific contributions. Furthermore, the chapter also provides an overview of possible future

research directions in the field of automatic design of dispatching rules.

9

Chapter 2

Scheduling problems

Scheduling is a decision-making process in which a set of jobs needs to be scheduled on a finite

set of machines, to optimise one or more user defined criteria [1]. Scheduling problems appear

in many real world situations, like scheduling planes on runways [2, 3], scheduling in manufac-

turing and assembly lines [4], scheduling in wafer fabrication [6, 44, 45] and production plants

[7], scheduling resources in clouds [46, 47], staff scheduling [48], multiprocessor scheduling

[49], or scheduling for radiotherapy pre-treatment [8]. However, most scheduling problem in-

stances belong to the category of NP-hard problems, meaning that heuristic algorithms are most

often used to solve scheduling problems.

The rest of this chapter will give a short overview of various scheduling problems, environ-

ments, conditions, and also methods for solving scheduling problems. The unrelated machines

environment will be described in more detail, especially with regards to metaheuristic methods

and dispatching rules used for solving scheduling problems associated with the aforementioned

environment.

2.1 Notation of scheduling problems

The number of jobs in a scheduling problem is usually denoted with n, while on the other hand

the number of machines is denoted with m. The index j is usually used to denote a concrete job,

while the index i is used in order to denote a machine. In most theoretic scheduling problems it

is assumed that the number of jobs and machines are finite. Although there are many different

scheduling problems in existence, in most of them the following job characteristics are used

[1, 50]:

∙ Processing time pi j - defines the time needed for job j to be executed on machine i.

∙ Release time r j - defines the point in time at which job j becomes available and is released

into the system. Before its release time a job can not start with its execution.

∙ Due date d j - defines the point in time until which job j should finish with its execution,

11

2. Scheduling problems

otherwise a certain penalty will be incurred.

∙ Deadline d̄ j - defines the point in time until which job j must finish with its execution.

∙ Weight w j - defines the weight (importance) of the job with index j. A job is considered

to be more important if it has a larger weight value. The weight can have a different

value for each of the scheduling criteria. In this thesis different weights will be used for

tardiness (wT j), earliness (wE j) and the completion time (wC j) criteria.

After the schedule is constructed, for each job it is possible to calculate several metrics

which will in turn be used to determine the values of the scheduling criteria. The following

metrics are most commonly used [1, 50]:

∙ Completion time (C j) - the moment in time at which job j finishes with its execution and

exists the system.

∙ Flowtime (Fj) - the amount of time that job j spent in the system:

Fj =C j− r j. (2.1)

∙ Tardiness of a job (Tj) - the amount of time that job j spent executing after its due date:

Tj = max(C j−d j,0). (2.2)

∙ Earliness (E j) - the amount of time that job j finished prior to its due date:

E j = max
(
−(C j−d j),0

)
. (2.3)

∙ Unit penalty (U j) - a flag denoting whether a job is tardy or not:

U j =

1 : Tj > 0

0 : Tj = 0
. (2.4)

Since there are many different scheduling problems, they are most commonly described

by using a triplet α|β |γ . The first field of this triplet denotes the machine environment of the

scheduling problem and always contains just one entry. The second field contains details about

the different characteristics and constraints present in the scheduling environment. This field

can contain zero, one or several entries. The final field denotes the scheduling objectives which

are minimised and contains one or more entries.

The α field can represent one of the following machine environments [1, 50]:

∙ Single machine (1) - consists of one machine on which all jobs are executed.

∙ Identical machines in parallel (Pm) - consists of m machines in parallel which have the

same execution speed.

12

2.1. Notation of scheduling problems

∙ Uniform machines in parallel (Qm) - consists of m machines in parallel which have

different execution speeds vi. If the duration of job j is p j, then the processing time of

the job can be calculated as pi j = p j/vi.

∙ Unrelated machines in parallel (Rm) - consists of m machines in parallel. In this envi-

ronment the execution speed of a machine does not only depend on the machine itself, but

also on the job it is executing. Thus, the processing time can be calculated as pi j = p j/vi j,

where vi j is the execution speed of machine i for job j.

∙ Flow shop (Fm) - consists of m machines in series and each job needs to be processed by

each of the machines. All jobs follow the same predetermined route by which they are

processed on the machines.

∙ Flexible flow shop (FFc) - an extension of the flow shop environment, which consists of

c work centres, and each centre consists of a certain number of parallel machines. All

jobs need to be processed on each of the work centres following the same route, however,

any of the parallel machines in the work centre can be used in order to process the job.

∙ Job shop (Jm) - consists of m machines in series and n jobs, where each job j is divided

into o j operations. Each operation of a job needs to be processed by one of the machines

in an order which is predefined for each job. The number of operations can be less than

the number of machines, meaning that jobs do not need to visit each of the machines.

∙ Flexible job shop (FJc) - an extension of the job shop environment which consists of c

work centres, and each centre consists of a certain number of parallel machines. Each

job j is divided into o j operations, and each operation needs to be processed by one of

the work centres following a route predefined for that job. However, any of the parallel

machines in the work centre can be used in order to process the job.

∙ Open shop (Om) - consists of m machines in series. Each job j can be divided into o j

operations, where each operation needs to be processed by one of the machines. The

order by which the operations are processed by the machines can be determined freely

for each job, it is only important that all of them are processed.

These machine environments are additionally grouped into two categories: single stage

and multi-stage. Single stage environments are those in which each job needs to be processed

only on a single machine in order to be completed. The single machine, identical machines,

uniform machines, and unrelated machines environments belong to this category. On the other

hand, in multi-stage environments jobs need to be processed on several machines in order to

be completed. The flow shop, flexible flow shop, job shop, flexible job shop, and open shop

environments belong to this category.

Possible entries in the β field, which denotes additional scheduling constraints and charac-

teristics, are [1, 50]:

∙ Release dates (r j) - denotes that release times are used and that jobs can not be scheduled

13

2. Scheduling problems

before their release time r j. Otherwise, if this entry is not present, all jobs are available

from the start and can be scheduled at any time.

∙ Preemptions (prmp) - denotes that, while executing on a machine, a job can be inter-

rupted and another job can be scheduled on that machine. The work done on the inter-

rupted job is not lost, so when the job is scheduled again it executes only for its remaining

processing time.

∙ Precedence constraints (prec) - denotes that certain jobs need to be completed in order

for other jobs to start executing.

∙ Sequence dependent setup times (si jk) - denotes an additional cost which is incurred

when job k is executed on machine i after job j has finished executing. This constraint

represents additional time needed to prepare the machine for the execution of a new job.

∙ Job families (f mls) - denotes that there exist F families of jobs. Jobs of the same family

can execute one after another, without the need for any setup. On the other hand, when

jobs from different families execute one after another, a certain setup cost is incurred.

∙ Batch processing (batch(b)) - denotes that machines can process a batch of b jobs si-

multaneously, and the execution time of the entire batch depends on the longest executing

job.

∙ Breakdowns (brkdwn) - denotes that some machines can be unavailable in certain periods

of time.

∙ Machine eligibility restrictions (M j) - denotes that not all machines are able to process

all jobs, but rather some machines can only process certain subsets of jobs.

∙ Permutation (prmu) - denotes that the order in which the jobs are scheduled on the first

machine needs to be maintained throughout all other machines. This constraint is only

applicable in the flow shop environment.

∙ Blocking (block) - denotes that buffers exist between different machines, and if a buffer

is full the machine filling the buffer may not release the job when it is completed until

there is available space in the buffer. This constraint is only applicable in the flow shop

environment.

∙ No-wait (nwt) - denotes that a job is not allowed to wait between the execution on two

successive machines. As a consequence, the starting time of a job needs to be delayed to

ensure that the job can be processed by all machines, without having to wait for any of

the machines. This constraint is only applicable in the flow shop environment.

∙ Recirculation (rcrc) - denotes that a job may visit the same machine or work centre more

than once. This constraint is applicable in the job shop and flexible job shop environ-

ments.

∙ Restrictions on the number of jobs (nbr) - denotes the restriction on the maximum

number of jobs.

14

2.1. Notation of scheduling problems

∙ Restrictions on the number of operations in jobs (n j) - denotes the restriction on the

maximum number of operations of a job.

∙ Restrictions on the processing times (p j) - denotes the restriction on the values of the

processing times.

∙ Deadlines (d̄ j) - denotes that each job needs to be completed before its deadline.

Lastly, some of the scheduling objectives which can be present in the γ field include [1, 50, 51,

52, 53]:

∙ Makespan (Cmax) - denotes the completion time of the last job that leaves the system:

Cmax = max
j
(C j). (2.5)

∙ Maximum flowtime (Fmax) - denotes the maximum flowtime achieved by any of the jobs:

Fmax = max
j
(Fj). (2.6)

∙ Maximum tardiness (Tmax) - denotes the maximum tardiness achieved by any of the

jobs:

Tmax = max
j
(Tj). (2.7)

∙ Total weighted completion time (Cw) - denotes the weighted sum of all completion

times:

Cw = ∑
j

wC jC j. (2.8)

∙ Total weighted tardiness (Twt) - denotes the weighted sum of tardiness values of all

jobs:

Twt = ∑
j

wT jTj. (2.9)

∙ Total flowtime (Ft) - denotes the sum of flowtimes of all jobs:

Ft = ∑
j

Fj. (2.10)

∙ Weighted number of tardy jobs (Nwt) - denotes the weighted sum of all tardy jobs:

Nwt = ∑
j

wT jU j. (2.11)

∙ Weighted earliness and weighted tardiness (Etwt) - denotes the sum of the total weighted

tardiness and the total weighted earliness:

Etwt = ∑
j
(wE jE j +wT jTj). (2.12)

15

2. Scheduling problems

∙ Machine utilisation (Mut) - denotes the difference between the maximum utilisation and

minimum utilisation of all machines:

Mut = max
i

(
Pi

Cmax

)
−min

i

(
Pi

Cmax

)
, (2.13)

where Pi is defined as the sum of processing times of all jobs which were executed on

machine with index i.

The previously enumerated criteria denote only those which will be considered in this thesis.

The Mut criterion is a special criterion defined for this thesis. The goal of this criterion is to

evenly distribute the load across all machines, to avoid the situation in which some machines

would do little to no processing, while others would be overloaded. Although this criterion

would rarely be used as the main scheduling criterion, it can nevertheless act as a secondary

criterion in scenarios where load balancing is likewise essential.

2.2 Scheduling conditions

Aside from the different environments and constraints described in the previous section, schedul-

ing can also be performed under various conditions depending on the availability of the param-

eters, the reliability of parameters, and the manner in which the schedule is constructed.

Based on the reliability of the parameters, scheduling can be divided into two groups:

∙ Deterministic scheduling - in which it is presumed that the values of all parameters are

known with a satisfactory precision, regardless of the point in time when they become

available.

∙ Stochastic scheduling - in which exact values for some parameters are not known until

a certain moment in time (for example, the real execution time of a job will only be

known after the job finishes with its execution). However, the parameter values are not

completely unknown, but are defined through certain stochastic functions.

Depending on the availability of the parameters, scheduling is divided into:

∙ Offline scheduling - in which it is presumed that all parameters and their values are

known and available before the start of the execution of the system. For example, the

total number of jobs with their release times and processing times is known before the

system starts executing.

∙ Online scheduling - in which it is presumed that not all parameter values are known from

the start, but rather become available during the execution of the system. For example,

it is not known when the next job will be released into the system, and the parameters

of the job, like processing times and the due date, become available only when the job is

released into the system.

16

2.3. Methods for solving scheduling problems

Finally, depending on the manner in which the schedules are created, scheduling procedures

are divided into:

∙ Static scheduling - in which the entire schedule is constructed before the system starts

with its execution. This kind of scheduling process requires that all parameters are known

in advance, meaning that it can be only applied under offline scheduling conditions.

∙ Dynamic scheduling - in which the schedule is constructed incrementally in parallel with

the execution of the system. Procedures which belong to this category usually work in a

way that they only determine the next state of the system, and that they are invoked each

time a change occurs in the system (for example the release of a new job or completion

of the execution of a job). Dynamic scheduling can be applied under both, offline and on-

line scheduling conditions, meaning that dynamic scheduling procedures may use certain

information about the future of the system, if it is available.

2.3 Methods for solving scheduling problems

The methods for solving scheduling problems are usually divided into three groups [1, 54, 55]:

∙ Exact algorithms - represent procedures that can find the optimal solution of a scheduling

problem. Some notable procedures which belong to this group are dynamic programming,

the branch and bound algorithm, and different mathematical programming techniques

(linear and integer programming) [1, 56, 57, 58, 59]. Unfortunately, all these procedures

are quite time consuming, and are therefore not applicable for larger problem instances.

In addition, since these procedures extensively search the entire solution space of the

problem, they belong to the category of static scheduling procedures and can therefore be

applied only under offline scheduling conditions.

∙ Approximation algorithms - represent procedures that can produce solutions in polyno-

mial time and the solutions are guaranteed to be within a fixed percentage of the actual

optimum [57, 59, 60, 61].

∙ Heuristic algorithms - represent procedures that give no guarantee on the quality of the

obtained solutions. This group is additionally divided into two subgroups depending on

how the solutions are generated:

– Improvement heuristics - start with a complete schedule or schedules and try to

iteratively improve them by performing certain modifications on the schedule. This

category includes procedures like genetic algorithms [62, 63, 64], particle swarm

optimisation [65, 66], ant colony optimisation [66, 67], tabu search [68, 69, 70],

simulated annealing [71, 72, 73], and many others. Methods which belong to this

category have been extensively used for solving various scheduling problems [9, 74,

75, 76, 77, 78, 79].

17

2. Scheduling problems

– Constructive heuristics - start from an empty schedule and incrementally construct

it by adding one job at a time. The most prominent representative of this group are

dispatching rules [10, 11, 12, 13, 80, 81, 82].

2.4 The unrelated machines environment

As described previously, the unrelated machines environment consists of n jobs which need

to be scheduled on one of the m available machines. The characteristic of this environment

is that each machine has a different processing speed for each of the jobs, and therefore the

processing speeds can vary freely across all machines. Scheduling in the unrelated machines

environment can be found in many practical real world examples, such as in multiprocessor

computers, landing lanes in airports, operating rooms in hospitals, circuit board manufacturing,

semiconductor manufacturing, group technology cells, painting and plastic industries, injection

moulding process and remanufacturing [83, 84, 85]. The rest of this section will describe several

methods for solving scheduling problems in the unrelated machines environment.

2.4.1 Improvement heuristics

As mentioned previously, improvement heuristics start with a complete schedule, which can be

generated randomly or by some other heuristic, and improve it iteratively by applying various

modifications on the schedule. The advantages of improvement heuristics is that they usually

achieve good results in a reasonable amount of time. Besides that, they are very flexible and can

be applied to scheduling problems with various criteria and constraints. The greatest disadvan-

tage of improvement algorithms is that they can usually be applied only in offline scheduling,

since they need to start with an already complete schedule which they try to improve. Al-

though different metaheuristic approaches are the most common representative of this group

of algorithms, there are many additional heuristics specifically designed for various scheduling

problems in the unrelated machines environment [86, 87, 88, 89].

Metaheuristic algorithms have commonly been used for solving different unrelated ma-

chines scheduling problems. Although many different metaheuristic algorithms, like tabu search

[84, 90], simulated annealing [91] and ant colony optimisation [92, 93] are used for solving

scheduling problems in the unrelated machines environment, genetic algorithms are still the

most widely used approach for solving this problem. Genetic algorithms (GAs) have been ap-

plied to solve numerous scheduling problems, be it by themselves or in combination with other

approaches [94, 95, 96, 97, 98, 99, 100, 101].

One of the most important steps in metaheuristic algorithms is to define the solution repre-

sentation. Since the unrelated machines scheduling problem belongs to the category of com-

18

2.4. The unrelated machines environment

binatorial problems, permutation representations are appropriate for representing the solutions.

Figure 2.1 represents an example of a solution encoded in the permutation representation. In this

figure a solution is encoded for the scheduling problem with three machines and ten jobs. The

first array in the solution represents a permutation of the jobs, which determines the sequence

in which they will be executed. In this example, the job with the index 9 will be executed first.

However, this information alone is not enough to create a schedule, since the mapping of jobs

to machines is not specified. Therefore, a second array of integers is used for specifying which

job is executed on which machine. The example in figure 2.1 represents a schedule in which the

jobs with the indices 9, 2, 0 and 1 will be executed (in that order) on the machine with the index

0, jobs with the indices 7, 8 and 6 will be executed on the machine with the index 1, while jobs

with indices 4, 3 and 5 will be executed on the machine with index 2.

Figure 2.1: The permutation solution representation

9 4 3 7 2 0 8 1 5 6

0 2 2 1 0 0 1 0 2 1

Naturally, other solution representations can also be used, given that a corresponding de-

coding scheme is defined. Figure 2.2 represents a floating point encoding scheme of the same

solution which was previously encoded with the permutation encoding scheme. The floating

point encoding scheme consists of only one array of n floating point numbers from the interval

[0,1]. Each floating point number in the array represents a priority value associated with the job

of the corresponding index. This means that the priority value on the index 0 in the array repre-

sents the priority value of the job with the index 0. Based on the priority values, it is possible to

construct the sequence in which the jobs need to be executed. This is performed in a way that

jobs with a smaller priority value need to be executed first. Since the job with the index 9 has

the smallest priority value (0.03), it will be executed first. The sequence for the other jobs is

determined in the same way. In order to determine the mapping between machines and jobs the

interval [0,1] is divided into m subintervals. Depending to which subinterval the priority value

belongs, it will be scheduled on the corresponding machine. For the considered example which

consists of three machines the interval [0,1] will be divided into three subintervals: [0,0.33 >

for the machine with index 0, [0.33,0.66 > for the machine with index 1, and [0.66,1] for the

machine with index 2. Therefore, jobs with indices 0, 1, 2 and 9 will be mapped to machine

with the index 0, jobs with the indices 6, 7 and 8 will be mapped to the machine with the index

1, while jobs with the indices 3, 4, 5 will be mapped to machine with the index 2.

19

2. Scheduling problems

Figure 2.2: The floating point solution representation

0.27 0.31 0.15 0.77 0.70 0.89 0.62 0.43 0.47 0.03

2.4.2 Dispatching rules

Dispatching rules (DRs) are simple constructive heuristics which incrementally construct the

schedule. This is achieved by assigning priority values to jobs and machines, and then when-

ever a machine is free the job with the highest priority is selected and scheduled. DRs usually

consist of two parts, a priority function, which is used to determine the priorities of jobs and

machines, and a schedule generation scheme, which uses the priority values in order to con-

struct the schedule. The advantages of DRs are their fast execution speed, which can almost

be considered negligible when compared to some improvement algorithms, their applicability

in dynamic environments, and the possibility to rapidly adapt to the changing conditions of the

scheduling environment. However, DRs also have certain disadvantages. One of them is that

since they create the schedule incrementally, they usually achieve the worst results among all

the aforementioned methods for solving scheduling problems. In addition, the design of good

DRs is usually a lengthy trial and error process which needs to be performed by domain ex-

perts. This is especially problematic since there exist many different scheduling objectives and

conditions for which such DRs would need to be designed. Finally, the performance of a DR

also depends on the problem instance that it is applied on. However, it is impossible to know up

front which DR is best suited for solving the given problem instance. Because of that reason, it

is possible that a DR, which achieves poor results on the given problem instance, is selected.

DRs which were designed for solving problems in the unrelated machines environment

include (in all cases it is presumed that jobs with a higher priority value need to be scheduled

sooner):

∙ Minimum completion time (MCT) [13, 102] - jobs are selected in provisional order and

the priorities of the selected job on all machines are calculated as

πi, j =
1

max(mri, time)+ pi j
,

where mri represents the time when machine i becomes available, and time represents the

current time of the system. In this way jobs will be scheduled on the machine on which

they will be completed the soonest.

∙ Minimum execution time (MET) [13, 102] - determines the priorities of jobs as

πi, j =
1

pi, j
.

20

2.4. The unrelated machines environment

Therefore, jobs will be scheduled based only on their processing times, so that each job

is scheduled on the machine on which it achieves its minimum processing time. This can

naturally lead to situations in which a great amount of jobs is waiting to be processed on

a single machine, while the other machines remain free. In order to avoid this, jobs can

be selected by their processing time, but executed on the machine on which they achieve

their minimum completion time.

∙ Earliest release date (ERD) [1] - determines the priorities of jobs as

π j =
1
r j
.

This means that jobs will be scheduled in order by which they became available. The

job with the highest priority will be scheduled on the machine on which it achieves its

minimum completion time.

∙ Longest processing time (LPT) [1] - determines the priorities of jobs as

πi, j = pi, j.

Jobs with the longest processing time will therefore be selected first and scheduled on the

machine on which they achieve their minimum completion time.

∙ Weighted shortest processing time (WSPT) [103] - calculates the priorities as

πi, j =
wC j

pi, j
.

This rule functions similarly as the MET rule, however it additionally considers weights

which can be defined for jobs.

∙ Maximum standard deviation (Maxstd) [104] - calculates the standard deviations of

processing times for each job, and schedules the one with the highest standard deviation.

The selected job is scheduled on the machine on which it achieves its minimum com-

pletion time. The intuition behind this rule is to prioritise those jobs which have a high

variation in their processing times, since they will have a larger influence on the makespan

if scheduled on an inappropriate machine.

∙ Switching algorithm (SA) [13] - uses both the MET and MCT rules in a cyclic fashion

depending on the load distribution of the system. The motivation behind this heuristic

lies in the fact that the MET rule can create imbalance in the load of the machines by

assigning most of the jobs to only a small subset of machines. The MCT rule, on the

other hand, tries to even out the load balance across all the machines. Therefore, the SA

heuristic uses both rules in order to keep a good balance across all machines, but also

to assign jobs to those machines on which they have the smallest processing times. The

21

2. Scheduling problems

heuristic uses the load balance index to determine when the algorithm should switch from

one rule to the other. The index is calculated as

∇ =
rmin

rmax
,

where rmin denotes the earliest ready time, and rmax the largest ready time of all machines.

In addition, two threshold values are also defined: ∇l and ∇h. The SA heuristic starts to

schedule jobs by using the MCT rule until the load balance index reaches a value of

at least ∇h, when it switches to the MET rule. This will cause the load balance index

to decrease over time until it decreases to a value of ∇l or less, when the SA heuristic

switches back to the MCT rule.

∙ k-percent best (KPB) [13] - considers only a certain subset of machines when scheduling

a job. The subset of machines is constructed by selecting the m* k
100 machines on which

the job j achieves the shortest processing times. The job is assigned to a machine from

the selected subset on which it achieves the minimum completion time. The purpose of

this heuristic is to schedule jobs on machines for which they have the smallest processing

times, to prevent them from being scheduled on other machines which could prove to be

more suitable for some other jobs which arrive into the system.

∙ Ordered minimum completion time (OMCT) [105] - represents an extension of the

MCT rule in which the priorities of the jobs are calculated as

π j = α *σ +(1−α)*S,

where σ represents the standard deviation of all processing times of job j, α ∈ [0,1] a

control parameter, and S the sufferage value which is defined as the difference between

the second smallest completion time and the smallest completion time of job j. The

job with the highest priority will be scheduled on the machine on which it achieves its

smallest completion time. By using the standard deviation and sufferage values, this rule

tries to determine which jobs would execute longer if they are not scheduled on their

preferred machine, and gives them a larger priority value.

∙ Work queue (WQ) [106] - selects the machine which has the least workload, i.e. the

machine which spent the least time processing jobs. After the machine is selected, the

job which achieves its minimum completion time on this machine is scheduled on it. The

motivation behind this rule is to evenly distribute the work over all machines.

∙ Opportunistic load balancing (OLB) [102] - schedules a job on the next available ma-

chine, regardless of the expected execution time or completion time of that job. The

intuition behind this rule is to evenly distribute the load on all machines. Unfortunately,

since this rule does not consider the execution times of jobs, it can create schedules with

22

2.4. The unrelated machines environment

poor results for the makespan criterion. This can be improved to a certain degree so that if

several machines are free at the same time, the job is scheduled on the machine on which

it achieves its minimum execution time.

∙ Just in time (JIT) - tries to schedule the jobs as closely to their due dates as possible. For

each job the priority value is calculated as

πi, j = (d j− pi, j− time)2,

where time denotes the current time of the system. The priority is additionally multiplied

with wTj if the job is late, or wE j if the job is early. The job with the smallest priority

value is selected and scheduled on the machine on which it achieved that priority value.

∙ Earliest due date (EDD) [1, 107] - calculates the priories of jobs as

π j =
1
d j
.

The reasoning behind this rule is to schedule the job with the earliest due date, in order

to minimise the tardiness of jobs. The job with the largest priority is scheduled on the

machine on which it achieves its minimum completion time.

∙ Minimum slack (MS) [1] - calculates the priorities of jobs as

πi, j = max(d j− pi, j− time,0),

where time represents the current time of the system. In this rule the job with the small-

est priority is selected and scheduled on the machine on which it achieves its minimum

completion time. The rule priorities those jobs which are already late or close to being

late.

∙ Montagne’s heuristic (MON) [108] - calculates the priorities of jobs as

πi j =
wTj

pi j
*
(

1− d j

p̂

)
,

where p̂ represents the sum of processing times of all available jobs for machine i. The job

with the highest priority is scheduled on the machine on which it achieves its minimum

completion time. This rule tries to scale the WSPT rule with an additional slack factor to

give priority to jobs which have an earlier due date. A disadvantage of this rule is that the

slack factor is not dynamic, but rather constant during the system execution.

23

2. Scheduling problems

∙ Weigthed critical ratio (CR) [108] - calculates the priorities of jobs as

πi, j =
wTj

pi j

 1

1+ (d j−pi, j−time)
p̄

 ,

where time denotes the current time of the system, p̄ the average processing time of

all jobs waiting to be scheduled. The job with the highest priority is scheduled on the

machine on which it achieves its minimum completion time. This rule extends the WSPT

rule with a dynamic slack factor, by which it gives more priority to jobs which are close

to their due dates. The disadvantage of this rule is that if the job is late, the priority

continues to grow. In this thesis the CR rule will be used without the weight, since this

variant achieved better results.

∙ Cost over time (COVERT) [108, 109] - calculates the priorities of jobs as

πi, j =
wTj

pi j
max

((
1− max(d j− pi, j− time,0)

kp̄

)
,0
)
,

where time denotes the current time of the system, p̄ the average processing time of all

jobs waiting to be scheduled, and k a scaling parameter. The job with the highest priority

is scheduled on the machine on which it achieves its minimum completion time. This rule

is similar to the CR rule, however it does not allow that the priority of jobs increases the

more they are late.

∙ Apparent tardiness cost (ATC) [103, 107, 110, 111] - calculates the priorities of jobs as

πi, j =
wTj

pi j
exp
(
−max(d j− pi, j− time,0)

kp̄

)
,

where time denotes the current time of the system, p̄ the average processing time of all

jobs waiting to be scheduled, and k a scaling parameter. The rule can be considered

a combination of the WSPT and MS rules, and the scaling factor is used to determine

which of these rules will have more influence in the ATC rule.

∙ Min-min [12, 13, 102] - calculates the completion time of each available job on all the

machines. After that, for each job the machine for which the job achieves its minimum

completion time is determined. The job with the overall smallest completion time is

selected and scheduled on the machine on which it achieves its minimum completion

time. Algorithm 2.1 represents the min-min rule.

∙ Max-min [13, 102] - for each job the rule determines the machine for which the cor-

responding job achieves its minimum completion time. However, unlike the min-min

rule, the max-min rule selects the job with the largest minimum completion time. In that

way the max-min rule will prioritise jobs with longer execution times. Algorithm 2.2

24

2.4. The unrelated machines environment

Algorithm 2.1 The min-min rule

1: while unscheduled jobs are available do
2: for each released and unscheduled job j do
3: for each machine i do
4: Calculate the completion time cti j for job j and machine i
5: end for
6: end for
7: For each job determine the machine on which it achieves its minimum completion time
8: Select the job which achieves the overall smallest minimum completion time
9: Schedule the selected job on the machine for which it achieves its minimum completion

time
10: end while

represents the max-min rule.

Algorithm 2.2 The max-min rule

1: while unscheduled jobs are available do
2: for each released and unscheduled job j do
3: for each machine i do
4: Calculate the completion time cti j for job j and machine i
5: end for
6: end for
7: For each job determine the machine on which it achieves its minimum completion time
8: Select the job which achieves the largest minimum completion time
9: Schedule the selected job on the machine for which it achieves its minimum completion

time
10: end while

∙ Min-max [106] - for each job the rule determines the machine for which the correspond-

ing job achieves its minimum completion time. The job whose minimum processing time

divided by the processing time on the selected machine in the previous step has the max-

imum value will be scheduled on the selected machine. The intuition behind this rule is

to schedule the job whose processing time on the selected machine is the closest to the

shortest processing time of that job. Algorithm 2.3 represents the min-max rule.

∙ Sufferage [13] - for each job the rule determines the machine for which the correspond-

ing job achieves its minimum completion time. The rule then determines the sufferage

value for each job, which is calculated as the difference between the second earliest com-

pletion time and the earliest completion time. The job with the largest sufferage value

is scheduled on the machine for which it achieves its minimum completion time. The

intuition behind this heuristic is to schedule the job which would "suffer" the most if not

scheduled on the machine with its minimum execution time. Algorithm 2.4 represents the

sufferage rule.

25

2. Scheduling problems

Algorithm 2.3 The min-max rule

1: while unscheduled jobs are available do
2: for each released and unscheduled job j do
3: for each machine i do
4: Calculate the completion time cti j for job j and machine i
5: end for
6: Determine the machine imct on which job j achieves its minimum completion time
7: Calculate the ratio mini(pi j)

pimct j

8: end for
9: Select the job with the largest ratio value and schedule it on the machine for which it

achieves its minimum completion time
10: end while

Algorithm 2.4 The sufferage rule

1: while unscheduled jobs are available do
2: for each released and unscheduled job j do
3: for each machine i do
4: Calculate the completion time cti j for job j and machine i
5: end for
6: Determine the earliest completion time mct1 of job j
7: Determine the second earliest completion time mct2 of job j
8: Calculate the sufferage value of job j as mct2−mct1
9: end for

10: Select the job which has the largest sufferage value
11: Schedule the selected job on the machine for which it achieves its minimum completion

time
12: end while

∙ Sufferage2 [112] - for each job the rule determines the machine for which the corre-

sponding job achieves its minimum completion time. The rule calculates the sufferage

value for each job, but additionally scales this value with the following factor

mini(pi j)

mini(cti j)
,

where cti j denotes the completion time of job j on machine i. With this scaling factor

the rule also incorporates the information about the processing and completion times

when selecting the job to be scheduled. The job with the largest scaled sufferage value is

selected and scheduled on the machine on the machine for which it achieves its minimum

completion time. Algorithm 2.5 represents the sufferage2 rule.

∙ Relative cost (RC) [113] - for each job this rule determines the machine on which the job

achieves its minimum completion time. Then for each job it calculates two parameters,

namely the static relative cost and dynamic relative cost. The static relative cost for job j

26

2.4. The unrelated machines environment

Algorithm 2.5 The sufferage2 rule

1: while unscheduled jobs are available do
2: for each released and unscheduled job j do
3: for each machine i do
4: Calculate the completion time cti j for job j and machine i
5: end for
6: Determine the earliest completion time mct1 of job j
7: Determine the second earliest completion time mct2 of job j
8: Calculate the priority value of job j as mini(pi j)

mini(cti j)
* (mct2−mct1)

9: end for
10: Select the job which has the largest scaled sufferage value
11: Schedule the selected job on the machine for which it achieves its minimum completion

time
12: end while

and machine i is calculated as

γ
s
i j =

pi j
∑k∈machines pk j

m

,

while the dynamic relative cost is calculated as

γ
d
i j =

cti j
∑k∈machines ctk j

m

,

where cti j denotes the completion time of job j on machine i. The total priority of a job

is calculated as

πi, j =
1

(γs
i j)

α * γd
i j
,

where α represents a scaling factor. When selecting which job should be scheduled on

the machine for which it achieves its minimum completion time, this rule tries to balance

between the jobs minimum processing time and minimum completion time, and selects

the one which has smaller values for both.

∙ Longest job to shortest resource - shortest job on fastest resource (LJFR-SJFR) [106]

- for each job the rule determines the machine for which the corresponding job achieves

its minimum completion time. In the first step this rule schedules m jobs with the longest

minimum completion times to the fastest machines. After this first step the rule alterna-

tively schedules the job with the shortest minimum execution time to the fastest machine,

and then the job with the longest minimum execution time to the fastest machine.

∙ Minimum execution completion time (MECT) [114] - represents a combination be-

tween the MET and MCT dispatching rules. Algorithm 2.6 represents the outline of

MECT. The DR first determines the maximum ready time of all machines mrmax. After-

wards, the rule determines the machines on which job j can finish with its execution prior

27

2. Scheduling problems

to mrmax. If such machines exist, the one for which job j achieves the minimum execu-

tion time is selected. However, if such machines do not exist, the machine on which job

j achieves its minimum completion time is selected. Out of all unscheduled jobs, the job

which achieves the minimum completion time on the selected machine will be scheduled.

The intuition behind MECT is to alternatively use the minimum execution and completion

times for performing the scheduling decision. The rule will use the minimum execution

time to select the machine on which job j should be executed, if this will not lead to the

increase of the makespan. However, if there is no decision which does not increase the

makespan, then the machine for which job j achieves its minimum completion time is

selected.

Algorithm 2.6 The MECT rule

1: while unscheduled jobs are available do
2: Let mri denote the ready time of machine i
3: mrmax = maxi(mri)
4: Let cti j represent the completion time of job j on machine i
5: for each unscheduled job j do
6: Let M′ represent all machines for which pi j +mri < mrmax
7: Let sm j represent the selected machine for job j
8: if |M′|> 0 then
9: sm j = argmini∈M′ pi j

10: else
11: sm j = argmini∈M cti j
12: end if
13: end for
14: Schedule the job with the smallest value of ctsm j j
15: end while

28

Chapter 3

Genetic programming

Genetic programming (GP) is a metaheuristic algorithm which simulates natural evolution in

order to find solutions for various optimisation problems [115, 116, 117, 118, 119, 120]. It

belongs to the category of evolutionary algorithms together with genetic algorithms, evolution-

ary strategy, evolutionary programming, differential evolution and many others. In 1990 John

R. Koza has laid down many of the fundamentals of GP which are still used today [16, 121].

Since then, GP was used to solve a vast number of optimisation and classification problems

[122], and in many cases it obtained results which are competitive to those achieved by human

experts [123]. Because of its ability of representing and evolving complex expressions, GP has

often been used as a hyper-heuristic [124, 125, 126, 127] to evolve new heuristic procedures for

different problems like bin packing [128, 129, 130], vehicle routing problems [131, 132, 133],

timetabling [134, 135] and project scheduling [136].

This chapter will give a short overview of the GP algorithm, describing all of its main parts

like selection, genetic operators, solution representation, etc. In addition to the standard GP

algorithm, two other GP variants which will also be applied in the thesis, namely dimensionally

aware GP and gene expression programming, will also be shortly described.

3.1 Standard genetic programming

The GP variant which is used in this thesis is given in Algorithm 3.1. In the first step of the

algorithm the initial population is initialised and every individual is evaluated. The evolutionary

process is repeated until a certain termination criterion is met. In each step of the evolutionary

process k individuals are selected randomly. The best two individuals are used as parents in the

crossover operator, to generate a new individual. The newly created individual is then further

mutated with a certain probability, and used to replace the worst of the k selected individuals.

This type of algorithm is usually called the steady state algorithm.

Another very popular GP variant is the generational GP algorithm. In this algorithm, after

29

3. Genetic programming

Algorithm 3.1 Standard steady state GP algorithm

1: Initialise the population P and evaluate all individuals in it
2: do
3: Randomly select k individuals from the population P
4: Perform the crossover operator on the best two of the k selected individuals to create a

new individual
5: Perform the mutation operator on the new individual with a certain probability
6: Replace the worst of the k selected individuals with the newly created individual
7: while termination criterion is not met

the mutation is performed on the new individual, it does not replace the worst individual, but

the newly created individual is rather placed in a new population. Individuals are created until

the new population reaches the same size as the current population, at which point the old

population is replaced by the new population, and the process is repeated until the termination

criterion is satisfied. The steps of this procedure are given in Algorithm 3.2. An important

problem with this type of GP is that by deleting the old population all good individuals which

were previously generated are lost. In order to prevent this, usually one or more of the best

individuals are directly transferred into the new population, in order to retain the best found

solutions thus far. The property of preserving the best individual during the entire run of the

algorithm is called elitism.

Algorithm 3.2 Generational GP algorithm

1: Initialise the population P and evaluate all individuals in it
2: do
3: newP = /0
4: while |newP|< |P| do
5: Select k individuals from the population P
6: Perform the crossover operator on the best two of the k selected individuals in order

to create a new individual
7: Perform the mutation operator on the new individual with a certain probability
8: Place the new individual in newP
9: end while

10: P = newP
11: while termination criterion is not met

3.1.1 Solution representation

Since GP is used for evolving programs, expressions, or mathematical functions it needs to

use a solution representation with which it is simple to represent such structures, and on which

it is easy to perform structural changes through different genetic operators. The most com-

monly used representation is the tree representation, in which the solutions are encoded in a

30

3.1. Standard genetic programming

tree structure. Figure 3.1 demonstrates a sample tree representation of an individual which can

be decoded into the following expression: x−3+ x2

2 .

+

-

x 3

*

/

x 2

x

Figure 3.1: Tree representation of an individual

When specifying the solution representation for a certain problem, one of the most important

steps is to define which nodes will be used to represent the solution. The set of nodes used by

GP is called the primitive set. Selecting nodes for the primitive set is quite important since a

poor choice of nodes can cause not only slow convergence of GP, but can also prevent GP from

obtaining good solutions. Therefore, the nodes need to be carefully selected to introduce the

sufficiency property, and allow GP to represent good solutions. Furthermore, the primitive set

should also be kept minimal, since the inclusion of a large number of nodes in the algorithm can

cause slow convergence, since the search space drastically increases with the number of nodes

in the primitive set. The nodes in the primitive set can be divided into who groups:

∙ Terminal nodes - represent variables or constants in the expression. These nodes need to

be carefully modelled and selected so that they represent all the essential characteristics

of the problem. Terminal nodes can only appear in the leaves of the tree.

∙ Function nodes - represent various operations that can be performed on one or more

nodes. Through function nodes it is possible to model different mathematical operations

(addition, subtraction, trigonometric operations), logical operators (and, or, xor), or even

certain control structures (if statement). It is important to ensure that the behaviour of

function nodes is well defined for all possible inputs, so that the tree can be evaluated.

For example, the division operation is not defined when the divisor is zero. This problem

is usually solved by introducing protected operators, which define a default return value

for such exceptional cases. Another way of solving this problem would be to use interval

arithmetic for determining which individuals are invalid on the domain so that they can

be removed from the population [137].

In addition to the primitive set, an additional parameter which determines the maximum

size of the tree is usually defined. This parameter is most often defined as either the maximum

31

3. Genetic programming

number of nodes which the tree can consist of, or as the maximum depth of the tree. The

objective of this parameter is to restrict the growth of individuals beyond a certain size. This

parameter is used to deal with a common problem which appears in GP, called bloat [120, 138,

139, 140, 141]. Bloat is defined as the growth of individuals without a significant improvement

in terms of their quality. This phenomenon needs to be avoided since larger individuals are

more difficult to interpret and evaluate.

Apart from the tree representation of individuals, many alternative solution representations

were proposed for GP. Some of the more popular alternative GP representations are graph based

GP [142], linear GP [143], grammar based GP [144, 145], and Cartesian GP [146].

3.1.2 Initialisation

The first step in the execution of GP is usually the initialisation of the initial population. In-

dividuals which form the initial population are usually generated randomly, however it is also

possible to generate the initial population by using some specific heuristic procedures. Usually,

one of the following three individual initialisation methods are used: full, grow, and ramped

half-and-half.

The full initialisation method creates individuals in which all leaf nodes will have the depth

that is equal to the maximum allowed depth of the individual [120]. The generation process is

quite simple, if the current node which needs to be generated has the depth which is smaller than

the maximum allowed depth, then a random function node will be generated. Otherwise, if the

depth of the node is equal to the maximum allowed depth of the tree, then a random terminal

will be generated. An important drawback of this generation method is that it will generate

trees which will all have very similar shapes, and therefore the algorithm will need to rely on

the genetic operators to introduce more diversity into the shapes of the individuals. Figure 3.2

represents an example of creating an individual with the maximum allowed depth of 2, by using

the full generation method.

The grow initialisation method does not impose the constraint that all terminal nodes need

to have the same depth, as was the case with the full method [120]. In this initialisation method,

if the current node which is to be generated has a depth smaller than the maximum depth, then

either a function or a terminal node can be generated. However, if the current node which

needs to be generated has the maximum depth, then only terminal nodes can be generated to

ensure that the method does not create a larger tree than it is allowed to. The grow method will

therefore be able to create individuals with much more variability in their shapes. Figure 3.3

represents an example of how an individual with the maximum allowed depth of 2 is generated

using the grow method.

To further increase the diversity of the population, the ramped half-and-half initialisation

approach is commonly used [120]. This method initialises half of the population by using the

32

3.1. Standard genetic programming

+ +

-

+

-

x

+

-

x 3

+

-

x 3

*

+

-

x 3

*

7

+

-

x 3

*

7 x

Figure 3.2: Example of the full generation method

/ /

+

/

+

7

/

+

7 3

/

+

7 3

x

Figure 3.3: Example of the grow generation method

grow method, and the other half by using the full method. In addition, to improve the diversity

of the sizes and shapes of individuals, the method does not generate all individuals with the

same depth limit, but rather a random depth limit, which is smaller or equal to the maximum

allowed depth of individuals, is used for each individual independently.

3.1.3 Evaluation

In order to guide the search process of GP, it is mandatory to define a measure of quality for

each solution. For that purpose a fitness function is defined, which returns a numeric value for

each individual. This value denotes the fitness or quality of a solution, and is used to determine

which individuals represent "good" solutions, and which individuals represent "bad" solutions.

The fitness function needs to be designed carefully, since it has a major effect on the conver-

gence of the algorithm. This is especially true for GP, since individuals in GP do not represent

a solution for only one concrete problem instance, but can represent a solution which can be

applied on a variety of problem instances. Therefore, when the quality of a solution is deter-

mined by the fitness function, the solution is usually evaluated on several problem instances,

and the value returned by the fitness function represents the measure of quality obtained on all

33

3. Genetic programming

the tested problem instances. Thus, it is important that the fitness function uses a set of problem

instances with different properties for evaluating solutions. Since individuals are tested on sev-

eral problem instances, the evaluation of the fitness function can become quite time consuming

for certain problems.

3.1.4 Selection

The selection mechanism represents an essential part of GP, since a good selection mechanism

should ensure that better individuals have a higher probability of surviving and producing off-

springs, while worse individuals should have a higher probability of being eliminated from the

population. Two popular selection mechanisms are the tournament selection and roulette wheel

selection.

In tournament selection, k individuals are randomly selected from the population. Out of

these k selected individuals, the best two individuals are selected as parents for the crossover

operator. After the new individual is created, it will be placed in the new population in the

generational GP, while in the steady state GP it will be used to replace the worst individual in

the tournament. The size of the tournament is usually set to three individuals. The benefits

of this selection are that it is simple to implement and can be performed very fast. Figure 3.4

represents an example of performing the tournament selection for the tournament of size three.

1

2

3

4

5

6

7

5.1

4.0

7.3

2.9

6.9

5.5

3.3

5.1

7.3

6.9

Individual
index

Fitness
value

Tourna-
ment

7.3

6.9

Selected
parents

Figure 3.4: Example of the tournament selection

In roulette wheel selection a probability of being selected is defined for each individual. The

value of this probability is proportional to the fitness of the individuals. Therefore, individuals

with a better fitness value will have a higher probability of being selected as parents, while

individuals with a lower fitness value will have a smaller probability of being selected. The

selection probability of individuals is usually calculated as pi =
fi

∑
N
j=1 f j

, where fi is the fitness

of individual i in the population, and N is the size of the population. Unfortunately, this method

34

3.1. Standard genetic programming

has some drawbacks which can largely influence the execution of the algorithm. First of all,

this selection method can be quite computationally intensive, since the selection probabilities

of individuals need to be recalculated every time there is a change in the population. Another,

even more serious problem, is that if several solutions have a much higher fitness value than the

rest of the population, those solutions will be selected as parents for the crossover operator in

most of the cases. This can lead to the situation in which the population consists of individuals

which are descendants of only a few individuals. If this happens, there is a high probability that

the algorithm will converge to a local optimum, since the entire search process will be guided

by only a few individuals. Figure 3.5 represents an example of the roulette wheel selection. The

entire selection process can be visualised in the form of a wheel where each individual takes up

a certain part of the wheel, and the size of the part is proportional to the fitness of the individual.

A fixed point is placed on the wheel (denoted with a triangle), and every time an individual

needs to be selected, the wheel is spun and the individual on which the marker lands is selected.

In this example the individual with the index 4 would be selected.

14.57 %

111.43 %

2

20.86 %

3

8.29 %
4

19.71 %

5

15.71 %

6

9.42 %

7

Index Fitness

1 5.1

2 4.0

3 7.3

4 2.9

5 6.9

6 5.5

7 3.3

Figure 3.5: Example of the roulette wheel selection

3.1.5 Genetic operators

To be able to achieve good solutions, GP needs the possibility to search the solution space

by performing different operations on individual solutions. In GP these operations are called

genetic operators. Their purpose is to introduce changes in the individuals in order to generate

better solutions. The two most prominent genetic operators in GP are crossover and mutation.

Crossover is usually performed on two individuals which are called parents, from which

it produces a new individual called a child. The motivation behind this operator is to combine

35

3. Genetic programming

properties from two good individuals to obtain an even better individual as a result. Therefore,

crossover usually takes one part of the solution tree from one parent, and another part from

the other parent. These two parts are then combined in a certain way to form a new individ-

ual. Since crossover is performed by combining nodes from both parents, the child individual

will only consist of the genetic material which was already present in its parents. A wide vari-

ety of crossover operators are defined for GP: subtree crossover, one-point crossover, uniform

crossover, context-preserving crossover, size-fair crossover, and many others.

Subtree crossover is one of the simplest crossover operators [120]. In each tree a node is

randomly chosen as the crossover point. The child is formed by replacing the subtree rooted

at the crossover point in the first parent, by the subtree rooted at the crossover point from the

second parent. In this variant of crossover, not all nodes have an equal probability of being

selected as the crossover point. The reason for this is that the tree consists largely of terminal

nodes, and therefore this crossover would mostly select those nodes as crossover points, which

would cause only a small amount of genetic material to be exchanged. Therefore, an additional

constraint is introduced which ensures that function nodes are selected in 90% of cases, while

in the other 10% terminal nodes are selected. Figure 3.6 represents an example of the subtree

crossover. The red nodes denote the selected crossover points.

Parent 1

/

x +

-

7 x

1

Parent 2

*

+

x 4

+

5 x

crossover−−−−−→

Child

/

x +

x 4

Figure 3.6: Subtree crossover

One-point crossover defines a common region, in which both parents have the same shape

[120]. In this crossover, only nodes which belong to the common region can be selected as

the crossover point. Furthermore, the crossover point is on the same position in both parents.

Therefore, this crossover will replace a subtree from one parent with a subtree located at the

same depth and position from the other parent. Figure 3.7 represents an example of the one-

point crossover operator. The nodes which belong to the common region are denoted in blue,

while the red nodes denote the selected crossover points.

Uniform crossover, in the first step, determines the common region between the selected

parents [120]. The child is created so that for each node in the common region it is randomly

36

3.1. Standard genetic programming

Parent 1

*

+

x 4

+

5 x

Parent 2

/

x +

-

7 x

1

crossover−−−−−→

Child

*

x +

5 x

Figure 3.7: One-point crossover

decided whether the node at that position will be inherited from the first or the second parent.

If a node lies at the border of the common region, and is a function node, then the entire subtree

rooted in that node is also inherited by the child. This crossover is similar as the one-point

crossover, but it allows for a greater variability in the resulting child individual. Figure 3.8

represents an example of how the uniform crossover is performed. The blue nodes in the parent

individuals denote nodes which belong to the common region. In the child individual, nodes

which are inherited from the first parent are denoted in red, while the nodes which are inherited

from the second parent are denoted in green.

Parent 1

/

x +

-

7 x

1

Parent 2

*

+

x 4

+

5 x

crossover−−−−−→

Child

/

+

x 4

+

-

7 x

x

Figure 3.8: Uniform crossover

Context-preserving crossover defines coordinates for each node in the tree [147]. The co-

ordinates of a certain node are defined as a tuple T = (b1,b2, . . . ,bn), where n represents the

depth of the node, and bi determines which branch was chosen at the depth i. The branches of

nodes are usually enumerated from left to right, starting with the value 1, while the root node

of the tree is denoted with an empty tuple. When choosing the crossover points, only the nodes

which have the same coordinates can be selected. Figure 3.9 represents an example of this type

37

3. Genetic programming

of crossover. The coordinates of all nodes are denoted in the figure, while the nodes selected

as the crossover points are denoted in red. The chosen node has the coordinates (2,1), since in

order to reach the node from the root of the tree, first the second branch needs to be taken at

depth 1, and then again the first branch at depth 2.

Parent 1

*

+

x 4

+

5 x

()

(1)

(1,1) (1,2)

(2)

(2,1) (2,2)

Parent 2

/

x +

-

7 x

1

()

(1) (2)

(2,1)

(2,1,1) (2,1,2)

(2,2)

crossover−−−−−→

Child

*

+

x 4

+

-

7 x

x

Figure 3.9: Context-preserving crossover

Size-fair crossover randomly selects a node in the first parent which will represent the

crossover point [148]. The crossover then calculates the maximum subtree size, which can

be selected from the second parent, as n = 1+ 2 * s, where s denotes the size of the subtree

which will be removed from the first parent. Therefore, only nodes for which the subtree rooted

in them does not contain more than n nodes, can be selected as the crossover point in the second

parent. The reasoning for such a procedure is to ensure that the subtree which will be copied

from the second parent will not be too large when compared to the subtree which was removed.

Figure 3.10 represents an example of the subtree crossover. The crossover points are denoted in

red. In the example the subtree which will be removed from the first parent is of size 1, therefore

only nodes with the subtree of sizes smaller or equal to 3 can be chosen as the crossover point

in the second parent.

Mutation performs random changes in the individual, with which it tries to introduce new

genetic material. The mutation operator is usually performed on the child individuals generated

by crossover. However, mutation is not always performed, but rather with a certain probability.

This is due to the fact that there is no guarantee that mutation will increase the fitness of the

individual, therefore it is suggested that mutation is performed sparingly in order to keep good

solutions which were achieved by crossover. Nevertheless, mutation is important since by using

only crossover the entire population will slowly converge to several better solutions, and could

thus get stuck in a local optimum. The mutation prevents this, and allows the algorithm to es-

cape local optima, and to reintroduce genetic material which has been lost during the evolution

process. Many mutation operators are defined in the literature, some of which are: subtree mu-

tation, Gauss mutation, hoist mutation, node replacement mutation, node complement mutation,

38

3.1. Standard genetic programming

Parent 1

/

x +

-

7 x

1

Parent 2

*

+

x 4

+

5 x

crossover−−−−−→

Child

/

x +

-

7 x

+

5 x

Figure 3.10: Size-fair crossover

permutation mutation, shrink mutation, and many others.

Subtree mutation selects a random node in the individual and replaces the subtree rooted in

that node with a randomly generated subtree [120]. This mutation can be performed by using

the subtree crossover between the selected individual and a new randomly generated individual.

When the subtree mutation is performed in this way it is usually called the "headless chicken"

crossover. This mutation can be extended so that it prevents that after the mutation the depth

of the individual grows by more than 15% when compared to the individual before mutation.

Figure 3.11 represents an example of the subtree mutation. The red node denotes the root of the

subtree which is replaced by a randomly generated subtree.

Before mutation

/

x +

-

7 x

1

mutation−−−−→

After mutation

/

*

x -

9 x

+

-

7 x

1

Figure 3.11: Subtree mutation

Gauss mutation can only be applied on terminal nodes which represent a numerical constant

[120]. This mutation selects one of such nodes and adds a value which is randomly generated

by using the Gaussian distribution. Figure 3.12 represents an example of Gauss mutation where

the node which will be mutated is denoted in red.

Hoist mutation randomly selects a node from the individual, and replaces the entire individ-

39

3. Genetic programming

Before mutation

*

+

x 4

+

5 x

mutation−−−−→

After mutation

*

+

x 4

+

6 x

Figure 3.12: Gauss mutation

ual with the subtree rooted at the selected node [120]. Although this mutation does not introduce

new genetic material in the individual, it is useful since it reduces the size of the individual, thus

creating simpler and more interpretable individuals. In addition, by reducing the size of individ-

uals, this operator also tries to diminish the effects of bloat. Figure 3.13 represents an example

of hoist mutation. The red node denotes the root node of the subtree which will replace the

original individual.

Before mutation

/

x +

-

7 x

1

mutation−−−−→

After mutation

+

-

7 x

1

Figure 3.13: Hoist mutation

Node replacement mutation, also known as point mutation, randomly selects a node from the

individual and replaces it with another randomly generated node [120]. However, the selected

node cannot be replaced by just any other node, but only with nodes which will not cause any

illegal situations. This means that a terminal node can only be replaced by another terminal

node, and a function node with another function node with the same number of arguments.

Figure 3.14 represents an example of the replacement mutation, where the red node denotes the

node (−) which is chosen to be replaced by a new node (*).
Node complement mutation functions similarly as the node replacement mutation, however

it places additional constraints on the nodes which can be mutated. This mutation can only be

applied to nodes for which a complementary node is defined. Although complementary nodes

40

3.1. Standard genetic programming

Before mutation

/

x +

-

7 x

1

mutation−−−−→

After mutation

/

x +

*

7 x

1

Figure 3.14: Node replacement mutation

can be freely defined by the user, they usually consist of nodes which represent complementary

operations like addition and subtraction, or multiplication and division. Naturally, complemen-

tary nodes need to have the same number of arguments to ensure that by exchanging them the

structure of the tree will remain syntactically correct. Figure 3.15 represents an example of the

node complement mutation. The red node denotes the node selected for mutation. In this case

the node which represents the subtraction operation is selected, for which a complementary

node that performs the addition operation is defined. The complementary node is then used in

order to replace the selected node in the individual.

Before mutation

/

x +

-

7 x

1

mutation−−−−→

After mutation

/

x +

+

7 x

1

Figure 3.15: Node complement mutation

Permutation mutation randomly selects a function node in the individual and randomly per-

mutes its subtrees [120]. The problem with this operator is that if it is applied on nodes which

represent commutative operators it will have no effect, since the result of the operation will

stay the same. Therefore, an extension to this operator exists in the form of the swap mutation,

which restricts the selection only to nodes which represent non-commutative binary operators.

Figure 3.16 represents an example of the permutation mutation. The selected node, for which

41

3. Genetic programming

the positions of its two subtrees are interchanged, is denoted in red.

Before mutation

/

x +

-

7 x

1

mutation−−−−→

After mutation

/

+

-

7 x

1

x

Figure 3.16: Permutation mutation

Shrink mutation selects a random node from the individual and replaces the subtree rooted

in that node with a randomly chosen terminal node [120]. The motivation for this mutation

operator is to reduce the sizes of the trees in the population, and therefore diminish the effects

of bloat. Figure 3.17 represents an example of the shrink mutation. The red node denotes the

root node of the subtree which is replaced by a random terminal node. As it can be seen from

this example, shrink mutation can have very destructive effects if a node which is close to the

root of the individual is chosen.

Before mutation

/

x +

-

7 x

1

mutation−−−−→

After mutation

/

x 5

Figure 3.17: Shrink mutation

3.1.6 Termination criteria

To determine when GP should finish with its execution, it is mandatory to define one or more

termination criteria. The most commonly used termination criteria in GP are:

42

3.2. Dimensionally aware genetic programming

∙ Maximum number of iterations - defines that the algorithm should cease its execution

when a certain number of iterations is performed. This termination criterion is often used

by elimination GP variants.

∙ Maximum number of generations - defines that the algorithm should cease its execution

when a certain number of generations are created. This termination criterion is used by

generational GP.

∙ Maximum number of function evaluations - defines that the algorithm should cease

its execution when a certain number of fitness function evaluations is performed. Since

evaluating fitness functions is usually quite a costly operation, this termination criterion

is usually used when comparing the performance of different algorithms to make the

comparisons objective.

∙ Execution time - defines the maximum amount of time that the algorithm is allowed

to execute. This criterion is useful when a certain time limit for obtaining a solution is

imposed.

∙ Stagnation - defines that the algorithm should cease with its execution if in a certain

number of iterations or generations it does not achieve any improvement in the quality of

the best solution.

∙ Threshold value - defines that the algorithm should cease its execution when the fitness

value of the best solution has reached a certain threshold value. This criterion can be used

when either the optimal value is known in advance, or it is satisfactory to obtain a solution

of a specific fitness.

The values for the termination criteria must be chosen very carefully, since GP is sensitive

to their values. For example, if GP terminates too early, then solutions of poor quality will be

obtained. On the other hand, if GP programming is allowed to run for a too long time it can

start to overfit on the problem instances which are used for the evolution process. Therefore,

the obtained solutions will achieve good results for instances which were used for learning, but

will loose their ability to generalise over unseen problem instances and will perform poorly on

them.

3.2 Dimensionally aware genetic programming

In its basic form GP has no notion of any semantic information available through the input

variables. For example, terminal nodes could have different units assigned to them, however GP

would combine the nodes without considering that information. This can lead to the situation

that GP generates expressions which make no sense since they perform illegal operations on the

input variables.

In order to deal with this problem dimensionally aware GP (DAGP) was proposed [149].

43

3. Genetic programming

This type of GP introduces semantic information into all nodes, and defines how functions can

be applied depending on the semantic information of the child nodes. For example, each node

can have a unit associated to it, and the summation function node can be applied only if both

children have the same semantic information, which in this case would mean that they have the

same unit. By using that information DAGP can evolve rules which adhere to all the semantic

constraints defined by the user. However, introducing semantic information alone is not enough

to ensure that DAGP will evolve only semantically correct solutions.

To ensure that DAGP evolves only semantically correct solutions, additional modifications

need to be performed on the algorithm. First of all it needs to be ensured that all individuals

which are created are semantically correct, which is done by modifying the initialisation pro-

cedures of individuals. Therefore, during the creation of individuals, the semantic information

is used to ensure that only nodes which lead to semantically correct individuals are selected.

In this way it is ensured that all individuals in the initial population are semantically correct.

However, applying the crossover and mutation operators will lead to the appearance of seman-

tically incorrect solutions during the evolution process. Therefore, all genetic operators need to

be extended in a way that they perform modifications which will not violate any of the given

semantic rules. An obvious disadvantage of this procedure is that it is much more computation-

ally expensive than standard GP, since it needs to ensure that all individuals it creates adhere to

all semantic rules.

Figure 3.18 represents an example of a semantically correct and incorrect solution. Suppose

that the dd, PT, and SL terminal nodes represent values measured in seconds, whereas the w

terminal represents an dimensionless value. In addition, suppose that the addition and subtrac-

tion functions can be applied only on nodes which have the same unit, whereas the the division

operator can be applied on nodes regardless of their units. Therefore, the left expression in the

figure represents a semantically incorrect solution, since it subtracts the w and pt nodes, which

do not represent values of the same unit. On the other hand, the second expression represents a

semantically correct solution, since all functions are applied on nodes with compatible units.

3.3 Gene expression programming

Gene expression programming (GEP) is an evolutionary algorithm which evolves expression

trees much like GP, but encodes them in a linear string similar to genetic algorithms [150]. In

this way GEP tries to combine the simplicity of the representation and operators from genetic

algorithms, with the possibility to evolve expressions from GP.

The individuals in GEP are of constant size, however, the part of the individual which is

used to form the expression tree depends on the individual. Each GEP individual consists of

one or more genes, where each gene consists of a number of primitive nodes and represents an

44

3.3. Gene expression programming

Semantically incorrect solution

/

w +

-

w pt

SL

Semantically correct solution

/

w +

-

dd pt

SL

Figure 3.18: Example of a semantically incorrect and correct solution

independent expression tree. In order to ensure that each gene always represents a syntactically

correct expression, some constraints are placed upon the contents of each gene. First of all, each

gene can be divided into two parts: the head of the gene and the tail of the gene. The head of the

gene represents the starting h nodes of the gene, where h is usually a user specified parameter.

This part of the gene can consist of any function and terminal nodes from the primitive set. The

rest of the nodes belong to the tail of the gene, whose size depends on the size of the head, and

is calculated as t = h * (nmax− 1)+ 1, where t is the size of the tail, and nmax the maximum

number of arguments from all nodes in the function set. The tail of the gene, however, can

consist only of terminal nodes. The reason for this is to ensure that the gene will consist of

enough terminal nodes for it to be decoded into a legal syntactically correct expression. Each

gene can be decoded into an expression tree so that the first node in the gene represents the

root node of the expression tree. After that, nodes are taken from the gene and placed into the

expression tree in a depth first fashion, until all leaves of the tree consist of terminal nodes. The

part of the gene which is used to form the expression tree is called the coding region. The final

thing which needs to be defined is how the genes of an individual can be combined into a single

expression. This is done by using linking nodes, additional function nodes which are defined

for combining genes into a single expression. These nodes can either be manually defined, or

also encoded into the individual. Figure 3.19 represents an example of a GEP individual. The

individual consists of three genes with the head size of three nodes. The "|" marker is used to

separate the nodes from different genes, while the underlined nodes belong to the coding region

of the gene. Figure 3.20 represents the expression to which the GEP individual from Figure

3.19 is decoded. The nodes from the first, second and third gene are denoted in blue, green, and

purple, respectively. The nodes denoted in red denote the linking nodes which are defined for

this individual.

45

3. Genetic programming

+ - pt w MR age w | * PAT w w dd SL pt | w + / pt SL dd age

Gene 1 Gene 2 Gene 3

Figure 3.19: Example of a GEP individual

*

+

+

-

pt w

MR

*

PAT w

w

Figure 3.20: Expression tree representation of a GEP individual

Similar to other evolutionary algorithms, GEP also utilises different genetic operators to

perform modifications on individuals. However, the operators which GEP uses are more sim-

ilar to the ones which are used by genetic algorithms. For example, the one point crossover

from genetic algorithms can easily be applied to GEP individuals. In this crossover a random

crossover point is chosen, and the child individual is created so that all the nodes before the

crossover point are taken over from one parent, while all the nodes after the crossover point

are taken over from the other parent. Figure 3.21 gives an example of the one point crossover

in GEP. As for the mutation operator, the point mutation is commonly used. In this mutation

a random element in the individual is selected and replaced with another randomly generated

element. If the selected element belongs to the head of the gene, then it can be replaced by any

element from the primitive set. On the other hand, if the selected element belongs to the tail

of the gene, then it can be replaced only by elements from the terminal set. The mutation is

not restricted only to elements in the coding region, which means that the mutation can have a

neutral effect if it is applied to elements outside that region. Figure 3.22 represents an example

of point mutation in GEP, where the element which was selected for mutation is denoted in red.

In addition to the mutation and crossover operators, GEP also uses a special kind of opera-

tors called the transposition operators. These operators perform different modifications on the

genes of an individual. Usually three different transposition operators are used in GEP: IS, RIS,

46

3.3. Gene expression programming

+ - pt w MR age w | * PAT w w dd SL pt | w + / pt SL dd age

Gene 1 Gene 2 Gene 3

Parent 1
Crossover point

* / dd SL age age w | dd + - pmin pt MR w | - dd / age w MR SL

Gene 1 Gene 2 Gene 3

Parent 2
Crossover point

+ - pt w MR age w | * + - pmin pt MR w | - dd / age w MR SL

Gene 1 Gene 2 Gene 3

Child
Crossover point

Figure 3.21: Example of the one point crossover in GEP

+ - pt w MR age w | * PAT w w dd SL pt | w + / pt SL dd age

Gene 1 Gene 2 Gene 3

Before mutation

+ - pt w MR age w | * PAT w w dd SL pt | * + / pt SL dd age

Gene 1 Gene 2 Gene 3

After mutation

Figure 3.22: Example of the replacement mutation in GEP

and gene transposition. The IS transposition operator randomly selects a fragment of a gene and

places it in the head of a random gene. The only restriction in this operator is that the fragment

cannot be placed at the very beginning of the gene. Figure 3.23 represents an example of the IS

transposition operator, where the transposed sequence is denoted in red. The RIS transposition

functions similarly to the IS transposition. A random sequence of elements is chosen, but unlike

in the IS transposition, here it is mandatory that it starts with a function element. After that, the

chosen segment must be transposed to very beginning of the gene. Figure 3.24 represents an

example of the RIS transposition. Finally, the gene transposition operator randomly selects one

gene and sets it as the first gene in the individual, while the other genes are shifted to the right.

Figure 3.25 represents an example of gene transposition, where the gene which was selected for

transposition is denoted in red.

47

3. Genetic programming

+ - pt w MR age w | * PAT w w dd SL pt | w + / pt SL dd age

Gene 1 Gene 2 Gene 3

Before transposition

+ dd age w MR age w | * PAT w w dd SL pt | w + / pt SL dd age

Gene 1 Gene 2 Gene 3

After transposition

Figure 3.23: Example of the IS transposition

+ - pt w MR age w | * PAT w w dd SL pt | w + / pt SL dd age

Gene 1 Gene 2 Gene 3

Before transposition

+ - pt w MR age w | * PAT w w dd SL pt | - pt w pt SL dd age

Gene 1 Gene 2 Gene 3

After transposition

Figure 3.24: Example of the RIS transposition

+ - pt w MR age w | * PAT w w dd SL pt | w + / pt SL dd age

Gene 1 Gene 2 Gene 3

Before transposition

w + / pt SL dd age | + - pt w MR age w | * PAT w w dd SL pt

Gene 1 Gene 2 Gene 3

After transposition

Figure 3.25: Example of gene transposition in GEP

48

Chapter 4

Design of dispatching rules by genetic
programming for the unrelated machines
environment

Manual creation of new DRs is usually a lengthy trial and error process, therefore there is a

growing need that such a process is automated by using various procedures. For that purpose,

many different machine learning and optimisation methods are used in order to automatically

generate new DRs for a variety of scheduling problems. However, the most commonly used

method for the creation of new DRs is GP. This is due to the fact that not only can GP gen-

erate good and interpretable DRs, but it can also be modified in different ways to improve its

performance or to create DRs for various scheduling conditions.

This chapter will describe how the GP approach can be used for automatic design of new

DRs for the unrelated machines environment. The approach described in this chapter will be

used as a basis for all extensions in the rest of the thesis. In addition to that, this chapter will

also give an overview of the literature dealing with the automatic design of DRs for various

scheduling problems. Finally, this chapter will also present the current results achieved by

automatically designed DRs for the unrelated machines environment.

4.1 Designing dispatching rules with genetic programming

DRs which are evolved by GP usually consist of two independent parts: the schedule generation

scheme and the priority function. The priority function determines a priority value for a certain

job-machine pair, which is calculated based on certain properties of jobs and machines. These

priority values are then used by the schedule generation scheme to determine which job should

be scheduled on which machine and in what order. Algorithm 4.1 represents the schedule gen-

eration scheme which is used to generate schedules for the unrelated machines environment.

49

4. Design of dispatching rules by genetic programming for the unrelated machines
environment

In the first step, the procedure waits until at least one job and one machine are available. Af-

ter that, the priority values are calculated for scheduling each available job (those which are

released, but not yet scheduled) on each of the machines (even those which are still executing

another job). By using the calculated priority values, the best machine (the one for which the

concrete job achieves the best priority value) is determined for each job. Out of all jobs whose

best machine is available, the one with the best priority value is chosen and scheduled on the

appropriate machine. This part is repeated until there are no more jobs whose best machine is

available. If however, there is no job whose best machine is available, then the scheduling de-

cision is postponed to a later moment in time, when another job or machine becomes available.

The entire procedure is repeated until there are no more jobs to be scheduled, or until the system

stops with its execution.

Algorithm 4.1 Schedule generation scheme used by DRs generated by GP

1: while unscheduled jobs are available do
2: Wait until at least one job and one machine are available
3: for all available jobs and all machines do
4: Obtain the priority πi j of scheduling job j on machine i
5: end for
6: for each job j from the set of available jobs do
7: Determine the best machine (the one for which the best value of priority πi j
8: is achieved)
9: end for

10: while jobs whose best machine is available exist do
11: Determine the best priority of all such jobs
12: Schedule the job with the best priority on the corresponding machine
13: end while
14: end while

Unlike the scheduling generation scheme, which is defined manually, the priority functions

are generated automatically by using GP. The objective of GP is to evolve a priority function

which is appropriate for optimising a certain scheduling criterion, and which can be used by

the aforementioned schedule generation scheme. For that purpose the primitive set of nodes,

which will be used by GP, needs to be defined. The terminal set which is used by GP is given

in Table 4.1. The time variable, which is used in some terminal node definitions, represents the

current time of the system when the value of the nodes is calculated. Since all the nodes do not

provide useful information when generating DRs for optimising each of the tested criteria, the

set of nodes which will be used by GP depends on the criterion which is optimised. Therefore

the dd, SL and wTj are used only for the due date related criteria (total weighted tardiness,

number of tardy jobs, maximum tardiness, and weighted earliness and tardiness), the wC j only

with the total weighted completion time criterion, and wE j only with the weighted earliness and

weighted tardiness criterion.

50

4.1. Designing dispatching rules with genetic programming

Table 4.1: Terminal nodes used by GP

Node name Description

pt processing time of job j on the machine i (pi j)

pmin the minimal job processing time on all machines: mini(pi j)

pavg the average processing time of a job on all machines

PAT patience - the amount of time until the machine with the minimal process-
ing time for the current job will be available

MR machine ready - the amount of time until the current machine becomes
available

age the time that the job spent in the system: time− r j

Used when optimising the due date related criteria

dd due date of a job (d j)

SL positive slack of a job: max(d j− pi j− time,0)

wt tardiness weight of a job (wT j)

Used when optimising the total weighted completion criterion

wc completion time weight of a job (wC j)

Used when optimising the weighted earliness and weighted tardiness criterion

we earliness weight of a job (wE j)

Aside from the terminal nodes, the set of function nodes also needs to be defined for GP.

Table 4.2 denotes the set of function nodes which will be used by GP. Although many other

function nodes can be used by GP to evolve the priority function, it was shown that no significant

improvements can be achieved by using them [151]. Therefore, the minimal function set which

achieves the best results was chosen to evolve priority functions.

By using the aforementioned sets of terminal and function nodes, GP can evolve new priority

functions which can be used by the schedule generation scheme. Figure 4.1 illustrates the tree

representation of an example priority function evolved by GP for optimising the Twt, Nwt, and

Tmax criteria. This tree can be translated into the following expression:

pmin+PAT +
pmin
wt
− (pt +MR+ pavg*wt)+

SL
MR*w2

t
+dd +wt + pmin− wt

age
−wt .

After a short analysis of the presented priority function, several important building blocks of

the function can be outlined. Before performing the analysis it should be stressed out that the

51

4. Design of dispatching rules by genetic programming for the unrelated machines
environment

Table 4.2: Function nodes used by GP

Node name Description

+ binary addition operator

- binary subtraction operator

* binary multiplication operator

/ secure binary division: /(a,b) =

1, if |b|< 0.000001
a
b , else

POS unary operator: POS(a) = max(a,0)

priority function is developed so that the most appropriate jobs for scheduling should obtain the

smallest priority value. Since the priority function is optimised for due date criteria, one of the

most important parts of the rule is SL
MR*w2

t
+dd. The dd part of the expression denotes that jobs

which have a larger due date will also have a larger priority value. On the other hand, the SL
MR*w2

t

expression will have a larger value for jobs which have larger slack values (amount of time until

they would be late), and have a smaller weight. From the rest of the priority function it was

shown that the expression PAT + pmin
wt
− pt −MR is also important. The sub-expression pmin

wt

will prioritise jobs which have a smaller minimum execution time and larger priority, while

the PAT terminal gives more importance to jobs whose best machine will be free soon. The

other part of the expression, −pt−MR prefers jobs which have a larger processing time and

machines which will be free in a much latter time. However, it seems that this part of the

priority function is important since it will allow for the rule to schedule jobs on machines other

than the one on which the jobs achieve the fastest execution time. The other expressions have

shown to be redundant in the rule and seem to represent noise which was accumulated during the

evolution process, since with their removals the fitness of the rule can even be slightly improved.

Therefore, the considered priority function can be reduced to the following expression, without

any deterioration in performance:

PAT +
pmin
wt
− pt−MR+

SL
MR*w2

t
+dd.

This shows that the evolved priority functions can consist of a significant number of unnecessary

elements. However, many methods were proposed to generate simpler expressions or to remove

the redundant parts [137, 152, 153, 154, 155].

The time complexity of generating schedules by automatically generated DRs can be divided

into two parts: the complexity of evolving the priority function by GP, and the complexity

of generating the schedule by the schedule generation scheme. The evolution of the priority

52

4.2. Literature overview

+

+

−

+

+

pmin PAT

/

pmin wt

+

+

pt MR

*

pavg wt

/

SL *

*

MR wt

wt

−

+

pos

dd

−

+

wt pmin

/

wt age

wt

Figure 4.1: Example of a priority function evolved by GP

function by GP is a very time consuming procedure, with its complexity comparable to that

of improvement heuristics. However, the evolution of the priority function needs to be done

only once, and can be performed offline, before the start of the system execution. The evolved

priority function is then used by the schedule generation scheme to incrementally build the

schedule. The complexity of the schedule generation scheme is comparable to the complexity

of manually designed DRs, meaning that it can be used to create schedules in dynamic online

conditions. Therefore, a significant amount of time is invested only for generating the priority

function, but each problem instance can be solved very fast.

The benefit of such an approach is that, unlike the improvement heuristics which generate

a solution to only one concrete problem, GP creates a priority function which can be used for

solving numerous problem instances. In addition, since the priority function and the sched-

ule generation scheme are loosely coupled, the schedule generation scheme can be used with

different priority functions for optimising various scheduling criteria.

4.2 Literature overview

This section will give an overview of methods for automatically generating DRs which are

based on GP and similar evolutionary methods. In addition, the section will also include a very

brief overview of other methods which were also applied for the generation of new DRs, like

neural networks or other machine learning methods.

Dimopoulos and Zalzala [156] were the first to apply GP for solving a scheduling problem.

They focused on solving the classic single machine scheduling problem. In their report they

proposed two ways of applying GP to solve the considered scheduling problem. The first way

was to use GP to determine a sequence in which certain manually designed DRs should be

applied on the problem [157]. Therefore, GP is not used to create a new DR, but rather is

53

4. Design of dispatching rules by genetic programming for the unrelated machines
environment

used more like a standard GA which determines the sequence in which already existing DRs

should be applied to obtain optimal solutions. However, the second way of applying GP for

solving scheduling problems was to actually define a terminal set which consisted of job and

system properties, and that should be used by GP to evolve new DRs [158]. Through several

experiments GP demonstrated the ability to generate new DRs which could outperform several

manually designed DRs. Cheng et al. [2] were the first to apply GP to generate a DR for

scheduling air planes on different runways at the airport. Their approach evolved an algebraic

metric, which uses several system properties to produce a numeric value based on which the

next flight which should be scheduled is selected. In their study they additionally outlined

several benefits of using GP to evolve new DRs over standard improvement heuristics.

Miyashita [159] was the first to apply GP to generate DRs for the job shop scheduling envi-

ronment. In his work, Miyashita considered the scheduling environment as a multi agent system

where each machine represents an individual agent. Based on that he proposed three different

models: the homogeneous model, the distinct agent model, and the mixed agent model. The

homogeneous model generates a single DR for all machines in the scheduling environment.

On the other hand, the distinct agent model generates an independent DR for each machine in

the scheduling environment. Finally, the mixed agent model combines the two aforementioned

models in a way that two DRs are evolved, first of which will be used by bottleneck machines

(machines which have a limited capacity and consequentially reduce the capacity of the entire

system), while the second will be used by all other machines. Although the mixed agent model

achieved the best results among the three multi-agent models, it comes with an obvious disad-

vantage, which is that prior to the execution of the system it must be known which machines

represent bottleneck resources. In his study, Adams [160] also applied GP to solve schedul-

ing problems, however the proposed representation is more complicated than the previously

proposed representations, and no comparison with manually designed DRs was performed to

validate the effectiveness of the approach.

Yin et al. [161] applied GP for solving scheduling problems subject to machine breakdowns.

The authors propose the use of a bi-tree structured chromosome, where one expression is used

to calculate the priority values of jobs, while the other is used to calculate the amount of idle

time that should be inserted before processing the currently considered job. The objective of

inserting this additional idle time is to act as a buffer against possible disruptions in the system.

The proposed method has shown to outperform a manually designed DR. Ho and Tay [162]

use GP to evolve DRs for the flexible job shop environment. In their study the authors propose

the terminal set which should be used by GP, and apply it to generate DRs for minimising the

the total tardiness criterion. The method was used to generate five DRs which were compared

with standard DRs by using extensive simulations. The obtained results demonstrate that the

generated DRs were easily able to outperform manually designed DRs from the literature.

54

4.2. Literature overview

Geiger et al. [163] considered evolving DRs for the single machine environment. In their

study they evolved new DRs for optimising three criteria (makespan, maximum lateness and to-

tal tardiness), both in static and dynamic environments, and compared the obtained results with

several selected standard DRs. The generated DRs achieved similar or even better performance

than the selected standard DRs. In [164], Geiger et al. extend their approach to apply it for

the single batch processor scheduling environment. The proposed approach is compared with

several manually designed DRs for this problem, and demonstrates that it can generate DRs

which perform slightly better for the test scenarios. Jakobović and Budin [165] use GP to create

new DRs for the dynamic single machine scheduling problem, for optimising the Twt and Nwt

criteria. Through experiments it was shown that GP was able to achieve better performance

than several standard DRs. In addition, GP was also applied for job shop scheduling on four

different scheduling criteria, where it was shown that it could mostly outperform standard DRs.

The authors also propose a GP method, called GP-3, which extends the mixed agent model of

Miyashita. Their approach generates three expressions, first of which represents the DR used

for bottleneck machines, the second represents the DR used non bottleneck machines, while

the third expression represents a decision function used to determine whether a machine is a

bottleneck resource or not. Therefore this approach does not need any prior knowledge about

the scheduling environment, since it uses the decision function to adapt to the changing condi-

tions during the execution of the system. Although the GP-3 method does not guarantee that

the expression it evolves will truly be able to identify which machines are bottlenecks, it was

nevertheless able to achieve better results when compared to the approach which evolved only

one DR for all machines.

Jakobović et al. [166] were the first to apply genetic programming for creating new DRs

for the parallel uniform scheduling machine environment. The authors proposed both, the ter-

minal nodes which should be applied for the considered scheduling environment, as well as the

schedule generation scheme for creating the schedule by using the evolved priority functions.

In the study both, static and dynamic scheduling conditions were considered, and the method

was tested for optimising several scheduling criteria. The automatically generated DRs have

shown to consistently outperform several manually designed DRs. Tay and Ho [167] applied

GP to design DRs for minimising the total tardiness criterion in the flexible job shop environ-

ment. The method was applied to generate DRs for several test samples with different problem

characteristics. The obtained results demonstrated that the evolved DRs performed significantly

better than several standard DRs. Tay and Ho [26] were also the first to apply GP to create DRs

for the multi-objective flexible job shop problem. In their study they focused on simultaneously

optimising the makespan, total flowtime, and total tardiness criteria. In order to simultaneously

optimise the three aforementioned criteria, they defined the fitness function as a linear combi-

nation of all three criteria. The results have shown that no single DR is able to perform well

55

4. Design of dispatching rules by genetic programming for the unrelated machines
environment

on all the tested criteria, and that GP was able to evolve DRs which can outperform the simple

manually designed DRs. Beham et al. [168] use a simulation model and multi-population based

GP to evolve new DRs. Although the approach has shown to obtain human competitive results,

it has also shown to be computationally very expensive and to produce quite complex expres-

sions. Yang et al. [169] propose a multi-objective GP rule generator for creating new DRs for

a lot scheduling problem. The automatically developed DRs are able to outperform five simple

DRs from the literature for two scheduling objectives.

Baykasoglu and Gocken [170] propose the use of GEP to generate due date assignment

rules (DDARs). Due date assignment rules are used to approximate the due dates of jobs that

enter the system, which should ideally be equal to the completion time of the considered jobs.

The authors develop several simulation models upon which they test the rules generated by

GEP. The obtained results show that in most of the test scenarios the rules generated by GEP

dominate due date assignment rules from the literature. In [171], Baykasoglu et al. propose

a GP based data mining approach for the selection of DRs which perform well under certain

system parameters. GP is trained on a set of problem instances to learn which of the simple DRs

is best suited for the current conditions. The obtained results show that the approach is able to

select DRs which are appropriate for the current system conditions. Furoholmen et al. [172]

consider the application of GEP to the distributors pallet packing problem. Although this in

itself is not a scheduling problem, the main problem consists of two sub-problems, where one

problem is concerned with pre-scheduling all items on the production line, while the second

is concerned with packing the item onto the pallet. In order to solve this problem the authors

used the cooperative coevolution method together with GEP, which independently evolved a

heuristic for each of the two sub-problems. The best heuristic obtained by the proposed method

achieved significant improvements over a standard manually designed heuristic.

Kofler et al. [7] propose an abstract model for the estimation of sequence dependant setup

costs, and use GP to generate new DRs for the production planning problem. The DRs gener-

ated by GP were compared to the results obtained by several simple DRs, but also by results

obtained by a GA. The generated DRs outperformed all of the simple DRs, however, they were

unable to outperform the results achieved by the GA. Nevertheless, the execution times of the

generated DRs were severely smaller than the execution time of the GA, which represents an

advantage of the generated DRs over the GA. In [173], Kofler et al. compared three optimi-

sation approaches for a real world scheduling problem. In the first approach a GA was used

to determine the best best assignments of simple DRs on groups of machines. In the second

approach the GA was used to determine the best assignment of simple DRs to each individual

machine, while in the third approach GP was used to evolve a new DR used by all machines.

Although the best results where obtained when assigning DRs to each individual machine, the

generated assignments were shown to have a limited reusability and stability. Pickardt et al.

56

4.2. Literature overview

[174] apply GP for automatic creation of DRs to minimise weighted tardiness in semiconductor

manufacturing. In order to make the results obtained by GP comparable to the results obtained

by manually designed heuristics, the authors defined a terminal set which consists only of infor-

mation that is also available to the manually designed DRs. Through long running simulations it

was demonstrated that the DRs obtained by GP were able to significantly outperform any of the

tested manually designed DRs. Thus, this study shows the potential of applying GP to complex

manufacturing problems. Vazquez-Rodriguez and Ochoa [175] use GP to obtain variants of the

NEH heuristic which is used for the flow shop problem. In this study GP is used to discover

new ranking functions which are used to rank the jobs before they are scheduled. The proposed

method has been tested on several simulation scenarios for optimising five scheduling criteria.

The experiments demonstrate that the proposed approach is capable of achieving good results,

which can outperform the standard NEH heuristic in several cases.

Hildebrandt et al. [42] propose that GP is coupled with stochastic manufacturing simulations

to evaluate the individuals. The approach was tested on the dynamic job-shop problems for

minimising the mean flowtime criterion. The results indicate that not only was GP able to

evolve DRs which outperform the best manually designed rules, but also that GP was able to

find rules which are able to generalise well on changing conditions of the system. The authors

also analysed the influence of using look-ahead with DRs, which has not shown to be beneficial

since it leads to results with a high variance. Nie et al. [176] were the first to apply GEP to

create DRs for the dynamic single machine scheduling problem. GEP was applied to generate

new DRs for optimising several different scheduling criteria, and the obtained results were

compared to those obtained by GP and several standard DRs. Both GP and GEP have shown

to consistently perform better than any of the standard DRs. Between those two methods, GEP

has in several occasions shown to achieve slightly better results than GP. Nie et al. [177] also

apply GEP to create DRs for the job shop scheduling problem. The results have shown that

DRs generated by GEP were able to outperform several manually designed DRs. In [178], Nie

et al. also apply GEP to generate DRs for the dynamic flexible job shop environment. GEP

was applied for optimising the makespan, mean flowtime, and mean tardiness criteria. The

results demonstrated that DRs generated by GEP achieved a better overall performance when

compared with several manually designed DRs. Wang et al. [179] proposed a method which

incorporates the the particle swarm optimisation (PSO) algorithm into GEP. The experimental

results demonstrate that the proposed method achieved better performance when compared to

previous approaches. Pitzer et al. [180] use a simulation environment to evolve large archives of

DRs which provide new insights of DR optimisation. By using this archive of DRs, the authors

have analysed the trade off between the size of the generated DRs and their performance. The

results show that the performance of DRs improves with the increase of their size. However,

after a certain size the DRs start to exhibit signs of overfitting.

57

4. Design of dispatching rules by genetic programming for the unrelated machines
environment

In [27], Nie et al. extend their GEP approach for the single machine environment to adapt

if for solving a multi-objective scheduling problem consisting of four criteria. To adapt the

proposed approach for multi-objective scheduling, it is extended by using a fitness assignment

scheme which combines Pareto dominance and density information to guide the search, a di-

versity maintaining strategy to adjust the non-dominated set of each generation, and an elitist

strategy to guarantee the convergence of the search. The proposed method generated DRs which

optimise several criteria simultaneously. Nie et al. [181] also use GEP to develop DRs for the

dynamic flexible job shop problem. In this study the authors propose a new encoding and

decoding scheme which introduces automatically defined functions (ADFs) into the GEP rep-

resentation. The GEP representation is extended with an additional region which defines the

interaction between ADFs, while the individual genes represent the individual building blocks

of the ADF. In addition to that, each individual in GEP consists of two chromosomes, one of

which represents the expression used to determine on which machine the current job should be

scheduled, while the second expression is used to determine in which sequence the jobs will be

executed on the given machine. In [182], Nie et al. consider the dynamic job shop scheduling

problem with release dates. In the study the authors propose a heuristic for decomposing the

original problem into a number of sub-problems, where each sub-problem represents a single

machine scheduling problem with release dates. GEP is used to design DRs for solving such a

problem, and through experimental results it was shown that it outperformed several manually

designed DRs, and performed equally well as DRs designed by GP.

Unlike in several of the previous studies where GP was used to generate new DRs, Nguyen

et al. [183] applied GP to generate an expression for selecting heuristics for solving a con-

crete scheduling problem. The experimental results prove that the proposed heuristic selection

method can obtain good performance on a wide variety of problems. In [184, 185], Nguyen et

al. propose two GP methods to evolve due date assignment models. The first proposed model

uses the aggregate information from jobs, machines and the shop to predict the due dates of

jobs, while the second model indirectly estimates the due dates by predicting the flowtime of

each operation. The experimental results show that the automatically generated due date assign-

ment models perform better estimates than several manually designed models. Out of the two

proposed methods, the one which estimates the due dates based on the flowtimes of individual

operations achieved better results. Nguyen et al. [186] propose an automatic programming

method which uses iterated local search to generate new DRs for the job shop scheduling prob-

lem. The idea of this approach is to create an initial DR in a similar way which is used by

GP to create individuals in the starting population. The solution is then iteratively improved

by using different local search operators until a maximum number of iterations is reached. The

proposed method is compared with GP and GEP, with the experimental results showing that the

proposed method is not only able to obtain results which are better, but are also shorter than

58

4.2. Literature overview

those obtained by the other methods. Therefore, the proposed method has shown to be a viable

alternative to GP and GEP for creating new DRs.

Jakobović and Marasović [187] used GP to evolve DRs for the dynamic single machine

scheduling problem with precedence constraints and sequence dependant setup times. Even by

including these additional constraints GP again outperformed manually designed DRs. In the

study, GP was also used to evolve DRs for the job shop scheduling environment, where DRs

evolved by GP achieved better performance than several standard DRs. In addition, the study

also includes an analysis of how different GP parameter values influence the performance of the

evolved DRs. The paper outlines the importance of choosing the right value for the termination

criterion to avoid overfitting on the training set. Abednego and Hendratmo [188] apply GP

to create DRs for several different problem instances, and show that the evolved DRs achieve

superior performance over several manually designed DRs. Nguyen et al. [189, 190] consider

the problem of automatic design of scheduling policies which consist of DRs and DDARs.

The authors propose a cooperative coevolution method for simultaneous development of both

the DR and the DDAR for the dynamic job shop scheduling problem. The effectiveness of

the proposed approach was tested on several problem sets and compared not only to several

manually designed scheduling policies, but also to policies designed by several multi-objective

algorithms where a single individual consisted of two chromosomes, one which is used as the

DR, while the other is used as the DDAR. The proposed cooperative coevolution approach has

outperformed both of those two methods, thus demonstrating the ability to generate scheduling

policies of good quality.

Nguyen et al. [43] propose the use of GP to evolve iterative DRs. The idea behind these

DRs is that they create the schedule several times, each time extracting knowledge from previ-

ously created schedules to improve the performance of newly generated schedules. The process

is repeated as long as the quality of the newly generated schedules continues to improve. Since

the schedule needs to be created several times, IDRs can be applied only in static scheduling

conditions. Through experiments it was shown that the evolved iterative DRs achieved better

performance than DRs evolved by GP and standard manually designed DRs. The method was

additionally combined with variable neighbourhood search [191, 192] and look-ahead to further

improve its performance. Hunt et al. [33] identify that a major problem of using DR approaches

is their lack of a global perspective of the current and potential future state of the system. In or-

der to remedy this problem, the authors propose that several new nodes are used, which provide

the DR with more information about the system state. Although the search space increases by

including these additional terminals, GP was nevertheless able to evolve DRs which achieved

a better performance for minimising the Twt criterion in the dynamic job shop environment.

Hunt et al. [193] also investigate the potential of GP for evolving optimal DRs. They evolve

DRs for the problem of optimising the makespan criterion in the static two machine job shop

59

4. Design of dispatching rules by genetic programming for the unrelated machines
environment

environment, for which an optimal algorithm exists. Through the performed experiments it was

proven that GP is expressive enough to create a DR which was equivalent to the optimal algo-

rithm. In addition, GP was also applied for optimising the Twt criterion in the dynamic two

machine job shop environment. The purpose here was to analyse whether there is a difference

between using a single DR for all machines, or using machine specific DRs. In addition, the

performance of GP was also analysed when the same problem instances are used throughout

the entire evolution process, or when the problem instances are changed every few generations.

Unfortunately, a conclusive answer about which methods were better could not be given, since

the results demonstrated that the performance of these methods depends heavily on the problem

instances used for testing.

Nguyen et al. [34] analyse the influence of different solution representations in GP on the

quality of the obtained DRs. In their study they propose three different representations: the

decision-tree like representation, the arithmetic representation, and the mixed representation.

The idea of the decision-tree like representation is to design DRs which have the ability to se-

lect a DR from a set of available rules, based on the properties of the system. The arithmetic

representation is used to create expressions which are used for calculating the priorities of jobs,

based on which it is determined which job should be scheduled. This representation was most

often used in the rest of the literature. The final representation is similar to the first representa-

tion, however, instead of using only predefined DRs, GP now also has the ability to create new

DRs that can be applied. Although all three representations achieved a quite good performance

when compared to standard DRs, the mixed representation achieved the most promising results

out of the three tested representations. Branke et al. [194] analyse different hyper-heuristic

methods and their representations for evolving DRs. In their study the authors test three differ-

ent solution representations of DRs: a linear combination of attributes, a neural network based

representation, and a tree based representation evolved by GP. All three methods were tested on

dynamic stochastic job shop scenarios to measure their performance. The results have shown

that the tree representation was able to achieve solutions of best quality, followed closely by

neural networks. The linear representation achieved the least competitive results, however, for

a smaller number of evaluations this method managed to achieve the best results. Therefore, the

choice of the representation can also depend on the available computational budget. Ðurasević

et al. [151] have analysed how the choice of the selected GP method influences the the qual-

ity of the obtained solutions. In their study they compared several methods: GP, GP without

optimised parameters, GEP, DAGP, and iterative DRs. The reason for including GP without

optimised parameters was to test how large of an influence parameter optimisation can have on

the results, since this is usually a quite time consuming process. In the end, GP without pa-

rameter optimisation achieved the worst and most dispersed results among all the methods, thus

outlining the importance of performing parameter optimisation. GP, DAGP, and GEP achieved

60

4.2. Literature overview

mostly similar results, without major differences, thus the choice of the method depends solely

on the user. The iterative DRs have, as expected, significantly outperformed any of the other

methods, which is expected since they are applied under static conditions. All the methods were

compared to several manually designed DRs, but also to the best results achieved by a GA. Al-

though they were able to perform equally well as the manual DRs, even outperforming them in

most cases, they were still unable to match the results obtained by a GA.

Park et al. [195] applied GP to create DRs for the order and acceptance (OAS) problem. In

the OAS problem, in addition to scheduling the jobs, the system also needs to select which jobs

should be accepted into the system to maximise the profit. The study proposes two methods

of evolving DRs for this problem, the first in which GP evolves a single expression which is

used both for scheduling and determining whether the job should be accepted, while in the

second GP is used to evolve two independent expressions, one which is used for scheduling and

other which is used for determining whether the job should be accepted. The experiments have

shown that the proposed methods perform better than several manually designed heuristics for

the OAS problem. In addition, it was shown that the separation of the acceptance and scheduling

decisions into independent expressions did not lead to any improvement in the results. Nguyen

et al. [196] proposed a two-stage learning/optimising system for solving multi-objective OAS

problems. In the first stage of the proposed system, GP is used to generate effective DRs for the

OAS problem. These rules are then used to create the initial population of an evolutionary multi-

objective algorithm which performs further optimisation. The obtained results demonstrated

that the proposed method is effective when compared to other methods from the literature, thus

outlining the potential of using methods like GP to improve the performance of improvement

heuristics. Park et al. [197] use GP to tackle the OAS problem, and incorporate stochastic

behaviour into the DRs to allow them to effectively explore multiple potential solutions, which

additionally improves the performance of the evolved DRs. This is implemented in a way

that the priority value acts as a probability value which is used to select one of the several

jobs which obtained the best priority values. Although the introduction of randomness into the

algorithm might not seem beneficial, it was shown that such an approach can outperform the

standard GP approach which was designed for creating DRs for the OAS problem. Park et al.

[198] propose a combination of DRs generated for the OAS problem with a particle swarm

optimisation method and tabu search to improve te performances of the approaches. In the

tabu search the DR generated by GP is used to generate the initial solution, upon which the

local search operators will be applied. On the other hand, for the particle swarm optimisation

method the DR will be used to generate the initial best position to which all the particles could

converge to. The experiments have demonstrated that the tabu search method has benefited

form such an initialisation procedure, while the particle swarm optimisation method did not

show improvements when using the generated DR for initialisation.

61

4. Design of dispatching rules by genetic programming for the unrelated machines
environment

Nguyen et al. [199] propose a new method called sequential genetic programming, to create

DRs for the OAS problem. The general idea of this approach is that the priority functions are

trained directly from optimal scheduling decisions at different decision moments throughout

the execution of the system. A branch and bound method is also developed, which is used to

create optimal solutions that are used by GP for learning. The experiments have shown that

the proposed method does not only achieve better performance than several manually designed

OAS heuristics, but that it also outperforms rules generated by the standard GP method. In

[200], Nguyen proposes a system for optimising the OAS problem which tries to combine the

advantages of hyper-heuristic and metaheuristic methods. The objective of the hyper-heuristic

method is to extract knowledge about the problem in the form of DRs. The metaheuristic

approach then uses the solutions obtained by the generated DRs to improve them further and

to obtain near optimal solutions. Using the solutions obtained by the generated DRs as initial

solutions in the metaheuristic method should also lead to an improved execution time of the

metaheuristic approach. The performed experiments demonstrate that by using the solutions

obtained by the generated rules the performance of the metaheuristic can also be improved.

In [201], the authors apply GP in combination with the branch and bound algorithm to find

optimal solutions for the OAS problem. GP is used to design effective branching strategies for

the branch and bound algorithm. The results demonstrate that the enhanced branch and bound

algorithm can solve the OAS problem more effectively than the standard branch and bound

algorithm.

Han et al. [202] apply GP to generate DRs for the hybrid job shop environments with a

multi-level bill of materials (BOM), which represents a list of parts, components, or materials

that are needed in the manufacturing process. The performance of the method was tested using

a simulation environment, which demonstrated that GP can achieve better performance than

several standard DRs. Hildebrandt et al. [203] apply GP to generate DRs which optimise the

mean cycle time of lots in semiconductor manufacturing. In order to validate the effectiveness of

the approach, this study used a simulation environment which consisted of over 200 machines

and 3000 jobs per simulation run. The proposed method achieved better performance than

several selected benchmark heuristics. However, the authors outlined that further investigations

must be performed, since it has proven to be difficult to compare DRs generated by GP and

manually designed DRs. Mascia et al. [204] define a grammar which can be used to generate

iterated greedy algorithms which minimise the weighted tardiness criterion for the permutation

flow shop problem. The authors propose a parametric representation of the grammar, which has

shown to obtain better results than when using the representation of grammatical evolution.

Pickardt et al. [205] propose a two-stage approach which combines the benefits of GP

and an evolutionary algorithm. In the proposed approach, GP is first used to generate new

DRs, which are then, together with several manually designed DRs, used by the evolutionary

62

4.2. Literature overview

algorithm to determine their assignment to different work centres. The proposed approach was

tested on a scenario from semiconductor manufacturing, in which the goal was to optimise the

mean weighted tardiness criterion. The proposed approach was compared with both, several

manually designed DRs, DRs evolved by GP, and the evolutionary algorithm on its own. It

must be stressed out that the evolutionary algorithm was used only to determine the placement

of manually designed DRs on work centres, and not to generate the entire schedule on its own.

The proposed method has shown to obtain solutions which are superior to any of the methods

it was compared to. The reason for achieving such a good performance lies in the fact that GP

and the evolutionary algorithm optimise two different heuristic search spaces, thus allowing the

procedure to obtain better solutions. Qin et al. [206] apply GP to create DRs for the interbay

automated material handling system. In this study the authors use GP to generate DRs which

should simultaneously optimise three criteria, however they did not apply any multi-objective

GP method, but rather linearly combined all three criteria into a single value, which was then

used as the fitness measure during the evolution process. Through several simulation scenarios

it was shown that the proposed method performed better than other DRs for all of the tested

scenarios.

Nguyen et al. [28] used GP for evolving multi-objective DRs which can simultaneously

optimise five scheduling criteria in the dynamic job shop environment. Unlike Tay and Ho

[26], the authors in this study used a multi-objective GP algorithm to evolve a Pareto front of

solutions, thus giving the possibility of choosing the DR which provides the needed trade off

between the various scheduling criteria. The proposed multi-objective algorithm which was

used in the study is based on the HaD-MOEA algorithm. The experiments have demonstrated

that the proposed approach achieved better performance than several standard DRs, both for a

single objective and multiple objectives. In addition, the study also provided an analysis of the

evolved Pareto fronts and an analysis of the correlation between several scheduling criteria. In

[29], Nguyen et al. extended their multi-objective algorithm with additional local search opera-

tors, which leads to improved results. In addition, in the study the authors also analyse the effect

of using the same problem instances throughout the entire evolution process, and changing the

instances used in each generation. For this test the experiments have shown that changing the

problem instances in each generation does not lead to improved results. Masood et al. [31] con-

sider using GP for designing DRs for the many objective job shop scheduling problem. In their

study they used a many objective GP algorithm based on the SPEA2, NSGA-II, and NSGA-

III algorithms. They used the aforementioned methods to solve two many objective problems,

one consisting of four scheduling criteria, and the other consisting of five scheduling criteria.

Through the experiments it was demonstrated that the GP method based on the NSGA-III algo-

rithm achieved superior results when compared to the other two methods. Masood et al. [207]

also propose a particle swarm optimisation GP method for the adaptation of the reference points

63

4. Design of dispatching rules by genetic programming for the unrelated machines
environment

used by NSGA-III when optimising many objective job shop problems. The motivation for this

approach originates from the fact that NSGA-III was initially designed to work with uniformly

distributed reference points, which do not match well with the non uniform Pareto fronts which

are found in job shop scheduling problems. For that reason the particle swarm optimisation

algorithm is applied to update the reference points every time a new population is formed. The

performed experiments have demonstrated that the proposed extension of the approach can lead

to better performance of the NSGA-III algorithm.

Sim and Hart [208] propose a new heuristic generation framework, called NELLI, which can

be used to evolve new DRs. The method uses previously designed DRs as terminals, and tries to

combine them into a tree like representation of the rule, by using mathematical operators. The

rules are initialised in a ramped half-and-half fashion, similarly as in GP. In each iteration a new

heuristic is created and added into the system, either by random initialisation, or by mutating an

already existing DR. The experiments show that combining DRs by the proposed procedure can

lead to the development of better DRs than those obtained previously in the literature. Riley et

al. [209] analyse the importance of selecting the appropriate terminal set for the GP algorithm.

First, through simple frequency analysis they try to determine the importance of different nodes

available in the terminal set. Then, the authors also propose a terminal weighting scheme which

can be used during the evolution process to determine the weights of different nodes in the

terminal set. This information is also used by a proposed adaptive mutation operator, which uses

the terminal weights as probabilities when creating new individuals. Although the proposed

method has shown potential, it comes with several drawbacks. The most important one is that

the behaviour of the procedure is unstable, which is caused by a large number of used attributes,

but also by the fact that the frequencies are used for calculating the terminal weights, which can

be misleading since it is possible that a certain terminal appears often in the DR, but does not

deliver any useful information. Shi et al. [210] propose the use of scatter programming [211]

to design new DRs for the hybrid flow shop problem. The authors also propose an additional

local search operator to enhance the performance of scatter programming. The results show that

DRs which were generated by their proposed approach achieve better results when compared

to DRs generated by standard GP and scatter programming without the additional local search

operator.

Park et al. [35] analyse the possibility of evolving ensembles of DRs for the static job

shop environment. In order to evolve ensembles of DRs the authors have used the cooperative

coevolution approach. The experimental results have shown that the ensembles of DRs achieve a

better performance than the individual DRs which were evolved by GP. In addition, the influence

of the ensemble size on the results was also analysed, and it was shown that the proposed

method achieves similar performance for different ensemble sizes. Park et al. [212] propose

an ensemble learning method which uses only one population of individuals. The individuals

64

4.2. Literature overview

from the population are grouped randomly with other individuals from the population, to form

the ensembles. The initial investigation on this topic did not show that the proposed approach

leads to improved results, therefore further investigation is required. Hart and Sim [36] also

propose a method for evolving ensembles of DRs for the static job shop scheduling problem,

called NELLI-GP. The aim of this method is to create an ensemble of DRs where each of the

DRs contained in the ensemble is generated to optimise only a certain subset of the training

instances. Therefore, each DR in the ensemble will focus on a different subset of problem

instances, making this method similar to boosting and bagging. The performed experiments

have shown that the proposed method is able to achieve significantly better results than other

GP methods from the literature, including those obtained by Park et al. [35].

Branke et al. [213] apply GP for the dual-constrained flow shop scheduling problem. Unlike

in the previous problems where only the machine capacity was considered, in this type of prob-

lem operators are needed for loading and unloading the machines. In this case, the operators

will use the developed DRs to determine which of the jobs should be loaded on, or unloaded

from a machine. The experimental results show that GP generated DRs which performed con-

siderably better than standard manually designed DRs. Chen et al. [214] apply GP to create

DRs for a k-stage hybrid flow shop in which one stage is composed of non-identical batch pro-

cessing machines, and the others of non-identical single processing machines. After the DRs

are generated by GP, ant colony optimisation is used to select the best three DRs, one of which

will be used for the assignment, the second for sequencing, and the third for batch formation.

The selected three rules are then used to build the schedule. The proposed method has shown

improved performance for the Twt criterion over other heuristic methods. Freitag and Hilde-

brandt [30] consider applying GP to create DRs for a complex manufacturing system. In the

study a multi-objective GP algorithm is applied to automatically generate DRs which optimise

both the earliness and tardiness criteria. The experiments were performed on a complex man-

ufacturing system which consisted of more than 200 machines. However, even when applied

for such a complex system, GP was able to generate DRs which outperform several manually

designed DRs. Therefore, the study demonstrated the potential of applying GP even for large

and complex manufacturing systems.

Hunt et al. [215] incorporate local search into the evaluation of DRs to encourage the DRs

to make good local decisions, which should in the end lead to an improved overall performance.

The obtained results show that the inclusion of local search leads to the development of DRs

which make better decisions and consequentially attain a lower value for the Twt criterion. In

[216], Hunt et al. study the interpretability of DRs. The authors define a grammar which is

implemented though strongly typed GP [217], to restrict the GP to evolve DRs which are com-

posed of meaningful expressions. However, the obtained results demonstrated that the DRs

which were generated by using the defined grammar were unable to perform equally well as

65

4. Design of dispatching rules by genetic programming for the unrelated machines
environment

DRs which were generated by standard GP, although they were easier to interpret. In addi-

tion, several new terminal and functional nodes were introduced in the study, which have lead

to easier interpretation of the evolved DRs. Karunakaran et al. [32] study a multi-objective

scheduling problem in which they want to simultaneously optimise three scheduling criteria.

However, to solve this problem they propose a new GP method for generating DRs, which is

based on an island model algorithm. Through the study the authors have tested three different

island topologies, and have shown that the proposed method can obtain better Pareto fronts than

other widely used multi-objective optimisation algorithms, such as SPEA2 and NSGA-II. An

additional advantage of the proposed method is that its execution time can easily be improved,

since it is suited for parallel execution. Karunakaran et al. [218] consider using GP for creat-

ing DRs for the dynamic job shop scheduling environment with uncertainty in the processing

times. This means that the processing times of jobs are not entirely known in advance, but are

rather subject to certain changes, since they can also depend on other factors in the system. To

adapt GP to uncertainties in the system, the authors propose a new terminal node which tries to

capture the information about the uncertainty in the system. The approach has been tested on

several problem sets to optimise the Ft criterion. The experiments have shown that up to a cer-

tain level of uncertainty in the system, GP with the additional terminal node is able to generate

new DRs which can cope with such a problem. However, after a certain level of uncertainty is

exceeded, the additional terminal has not shown to provide any useful information.

Li et al. [219] study the problem of minimising the Twt criterion in intercell scheduling

considering transportation capacity. They apply GP to develop new DRs based on attributes of

parts, machines and vehicles. An additional GA is also applied to select appropriate rules for

machines and vehicles out of the rule set which was generated by GP. The computational results

show that the rules which are developed by GP exhibit a better performance when compared to

several manually designed DRs. Mei and Zhang [220] investigate the influence of the size of

the learning set instances on the reuseability of DRs on unseen problem instances. The motiva-

tion for this investigation is that it is desirable to use smaller problem instances to evolve DRs

which could then be applied on larger unseen problem instances. The reason why a smaller

learning set is preferred is to save time during the evolution process. Through an extensive ex-

perimental analysis it was shown that the best results were obtained in cases where the learning

set contained problem instances with the same ratio between jobs and machines as was used

in the test set. In addition, even better performance can be achieved if the training instances

contain a number of jobs and machines which is similar to that used in the test set. Mei et

al. [221] outline the importance of providing an appropriate terminal set for GP to perform its

search. The terminal set can be designed to include a wide range of job, machine and system

parameters, however not all of these terminal nodes will prove to be useful to GP when creating

new DRs. Unfortunately, a large terminal set increases the search space, meaning that it will be

66

4.2. Literature overview

much harder for GP to obtain good DRs. Because of that reason the authors propose a feature

selection based GP to determine which features from the terminal set provide the most useful

information to GP when creating new DRs. The experimental results demonstrate that using

only the filtered set of terminals allows GP to create DRs which achieve significantly better

performance on both the training and test set. Therefore, the proposed method is more than

capable of determining which terminals present the most useful information for designing new

DRs.

Nguyen et al. [222, 223] propose a new surrogate assisted GP to evolve more efficient

DRs without significant computational costs. The motivation of using a surrogate model is to

decrease the evaluation time of individuals, which usually represents the most time consum-

ing part of the GP algorithm. The proposed surrogate approach creates simplified simulation

models which it then uses to evaluate the effectiveness of DRs during the evolution process.

Through experimental results it was shown that the proposed surrogate model is capable of

outperforming other algorithms in terms of rule performance. In addition, in several cases the

GP with the surrogate model was also able to improve the execution time of the algorithm, as

well as to reduce the sizes of the evolved rules. Park et al. [37] analyse the application of

fitness sharing when evolving ensembles of DRs. The intention of this extension is to improve

the diversity of the members of the ensemble, which is important to increase the generalisation

ability of the ensembles. The initial experiments demonstrated that with fitness sharing it was

possible to reduce the size of the ensembles. In [38], Park et al. consider optimising the Twt

criterion in the job shop scheduling environment. In this study the authors propose the use of

a multilevel GP approach to evolve ensembles of DRs. In this approach groups denote sets of

individuals which cooperate with each other. In addition to this approach, the approach of Park

et al. [35] is extended with additional terminals and applied for the dynamic job shop prob-

lem. The results demonstrate that the multilevel GP approach evolved rules with insignificant

improvements in the results, while the second approach was able to significantly improve the

obtained results. Ingimundardottir and Runarsson applied an evolutionary algorithm, namely

CMA-ES, to determine the weights of different features in linear composite dispatching rules

[224].

Park et al. [225] study the application of GP for generating DRs to optimise the dynamic

job shop scheduling problem which is subject to breakdowns. The authors first develop a data

set which is used for evaluating the GP approach, after which the standard GP approach is ap-

plied to generate new DRs for the scheduling problem with machine breakdowns. The obtained

results show that the approach is quite sensitive to the level of breakdowns which are used to

generate the problem instances. The authors also performed an analysis of the distribution of

terminal nodes contained in the evolved rules, and noticed that the use of training instances

with high levels of machine breakdowns will lead to different distributions of terminal nodes in

67

4. Design of dispatching rules by genetic programming for the unrelated machines
environment

the evolved DRs. Mei et al. [226] propose the use of GP to create time-invariant DRs. A DR

is time-invariant if it generates the same schedule for the same pattern of jobs and machines,

regardless of the time when such a pattern occurs. A terminal set which ensures that GP evolves

time-invariant DRs is proposed and used by GP to develop new DRs. The experiments demon-

strated that the proposed time-invariant GP generated DRs which achieve significantly better

performance than standard DRs. In addition, it was also shown that the evolved DRs are of

smaller sizes than DRs evolved by standard GP. Even though in some occasions the standard

GP managed to outperform the time-invariant GP, the DRs generated by the standard GP can be

transformed into time-invariant DRs with similar performance.

In [227], Karunakaran et al. further investigate the use of GP for evolving DRs for dynamic

job shop scheduling problem with uncertain processing times, which means that the processing

time of an operation is not known exactly until it finishes with its execution. In this study the

authors propose two ways of generating new DRs which can cope with the uncertainties in

the scheduling problem. In the first approach DRs are evolved using the expected processing

times, however in the testing phase the estimated processing times of jobs are used, which are

calculated based on the realised uncertainty on the training set. On the other hand, in the second

method the are directly trained by using the estimates of processing times. Both methods show

to outperform the standard GP approach and the approach proposed for dealing with uncertainty

in [218]. Out of the two proposed methods, the second one has achieved better generalisation

characteristics. Karunakaran et al. [228] propose another method of dealing with uncertainties

in job shop scheduling problems. The authors notice that with the introduction of uncertainties,

more and more machines become bottleneck resources in the system. Therefore, a method for

classification of the bottleneck level of machines in the shop is proposed. Furthermore, a new

method for developing pairs of DRs for different bottlenecks, which is based on the cooperative

coevolution method, is proposed. The obtained results show that the proposed method achieves

better performance than the standard GP method, and also the GP-3 method proposed in [165].

Aside from the previous studies which mostly applied GP and similar evolutionary methods

to generate new DRs, a great deal of research also focused on using other machine learning

methods for the creation of DRs. Lee et al. [229] use the C4.5 algorithm to generate decision

rules which, based on certain system properties, determine which of the available simple man-

ually defined DRs should be applied for scheduling. To further improve the performance of the

system, the authors propose the use of a GA to select the best rules for individual machines.

The proposed approach leads to a significant improvement in the obtained results. Koonce and

Tsai [230] used data mining to extract knowledge from solutions generated from a GA. This

knowledge was used to define a set of DRs which could imitate the performance of the GA on

the test instances, and perform well on other unseen problem instances. Li and Olafsson [231]

propose a novel approach for generating DRs by using a data driven approach. In this approach

68

4.3. Parameters and experimental design

the C4.5 algorithm is used to discover new DRs from production data. The proposed approach

was applied on a single machine scheduling problem, where it was shown that the approach

could closely mimic the behaviour of the heuristic on whose data it was trained on. In [232],

Olafsson and Li propose a novel two-phase learning approach, where in the first phase it is de-

termined which decisions correspond to the best scheduling practices. The obtained knowledge

is then used in the second phase to learn a new DR. The C4.5 algorithm is used to generate new

DRs which show to perform well on the test scenarios. Ingimundardottir and Runarsson [233]

propose a framework for discovering new DRs by analysing characteristics of optimal solutions.

A logistic regression classification method is applied to learn good scheduling choices in each

dispatching step. The experimental results demonstrate that the proposed method outperforms

standard DRs. The same authors also used evolutionary algorithms to determine the weights of

different features in linear composite dispatching rules [224].

El-Bouri et al. [234] present an approach for single machine job sequencing based on neural

networks. The network is trained on a set of problem instances to learn how to produce a job

sequence which best satisfies the optimised objective. The authors outline that the benefit of

using such an approach is for situations in which no suitable DRs exists. Weckman et al. [235]

develop a neural network scheduler for the job shop environment. First, a GA is used to generate

solutions to known benchmark problems, which are then used to train the network to capture the

predictive knowledge regarding the position of an operation in a sequence. The neural network

approach is compared with some common DRs, and it is shown to achieve better performance.

Eguchi et al. [236] also train a neural network to act as a DR for scheduling jobs in the dynamic

job shop environment. The proposed approach was tested on several problem instances, and it

was shown that it outperforms the best DRs available from the literature. Petrović et al. [237]

use a fuzzy rule-based system to determine lot sizes in the job shop environment, using several

system parameters. Kapanoglu and Alikalfa [238] used GP to develop new if-then priority rules

for the dynamic job shop environment, which considerably outperform several standard DRs.

In [239, 240] a literature overview of several applications of different machine learning methods

in scheduling problems is given.

Branke et al. [14] give a comprehensive literature survey of automated generation of DRs

for various scheduling problems. They also outline several areas in which further research

could be conducted. In [241], Nguyen et al. outline several key challenges in the application

of evolutionary computation to combinatorial problems. They propose that the future studies

should focus more on practical requirements and problem environments to which the obtained

solutions could be applied. In [15], Nguyen et al. describe a unified framework for automated

design of DRs in different scheduling environments. This survey provides a detailed overview

of the different applications of GP for generating new DRs.

69

4. Design of dispatching rules by genetic programming for the unrelated machines
environment

4.3 Parameters and experimental design

This section will describe the design of experiments, as well as the choice of parameters for GP.

The parameter values and the experimental design described in this section will also be used in

the latter chapters of the thesis, if not stated differently.

4.3.1 GP parameters

The effectiveness of GP depends heavily on the parameters of the algorithm. Therefore, it is

crucial to optimise the parameter values of the algorithm, to achieve solutions of good quality.

For that reason an extensive parameter optimisation procedure was performed, and the values

of the parameters which produce the best results were selected. The best algorithm parame-

ter values were determined in a way that the algorithm was executed for different values of a

concrete parameter, while the other parameters were fixed to certain values. For each tested

parameter value the algorithm was executed 50 times, and the parameter value for which the al-

gorithm achieves the best average value on those 50 executions is selected. The criterion which

was optimised when determining the optimal parameter values was the Twt criterion. Table 4.3

represents the values selected for the various GP parameters. It is interesting to illustrate how

the performance of the algorithm depends on the number of iterations which are used as the

termination criterion. Figure 4.2 depicts the influence of the iteration count on the performance

of the obtained dispatching rules, both on the training and test set. The figure shows that the

longer the algorithm executes, the better performance it achieves on the training set. However,

on the test set it can be observed that the value for the Twt criterion improves until the algorithm

reaches around 80000 iterations, after which the value of the criterion starts to deteriorate. This

means that after the algorithm performs a certain number of iterations it starts to overfit on the

training set, and produces DRs which do not generalise well on unseen problem instances.

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

14.5

15

15.5

16

Number of iterations (in thousands)

T
w

t

Training set Test set

Figure 4.2: Influence of the number of iterations on the performance of GP

70

4.3. Parameters and experimental design

Table 4.3: Parameter values used by GP

Parameter name Parameter value

Population size 1000 individuals

Termination criterion 80000 iterations

Selection steady state tournament GP

Tournament size three individuals

Initialisation ramped half-and-half

Maximum tree depth 5

Crossover operators subtree, uniform, context-preserving, size-fair

Mutation operators subtree, Gauss, hoist, node complement, node replacement,
permutation, shrink

DAGP uses the exact same parameters as the standard GP, except for the genetic operators.

In DAGP only the one-point crossover and the node replacement mutation are used. In addition,

to ensure semantic correctness of the solutions, it is required that all nodes carry the information

about the physical unit (e.g. seconds, meters), as well as the exponent to which the unit is raised

(e.g. s2, s−1). Since all terminal nodes in this application have the same unit - time (e.g. in

seconds), it is sufficient to carry only the information about their exponent, since the unit will

be the same for all nodes. The only exception is the weight node, which in itself has no unit.

However, this can be treated as if the unit is raised to the zeroth exponent. In addition to the

semantic information defined for terminal nodes, it is also mandatory to define the semantic

rules for function nodes. Table 4.4 denotes the semantic rules defined for the function nodes

when designing DRs.

GEP also uses the same parameters as the standard GP, except for those associated with

the individual size and genetic operators. Through optimisation it was determined that GEP

achieved the best results when using three genes with the head size of six nodes. As for the ge-

netic operators, one crossover (one point crossover), one mutation (node replacement mutation)

and three transposition operators (IS, RIS and gene transposition) are used.

4.3.2 Experimental design

GP will be used to evolve DRs for solving the unrelated machines scheduling problem, with

the addition of job release times. The scheduling procedure will be performed online and in

dynamic conditions. In order to evolve priority functions by GP it is required to define a certain

set of problem instances, called the training set, which will be used during the evolution process

71

4. Design of dispatching rules by genetic programming for the unrelated machines
environment

Table 4.4: Semantic rules defined for DAGP

Node Constraint New exponent value

+ the left and right child must have the same
exponent

the same as the exponent of the child
nodes

- the left and right child must have the same
exponent

the same as the exponent of the child
nodes

* none the sum of the exponents of the left and
right child

/ none the difference between the exponents of
the left and right child

POS none the same as the exponent of the child node

to determine the fitness of different solutions. However, the training set can not be used to

evaluate the effectiveness of the evolved priority functions. This is due to the fact that since the

priority functions were evolved using the training set, they could have adapted for solving only

problem instances available in the training set, and would therefore have a poor generalisation

ability. Therefore, to objectively measure the quality of the evolved priority functions, a new set

of problem instances, called the test set, needs to be used to measure the quality of the evolved

priority functions on unseen problem instances. Therefore, priority functions will be evolved

using the training set, but their performance will be evaluated on the test set.

Since the priority functions, which are evolved by GP, should be appropriate for solving

problems of different characteristics, both the training and test set should also contain problem

instances of various characteristics. Therefore, both the training and test set contain 60 problem

instances. Depending on the problem instance, the number of jobs can be 12, 25, 50, or 100,

while the number of machines can be 3, 6, or 10. Both sets will have five problem instances for

each combination of the number of jobs and machines, and the characteristics for each job are

generated randomly. The processing times of jobs are generated from the interval

pi j ∈ [0,100],

by using one of the following three probabilistic distributions: uniform, normal (Gaussian), and

quasi-bimodal. Which of the aforementioned three distributions will be used for generating the

processing times is chosen randomly for each job (with all three distributions having the same

probability of being chosen). The motivation behind the use of three distributions for generating

processing times is to make the evolved priority functions more resilient, since in real conditions

jobs could be received from different sources. All job weights are generated uniformly from the

72

4.3. Parameters and experimental design

interval

wTj ,wC j ,wE j ∈< 0,1].

The release times of jobs are generated by a uniform distribution from the interval

r j ∈
[

0,
p̂
2

]
,

where p̂ is defined as

p̂ =
∑

n
j=1 ∑

m
i=1 pi j

m2 ,

and pi j denotes the processing time of job j on machine i, while m denotes the total number of

machines. The due dates of jobs are also defined using a uniform distribution from the interval

d j ∈
[

r j +(p̂− r j)*
(

1−T − R
2

)
,r j +(p̂− r j)*

(
1−T +

R
2

)]
,

where T represents the due date tightness parameter, while R represents the due date range

parameter. The due date range parameter defines the dispersion of the due date values, while

the due date tightness adjusts the amount of jobs that will be late. While generating the problem

set, both of those parameters assumed values of 0.2, 0.4, 0.6, 0.8, and 1 in various combinations.

The total fitness of an individual on one of the problem instance sets is calculated by cre-

ating the schedule using the priority function represented by the individual, and determining

the value of the optimised objective. This is done for each problem instance contained in the

set. The fitness function could then be defined as the sum of objective values for each of the

problem instances in the set. However, since each problem instance has different characteristics

(number of jobs, number of machines, due date range and tightness), this means that problem

instances could have vastly different objective values. This could cause GP to evolve priority

functions which focus more on problem instances that have a larger influence on the fitness

value. Therefore, for each problem instance to have an equal influence on the fitness value,

the objective values are additionally normalised for each problem instance. The normalisation

procedures for all the scheduling criteria are defined as follows:

∙ Normalisation of the makespan criterion

fi =
Cmax

np
.

∙ Normalisation of the maximum flowtime criterion

fi =
Fmax

np
.

73

4. Design of dispatching rules by genetic programming for the unrelated machines
environment

∙ Normalisation of the maximum tardiness criterion

fi =
Tmax

np
.

∙ Normalisation of the total weighted completion time criterion

fi =
Cw

nwC j p
.

∙ Normalisation of the weighted tardiness criterion

fi =
Twt

nwTj p
.

∙ Normalisation of the flowtime criterion

fi =
Ft
np

.

∙ Normalisation of the weighted number of tardy jobs criterion

fi =
Nwt
nwTj

.

∙ Normalisation of the weighted earliness and weighted tardiness criterion

fi = ∑
j

(
wE jE j

nwTj p
+

wT jTj

nwE j p

)
.

∙ Normalisation of the machine utilisation (no additional normalisation is required)

fi = Mut .

In the previous expressions, p represents the average of processing times of all jobs, wTj repre-

sents the average of the tardiness weights of all jobs, wE j represents the average of the earliness

weights of all jobs, wC j represents the average of the completion time weights of all jobs. The

total fitness for the problem instance set is calculated as the sum of the normalised criteria values

for each problem instance in the set

F = ∑ fi.

Since GP is a stochastic optimisation procedure, the behaviour of the algorithm will be

different each time it is executed. This also means that it is highly possible that each time

the algorithm is run, that a different solution will be obtained. Therefore, by executing the

algorithm only once, it is not possible to measure the effectiveness of the algorithm. In order

74

4.4. Results

for the benchmark results to be statistically significant, each experiment was executed at least 30

times, while preserving the best solution from each run. The resulting best solutions from these

runs were used to calculate quantitative information such as the median of the obtained fitness

values, as well as the minimum and the maximum fitness value. In addition, the Mann-Whitney

[242] statistical test will be used to determine if there is a statistically significant difference

between the results obtained by two different experiments. The difference between two results

will be considered significant if a p value smaller than 0.05 was achieved by the statistical test.

The results will also be presented by using a Tukey box plot [243, 244]. In these plots the

solutions which represent outliers will be denoted as black points. In addition, the plots will

also include the average values, which will be presented as a black rhombus.

4.4 Results

This section will give an overview of the results which can be achieved by the manually defined

DRs and the DRs automatically designed by the GP methods described in Chapter 3. The

results presented in this section will be used throughout the rest of the thesis to validate the

performance of the proposed methods.

4.4.1 Performance of automatically generated DRs

The approach of automatically designing DRs by GP was applied for the nine scheduling criteria

described in Section 2.1. To validate the performance of this approach, it is compared to several

manually designed DRs described in Section 2.4.2. Table 4.5 represents the results achieved by

the standard DRs and DRs designed by GP. The first three rows represent the results achieved by

a genetic algorithm, which was executed 30 times for each problem instance. The row denoted

as "GA - med" denotes the median values of the results achieved by all 30 runs, while the row

"GA - min" denotes the very best result achieved by those 30 runs. In addition to those two

values, the third value denoted as "GA - best" represents the results which are achieved in a

way that for each problem instance the best value achieved by any of the 30 runs of the genetic

algorithm is selected. This means that the value is not achieved by only one genetic algorithm

run, but with all 30 runs together. The next 26 rows represent the results achieved by various

standard manually designed DRs. The best result for each criteria is denoted in bold, while

the best five values of all the DRs are denoted with grey cells. GP was executed 50 times for

optimising each criterion, and the minimum and median values of those runs are denoted as the

last two rows in the table.

The results denoted in the table demonstrate that no single standard DR is able to achieve

good results for all the considered criteria. The ATC rule was executed with k = 0.05, the RC

75

4. Design of dispatching rules by genetic programming for the unrelated machines
environment

rule with α = 0.2, the SA rule with ∇l = 0.1 and ∇h = 0.8, the OMCT rule with α = 0.9,

COVERT with k = 0.2, while the other rules do not use any parameters. The parameter values

for each rule were fine tuned to obtain better results. The standard DRs usually achieve good

results on only a few criteria for which they were designed, while for the rest of the criteria the

results are usually not as good. For example, the WSPT rule achieved the best result for the Cw

criterion out of all the tested DRs, however, it achieved quite bad results for rest of the criteria.

Similarly, the ATC rule achieves good results for the due date related criteria, while for the

other criteria it is not able to achieve similarly good results. On the other hand, the COVERT

and RC rules achieved good results for several different criteria, although they usually do not

achieve the best result for even one of those criteria. This just proves that if a DR is to optimise

several criteria well, it will usually not achieve the best results for any of the criteria, but will

compromise over all the criteria to achieve good results for most of them.

By comparing the results achieved by the automatically designed DRs with the standard

DRs, it can be seen that GP is able to generate DRs which perform similarly or better than the

standard DRs. The only two criteria for which DRs designed by GP were unable to outperform

the standard DRs are the completion time related criteria Cmax and Cw. For the other criteria

the automatically designed DRs outperform the standard DRs. This is especially true for the

Mut and Etwt criteria, for which only a few standard DRs achieve good results. These results

demonstrate that GP truly has the ability to design DRs which are better than the standard DRs.

However, it is possible to improve the performance of automatically generated DRs even further,

to make them more competitive to standard DRs.

Apart from comparing the results of the automatically generated DRs with the standard DRs,

it is also interesting to analyse how the DRs, which are designed to optimise one criterion, per-

form on the other criteria for which they were not designed. In Table 4.6 each row denotes the

criterion for which the DRs were optimised, and in each column the generated DRs were eval-

uated for a different criterion. Several interesting phenomena can be observed from the table.

The first is that DRs designed by GP usually perform well for the criterion for which they were

optimised, while for the other criteria they perform quite bad. However, this is not really unex-

pected, since the applied GP algorithm only optimises one criterion at a time. Therefore it tries

to achieve good performance on only one criterion, while ignoring the others. Consequentially,

standard DRs will usually perform reasonably well over several criteria, while automatically

designed DRs will perform well mostly on the criterion for which they were evolved. A more

interesting phenomenon which occurs is that for some criteria better DRs are designed when

optimising other objectives. This is evident for the Tmax and Nwt criteria, since the DRs which

were generated when optimising the Twt criterion achieve better results on those two criteria,

rather than those which were generating DRs by directly optimising those two criteria. The

reason for this phenomenon seems to lie in the fact that all three criteria can be optimised si-

76

4.4. Results

Table 4.5: Comparison of automatically designed DRs with manually designed DRs

Method Criterion

Cmax Cw Etwt Fmax Ft Mut Nwt Tmax Twt

GA - best 36.79 844.4 80.55 12.74 140.8 0.006 5.340 1.897 9.533

GA - min 37.48 849.2 98.32 13.71 146.4 0.011 5.373 1.900 9.917

GA - med 37.72 851.3 103.0 13.97 149.9 0.012 5.455 1.941 10.27

MCT 38.57 902.3 977.2 14.03 181.1 0.130 8.007 2.891 18.88

MET 38.44 878.9 996.3 16.01 157.9 0.131 7.003 3.130 16.15

ERD 38.57 902.3 977.2 14.03 181.1 0.130 8.007 2.891 18.88

LPT 38.08 924.3 975.9 17.29 200.7 0.123 8.233 4.014 27.22

WSPT 38.68 873.4 991.7 17.14 169.2 0.129 7.305 3.468 19.45

SA 38.47 882.8 994.0 15.68 161.2 0.129 7.430 3.117 17.02

KBP 38.37 875.3 998.5 15.70 154.5 0.133 7.013 3.092 15.93

Maxstd 38.27 885.7 993.6 15.93 165.0 0.127 7.144 3.195 17.57

OMCT 38.31 886.8 994.2 15.71 165.6 0.127 7.147 3.208 18.11

OLB 46.84 981.6 940.2 25.81 258.1 0.104 10.75 7.345 38.85

WQ 73.44 1733 844.4 57.24 1018 0.072 31.61 26.00 364.1

JIT 60.36 1881 378.9 51.00 1156 0.101 29.33 17.09 189.3

EDD 38.72 910.2 960.8 16.72 189.4 0.129 6.976 2.521 14.50

MS 38.59 911.4 962.1 16.44 190.3 0.130 7.319 2.678 16.05

MON 38.39 888.4 989.6 16.19 168.3 0.128 6.711 2.668 14.97

CR 38.47 901.7 978.7 14.04 180.5 0.130 7.775 2.921 19.23

COVERT 38.26 903.0 967.1 14.57 182.3 0.126 6.755 2.442 13.50

ATC 38.26 901.5 968.5 16.31 180.8 0.125 6.686 2.418 13.30

Min-min 38.41 875.1 998.7 15.54 154.5 0.131 6.950 3.003 15.80

Max-min 38.62 908.8 974.7 14.08 187.9 0.127 8.008 3.072 20.94

Min-max 38.14 885.7 989.2 14.43 165.3 0.132 7.425 3.111 17.18

Sufferage 37.88 881.7 993.7 15.15 160.1 0.128 6.986 2.854 15.94

Sufferage2 37.85 917.6 975.2 16.57 196.4 0.123 8.096 3.566 24.07

RC 38.11 874.9 998.3 14.91 154.1 0.128 6.786 2.864 15.12

LJFR-SJFR 38.41 877.0 995.9 15.58 157.3 0.132 7.090 2.953 16.21

MECT 38.48 876.7 998.6 15.65 156.0 0.133 7.011 3.141 16.33

GP - min 38.02 873.8 236.9 13.60 154.0 0.046 6.384 2.376 12.96

GP - med 38.26 874.9 369.3 13.96 155.0 0.054 7.005 2.653 13.60

77

4. Design of dispatching rules by genetic programming for the unrelated machines
environment

multaneously, but the Twt criterion seems to be easier for GP to optimise than the other two.

Therefore, when optimising the Twt criterion, GP will also generate DRs which optimise the

other two criteria quite well. As a consequence, it could be possible that even better results

could be achieved if all three criteria were optimised simultaneously. The conclusion which can

be drawn from all these findings is that instead of optimising only one criterion, several criteria

should be optimised to design DRs which perform well on various criteria simultaneously. In

addition, if several similar criteria are optimised simultaneously, it could be possible to generate

DRs which achieve a better performance than that of DRs generated for optimising only one of

those criteria.

4.4.2 Comparison of GP approaches

In this section the performance of the different GP approaches described in Chapter 3 will be

outlined. Their performance was evaluated on four scheduling criteria: total weighted tardiness,

number of tardy jobs, flowtime, and makespan. All the approaches were executed 50 times, and

the minimum, median, and maximum values achieved from those 50 executions are denoted

in Table 4.7. The best values for each criterion are denoted in bold. Figure 4.3 additionally

gives a box plot representation of the results. The results demonstrate that all three approaches

perform very similarly, with there being no significant difference between them, except for the

Ft criterion where GEP achieved statistically better results than the other two approaches. Since

neither of the approaches achieved generally better results, it was decided that the standard GP

approach will mainly be used to develop new DRs for the rest of the thesis.

78

4.4. Results

Table 4.6: Results for the automatically designed DRs across all the criteria

Optimised criterion Evaluation criterion

Cmax Cw Etwt Fmax Ft Mut Nwt Tmax Twt

Cmax

Min 38.02 878.4 971.1 14.03 158.4 0.123 7.228 2.951 16.57

Med 38.26 894.9 987.3 16.06 172.8 0.131 7.703 3.345 18.99

Max 38.68 924.4 995.9 19.77 203.1 0.142 8.239 4.370 26.82

Cw

Min 38.58 873.8 999.0 15.72 153.7 0.127 6.876 3.193 16.50

Med 38.58 874.9 1000 16.13 154.8 0.137 7.170 3.339 17.02

Max 39.03 877.3 1002 17.32 156.8 0.145 7.368 3.830 18.06

Etwt

Min 53.88 1626 236.9 40.88 904.1 0.088 15.53 4.866 38.03

Med 56.92 1714 274.4 44.24 986.7 0.107 27.70 6.826 65.83

Max 60.84 1848 303.0 50.81 1122 0.139 33.86 9.859 95.00

Fmax

Min 38.06 893.5 975.6 13.60 173.6 0.122 7.219 2.728 17.31

Med 38.37 898.2 981.4 13.96 177.6 0.133 7.612 2.996 18.61

Max 38.83 904.5 984.5 14.48 183.9 0.139 8.099 3.212 20.25

Ft

Min 38.32 874.1 998.5 15.70 154.0 0.132 6.763 3.132 16.41

Med 38.65 875.3 1000 16.19 155.0 0.139 7.140 3.385 17.03

Max 39.16 879.3 1002 17.29 158.6 0.147 7.369 3.929 18.67

Mut

Min 49.76 1443 733.1 37.85 724.5 0.046 26.86 15.33 191.0

Med 77.45 2253 969.7 63.76 1521 0.054 42.24 35.27 687.1

Max 102.8 2792 1438 90.07 2070 0.058 46.03 57.59 1196

Nwt

Min 38.54 879.7 812.6 16.49 158.7 0.145 6.384 2.562 13.57

Med 40.01 906.3 977.2 19.91 184.2 0.145 7.005 3.392 17.39

Max 43.40 1058 1003 28.74 337.0 0.157 7.939 7.395 50.45

Tmax

Min 38.28 887.5 820.7 15.56 167.0 0.123 6.808 2.376 13.53

Med 39.25 912.3 962.2 17.99 190.6 0.138 7.264 2.653 15.01

Max 42.32 1059 984.9 27.22 333.7 0.153 7.989 4.051 26.59

Twt

Min 38.69 890.6 795.7 16.95 170.5 0.137 6.198 2.361 12.96

Med 39.58 911.2 961.5 18.72 188.8 0.146 6.687 2.558 13.60

Max 42.24 1078 981.8 27.09 353.2 0.152 7.233 2.966 14.62

79

4. Design of dispatching rules by genetic programming for the unrelated machines
environment

Table 4.7: Comparison of the GP approaches

Criterion Approach

GP DAGP GEP

Cmax

Min 38.02 38.03 37.95

Med 38.26 38.24 38.22

Max 38.68 38.93 38.73

Ft

Min 154.0 153.4 153.5

Med 155.0 155.4 154.8

Max 158.6 160.6 158.1

Nwt

Min 6.384 6.490 6.440

Med 7.005 6.934 6.925

Max 7.939 7.734 7.553

Twt

Min 12.96 13.13 13.06

Med 13.60 13.64 13.68

Max 14.62 14.81 15.14

GP DAGP GEP

38

38.5

39

(a) Results for optimising the Cmax criterion

GP DAGP GEP
152

154

156

158

160

162

(b) Results for optimising the Ft criterion

GP DAGP GEP

6.5

7

7.5

8

(c) Results for optimising the Nwt criterion

GP DAGP GEP

13

14

15

(d) Results for optimising the Twt criterion

Figure 4.3: Comparison between GP, DAGP, and GEP

80

Chapter 5

Automatic development of dispatching
rules for multi-objective and
many-objective problems

Multi-objective optimisation is becoming an increasingly important field of study, since in many

real world problems it is necessary to optimise several objectives simultaneously. Even in

scheduling problems it is common that several objectives need to be optimised together. How-

ever, manually designing DRs, which optimise several objectives simultaneously, is a hard trial

and error process which requires good knowledge of the underlying problem. Therefore, au-

tomatically designing DRs by using multi-objective evolutionary algorithms is becoming an

increasingly interesting topic. Unfortunately, very little research has been done in the area of

automatically designing DRs for optimising multiple objectives simultaneously, or even on op-

timising multiple objectives for the unrelated machines environment.

Tay and Ho [26] were the first to consider evolving DRs which optimise several criteria si-

multaneously. In their study they considered the simultaneous optimisation of three scheduling

objectives. However, they did not apply any multi-objective algorithm to solve this problem,

but rather transformed the multi-objective problem into a single objective problem. The trans-

formation was performed in a way that all the objectives were combined by using a weighted

linear sum which was then optimised. Unfortunately, for such a method it is necessary to have

good knowledge about the search space to determine the optimal values for the weights of each

objective. Since this knowledge is usually unavailable, this method is in most cases not ap-

plicable. Nie et al. [27] propose a multi-objective evolutionary algorithm for optimising four

criteria in the single machine environment. Although the authors demonstrate the performance

of several evolved DRs, they are unfortunately not compared to any existing DRs measure their

effectiveness. Nguyen et al. [28] were the first to apply a multi-objective evolutionary algorithm

to generate DRs for optimising five scheduling criteria simultaneously. The authors have shown

81

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

that the DRs evolved for optimising several objectives simultaneously can perform well when

compared to several manually designed DRs. In addition, they also demonstrated that the multi-

objective algorithm can evolve DRs which also achieve good results for only a single objective.

Further analysis of multi-objective optimisation was performed in [29]. In that study, the au-

thors have applied local search operators with the multi-objective algorithms. With the use of

these local search operators it was possible to increase the performance of the multi-objective

algorithms. Freitag and Hildebrandt [30] apply NSGA-II to generate DRs for simultaneous op-

timisation of both the tardiness and earliness criteria. They illustrate that the multi-objective

algorithm obtains a wide range of solutions which perform better than some standard DRs.

In [31] three multi-objective and many-objective algorithms, including SPEA2, NSGA-II, and

NSGA-III, were used to evolve DRs for optimising four and five scheduling objectives simulta-

neously. The algorithms were compared only by using multi-objective performance measures,

however no detailed analysis of the evolved DRs was given. Karunakaran et al. [32] apply an is-

land model GP to evolve DRs for the optimisation of two and three criteria simultaneously. The

proposed method has in some cases shown to achieve better performance than some standard

multi-objective optimisation methods. Unfortunately, neither of the previous works did an ex-

tensive analysis on how the number and combination of optimised scheduling criteria influences

the optimisation process and the performance of the evolved DRs.

Regarding multi-objective and many-objective optimisation in the unrelated machines en-

vironment, not much research has been done in this area. Fowler et al. [245] applied different

approaches to solve the problem of scheduling a printed wiring board manufacturer’s drilling

operation subject to five optimisation criteria. In [246] the authors have optimised a schedul-

ing problem of a printed wiring board manufacturing line, where six scheduling criteria were

optimised simultaneously. The simulated annealing approach was used by Kolahan and Kay-

vanfar [247], to solve a scheduling problem consisting of the makespan, earliness and tardiness

cost, and matching cost objectives. In [248] a scheduling problem consisting of two and three

scheduling criteria was optimised by the use of two proposed heuristics and a genetic algorithm.

A short overview of some other multi-objective problems in the unrelated machines environ-

ment can be found in [249]. Although the research on this topic is quite sparse, the references

show that multi-objective and many-objective optimisation problems in the unrelated machines

environment appear in many real world situations, therefore outlining the need to develop DRs

which are suitable for optimising several criteria simultaneously.

In this chapter different multi-objective GP (MOGP) methods will be applied to develop

DRs for optimising various combinations of scheduling criteria. In order to analyse the in-

fluence of the number of optimised objectives, scheduling problems consisting of three, five,

six, seven, and nine objectives will be optimised. First, a short introduction about the multi-

objective optimisation will be presented, after which the description of the experimental design

82

5.1. Multi-objective optimisation

will be given. The parameter optimisation process for the MOGP algorithms will also be de-

scribed. After that the performance of the MOGP algorithms will be compared with the single

objective GP (SOGP). In addition, the different MOGP algorithms will also be compared with

each other by using different multi-objective metrics. Several generated DRs will be selected

and compared to several standard DRs to analyse whether it is possible to evolve DRs which

outperform standard DRs for several criteria. Finally, the mutual correlation between the differ-

ent scheduling criteria will also be analysed. The chapter is concluded with an overview of the

achieved results, and guidelines for further research.

5.1 Multi-objective optimisation

Multi-objective optimisation deals with problems in which two or more criteria need to be op-

timised simultaneously. However, the term multi-objective is most commonly used to denote

only problems in which two or three objectives are optimised simultaneously. In order to denote

problems in which more than three objectives are optimised the term many-objective optimisa-

tion is often used.

For most multi-objective problems a single solution which achieves good results across all

criteria does not exist. Therefore the goal is to find solutions which optimise all the criteria

well enough. Instead of finding only one best solution as in single objective optimisation, in

multi-objective optimisation it is desired to obtain a set of good solutions. This set will contain

various solutions, some of which will focus only on optimising one or two criteria (but will not

perform well on the remaining criteria), and other solutions will focus on optimising all criteria

reasonably well. In the end the user can select the solution which provides the desired trade off

between all objectives. However, solutions in multi-objective optimisation can not be compared

as easily as in the single objective case, since the quality of solutions is determined by several

objective values. In order to deal with this problem two ways of comparing solutions are usually

applied in multi-objective optimisation.

The first method for comparing solutions is to define a new measure of quality for each

individual as F(x) = ∑i wi fi(x), where x is a sample solution, fi the objective function, wi the

weight factor of the corresponding objective function, and F the aggregated objective function.

In this way, all objective functions are aggregated into a single value, which can then be used

for ranking solutions [120]. The advantage of this approach is that standard single objective

optimisation methods can be used to solve the multi-objective optimisation problem. However,

this approach also has serious disadvantages, which make it rarely used in the literature. The

first disadvantage is that different criteria can be of different magnitudes. Therefore the weight

factors need to be determined carefully so that the desired influence of all criteria, in the ag-

gregated objective function, is achieved. The second problem is that by using the aggregated

83

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

2 4 6 8
0

2

4

6

8

10

A
B

C

Criterion 1

C
ri

te
ri

on
2

Figure 5.1: Example of a Pareto front

objective function, the search methods will usually converge only to a single solution, or a small

number of solutions. Thus, the users will not have the possibility of selecting the solution which

optimises all the objectives to a desired degree.

In order to deal with the problems of the aggregated approach, solutions are usually com-

pared by using the dominance relation. In multi-objective minimisation with k objectives, solu-

tion x1 is said to dominate solution x2 if both of the following hold:

1. fi(x1)≤ fi(x2) for all i ∈ {1, . . . ,k}
2. f j(x1)< f j(x2) for at least one j ∈ {1, . . . ,k}.

This means that solution x1 will dominate solution x2 if it has a strictly better value for at

least one objective, and it does not achieve a worse value than x2 for all other objectives. A

solution which is not dominated by any other solution is said to be nondominated or Pareto

optimal. The set of all nondominated solutions is called the Pareto front. Figure 5.1 represents

an example of a Pareto front. Solutions which are denoted with black circles represent Pareto

optimal solutions, while the white circles represent dominated solutions. For example, the point

denoted as C from the figure does not belong to the set of nondominated solutions, since points

A and B achieve better values for both criteria, and therefore dominate point C.

5.1.1 Multi-objective GP

Since the basic evolutionary algorithms are intended for optimising a single objective, many

adaptations and new algorithms were proposed in the literature, to adapt evolutionary algorithms

for solving multi-objective problems. Although these adaptations are usually performed on

genetic algorithms, they are not dependent on the problem representation, and can therefore

also be used by GP. Various multi-objective and many-objective algorithms were proposed in

the literature [20, 250], among which one of the most popular is the nondominated sorting

84

5.1. Multi-objective optimisation

genetic algorithm II (NSGA-II) [251].

NSGA-II is an optimisation algorithm which extends the standard genetic algorithms to sup-

port solving multi-objective problems. Algorithm 5.1 represents the steps which are performed

by the NSGA-II algorithm. In the first step the algorithm initialises and evaluates the starting

population P. Then in each iteration the algorithm creates a new offspring population C of the

same size, by performing crossover and mutation on the individuals from population P. Both

populations are combined and nondominated sorting is performed on the joint population. The

result of the nondominated sort is a classification of all individuals into different fronts. The

first front will consist of individuals which are not dominated by any other individual. Each

subsequent front will consist of individuals which are not dominated by any other individuals,

except for those which were previously assigned to a certain front. After that, a new population

is created by iterating through all the fronts, starting with the first front, and adding individu-

als to the new population. However, before adding the individuals to the new population, the

crowding distance of all individuals is calculated. The crowding distance of an individual is

a measure which provides the information on the density of other individuals which surround

that individual. An individual will have a higher crowding distance value the more isolated it

is. This measure is useful in the selection process, since selecting solutions which are more

isolated leads to a better coverage of the search space. After the crowding distance has been

calculated, the individuals in the current front are sorted by it in descending order, and added to

the population until it contains the same number of individuals as the old population P. When

this happens, the old population P is replaced by the new population N, and a new iteration

of the algorithm is started if the termination condition was not fulfilled. The advantage of this

algorithm is that it obtains not only one solution, but a set of nondominated solutions, each

of which makes a trade off between optimising the different criteria, thus allowing the user to

select the solution most befitting of his needs.

Depending on the selected optimisation algorithm, the procedure can mostly be similar to

that of NSGA-II, but can also vary significantly. However, all such algorithms have in common

that they usually do not obtain only a single solution, but a Pareto optimal set of solutions.

Therefore, out of this Pareto set it is possible to select the solution which achieves the requested

trade off between the different optimisation criteria.

Unfortunately, unlike in the single objective case, where it is easy to determine which pro-

cedure obtains the better solution, the situation is much more difficult for the multi-objective

case. This is due to the fact that most multi-objective procedures will return a set of solutions,

and therefore it is hard to determine which of the obtained sets is better. Therefore, to be able

to compare the solutions obtained by different multi-objective methods, several performance

metrics have been defined for multi-objective methods [252, 253]. Some of the more popular

metrics used to measure the performance of the obtained Pareto fronts include: hypervolume,

85

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

Algorithm 5.1 The NSGA-II algorithm

1: Initialise the population P and evaluate all individuals in it
2: do
3: Generate the child population C by performing crossover and mutation on P
4: Perform nondominated sorting on P∪C and save the fronts in the F list
5: Let N = /0 denote the new population
6: Let i = 0 denote the index of the front
7: while |N|+ |F [i]|< |P| do
8: Calculate the crowding distance of all individuals in F [i]
9: Sort all individuals in F [i] by their crowding distance

10: N = N∪F [i]
11: i = i+1
12: end while
13: Calculate the crowding distance of all individuals in F [i]
14: Sort all individuals in F [i] by their crowding distance
15: Put individuals from F [i] into N until |N|= |P|
16: P = N
17: while termination criterion is not met

generational distance, inverted generational distance, the number of nondominated solutions,

the epsilon indicator and spread. Most of the performance measures use a reference Pareto

front to measure how close the Pareto front obtained by a certain procedure is to the reference

Pareto front (convergence), or how good the obtained Pareto front covers the reference Pareto

front (diversity). In the metric definitions, S will denote the Pareto front obtained by some

multi-objective method whose quality needs to be determined, while P will denote the true

Pareto front of the problem, or an approximation of it.

Hypervolume (HV) is a diversity-convergence metric which measures the amount of volume

in the objective space that is covered by a given Pareto front [254]. The metric is defined as

HV (S,R) = volume

 |S|⋃
i=1

vi

 ,

where vi represents the hypercube constructed between the point with index i and the reference

point R. When minimisation is considered, the reference point is required to be numerically

larger or equal than all points in S, for each of the objectives. Therefore, this metric measures

the total volume which is enclosed between the solutions in S and the reference point. A larger

hypervolume value denotes that a larger volume is enclosed between S and the reference point,

which means that the obtained Pareto front S is closer to the reference Pareto front P. However,

a larger hypervolume also indicates that the solutions in the obtained Pareto front S are scat-

tered more evenly. Therefore, hypervolume measures both the convergence and diversity of the

considered Pareto front S.

86

5.1. Multi-objective optimisation

Generational distance (GD) represents a convergence metric which measures the distance

between the obtained Pareto front S and the reference Pareto front P [255]. The metric is defined

as

GD(S,P) =

(
∑
|S|
i=1 dq

i

)1/q

|S| ,

where di = minp∈P ‖F(si)−F(pi)‖ ,si ∈ S, q = 2 and ‖·‖ is defined as the Euclidean distance

measure. Therefore, for each point in the Pareto set S obtained by a certain MOGP algorithm,

GD selects the point in P which is the closest to it, calculates the distance between those two

points, and sums up all the values to get the distance for the entire front.

The inverted generational distance (IGD) [253] represents a diversity-convergence metric

which measures the distance between the the approximated Pareto front P, and Pareto front S

obtained by some algorithm. This metric is defined as

IGD(P,S) =

(
∑
|P|
i=1 dq

i

)1/q

|P| ,

where di = mins∈S ‖F(pi)−F(si)‖ , pi ∈ P, q = 2 and ‖·‖ is defined as the Euclidean distance

measure. As it can be seen, the definition of this metric is very similar to the definition of the

GD metric. For each point in the real Pareto set, IGD selects the closest point from the obtained

Pareto set S, and calculates the distance between those two points. Because of this modification

the IGD also able measures the diversity of the obtained Pareto front S.

The percentage of nondominated solutions (ND) metric denotes the percentage of solutions

which are nondominated in the final population of the algorithm. The metric is defined as:

ND =
|P|
|POP| *100,

where |P| denotes the size of the obtained Pareto front, while |POP| denotes population size

used by the algorithm. This metric can also give a notion of the complexity of the optimised

multi-objective problem. Larger values of this metric denote that a large number of solutions is

required to approximate the real Pareto front, which denotes that the considered multi-objective

problem is difficult to optimise.

The epsilon indicator (E) represents a convergence metric [256, 257]. The metric is defined

as

I1
ε+(S,P) = inf

ε
{∀~p ∈ P|∃~s ∈ S :~s⪯ ~p+ ε},

where p⪯ s denotes that the point s weakly dominates the point p, which means that the solution

s is not worse than p in any of the objectives. This metric therefore defines the ε value which

denotes the value by which it is required to translate all the solutions in the obtained Pareto front

87

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

S, so that all the solutions in it weakly dominate all the solutions in the reference Pareto front P.

Thus, the smaller the ε value, the closer the considered Pareto front S is to the reference Pareto

front P.

The spread (S) metric represents a diversity metric which calculates the non-uniformity of

the obtained Pareto front S [251]. The metric is defined as

S(S,P) =
d f +dl +∑

|S|−1
i=1 |di− d̄|

d f +dl +(|S|−1)* d̄)
,

where d f and dl denote the minimum Euclidean distances between the solutions in S and the

extreme (bounding) solutions in the reference Pareto front P, di represents the Euclidean dis-

tance between consecutive solutions, and d̄ represents the average of all distances. A solution

set which is well spread out and diverse will have a smaller value of this metric.

5.2 Experimental design

In order to generate DRs for optimising multiple objectives simultaneously, four multi-objective

and many-objective algorithms will be used: NSGA-II [251], HaD-MOEA [258], MOEA/D

[259], and NSGA-III [260]. NSGA-II was chosen since it represents one of the most commonly

used multi-objective algorithms. The HaD-MOEA algorithm was chosen since it was previ-

ously used in several studies to generate DRs for optimising several objectives simultaneously.

Finally, NSGA-III and MOEA/D were chosen since they represent two popular algorithms for

optimising many-objective problems. The reason for choosing four different multi-objective

and many-objective algorithms lies in the fact that no single method can achieve the best per-

formance on all different problems. Therefore, all four methods were used obtain insights of

the possibility to evolve good DRs for optimising several objectives simultaneously.

For each of the multi-objective and many-objective scheduling problems that will be solved,

each of the four MOGP methods is executed 30 times to obtain statistically significant results.

The DRs are evolved using the training set consisting of 60 problem instances, and their per-

formance is evaluated on the test set. Through each algorithm run, a set of Pareto optimal

solutions for the training set will be obtained. However, not all solutions which belong to the

obtained Pareto set are also Pareto optimal on the test set. Therefore, the obtained Pareto front

needs to be evaluated on the test set to select only those solutions which belong to the Pareto

front for the test set. After the Pareto front on the test set is obtained for each run, these Pareto

fronts are evaluated using the six multi-objective metrics described previously. Since the opti-

mal Pareto front is not known for any of the considered scheduling problems, an approximation

of the Pareto front will be constructed and used as the reference Pareto front. The approximated

Pareto front will be constructed in a way that Pareto fronts obtained by all algorithms in all runs

88

5.3. Parameter tuning

are collected in a single set of solutions, out of which all nondominated solutions are selected

and form the approximated Pareto front. Therefore, the approximated Pareto front will consist

of the very best solutions which were obtained by all of the algorithms.

5.3 Parameter tuning

In order for the MOGP methods to obtain the best possible results, several parameters of those

methods were optimised. For determining the optimal parameter values the many-objective

scheduling problem consisting of six criteria (Twt, Ft, Nwt, Cmax, Tmax, Fmax) was selected.

The optimisation process is performed so the parameters are optimised one by one, and inde-

pendently of each other. For each parameter several values are tested, and the one for which

the best average value of the hypervolume metric on all the 30 runs is obtained, will be selected

as the optimal parameter value. All parameter values which were not optimised are set to the

values denoted in Table 4.3, except for the set of mutation operators. For multi-objective and

many-objective optimisation only the subtree mutation was used, since this mutation operator

leads to the most diverse populations. This is especially important in multi-objective optimi-

sation, where it is crucial to obtain Pareto fronts of diverse solutions. For the initial parameter

values the following were chosen: 200000 function evaluations as the termination condition,

100 individuals for the population size, and the mutation probability of 0.5. Regarding the al-

gorithm specific parameters, the following initial values were chosen: 56 reference points for

NSGA-III, five neighbours in HaD-MOEA, 10 neighbours and the Tchebycheff decomposition

method for MOEA/D. The initial parameters were chosen as a rule of thumb based on some

previously conducted experiments.

5.3.1 Optimisation of the number of function evaluations

The first optimised parameter is the number of function evaluations, which acts as the termi-

nation criterion for all procedures. It is crucial to find a good value for this parameter, since

choosing a too small value can lead to a premature termination of algorithms and therefore the

inability of obtaining good solutions. On the other hand, a too large number of evaluations is

not only computationally expensive, but can also cause the algorithms to overfit on the training

set.

Figure 5.2 represents the dependency of the multi-objective metrics on the number of eval-

uations which are used as the termination condition. The figure demonstrates that no single

algorithm achieves the best performance on all the considered metrics, which justifies the need

of using several metrics to objectively evaluate the performance of different multi-objective and

many-objective algorithms.

89

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

The values of the hypervolume metric steadily grow until the value of 60000 function evalu-

ations is reached, after which the values of the metric increase only slightly. The best overall val-

ues for this metric are achieved around 100000 evaluations, after which the values for this metric

begin to stagnate for most of the algorithms. The figure denotes that NSGA-II and NSGA-III

achieve mostly the same values for the hypervolume metric, except for the smaller number of

evaluations where NSGA-II achieves better values. On the other hand the MOEA/D and HaD-

MOEA algorithms have mostly achieved worse results for this metric than both NSGA-II and

NSGA-III.

For the GD, IGD, and epsilon metrics the behaviour of the algorithms is mostly the same.

The values of all three metrics decrease rapidly until around 40000 function evaluations are

performed, after which the decrease in values is quite slow. For the GD metric, all algorithms

achieve mostly the same values, with only small differences. However, for the IGD and epsilon

metrics the MOEA/D algorithm achieved the overall worst results, while the NSGA-II algorithm

usually achieved the best results for those two metrics.

Regarding the other two metrics it is not as evident after what number of evaluations their

values start to stagnate. However, it is evident that after around 100000 function evaluations

their values do not change as drastically. The NSGA-III algorithm has consistently achieved

the best results for the number of nondominated solutions metric. It is also interesting to note

that the NSGA-III algorithm was the first to reach the value of 25% of nondominated solutions

in the population. Out of the other three algorithms none has consistently achieved the over-

all worst results, since it was shown that the metric value depends heavily on the number of

function evaluations. Regarding the spread metric, MOEA/D achieved the overall worst results.

However, neither of the algorithms achieved consistently the best results for this metric, but

HaD-MOEA and NSGA-III have mostly performed better than NSGA-II for this metric.

Based on all the metric values it was decided that a number of 100000 function evaluations

will be used as the termination criterion, since for that number of evaluations all algorithms

achieve good results and the increase in the number of evaluations does not lead to significant

improvements in the considered metrics.

5.3.2 Population size optimisation

In this section the results obtained for optimising the population size will be presented. Five

population sizes were be tested, namely population sizes of 50, 100, 200, 500 and 1000 individ-

uals. For the NSGA-III algorithm different population sizes are used, since it is suggested that

the population size is equal to the number of reference points used by the algorithm. Therefore,

except for the initial population of 100 individuals, all other population sizes used with NSGA-

III will be equal to the number of reference points, which will be kept as close as possible to

the population sizes used by the other algorithms.

90

5.3. Parameter tuning

0 20 40 60 80 100 120 140 160 180 200

3

4

5

6

Number of evaluations (in thousands)

H
yp

er
vo

lu
m

e

MOEA/D HaD-MOEA NSGA-II NSGA-III

(a) Influence on the hypervolume metric

0 20 40 60 80 100 120 140 160 180 200
0.5

1

1.5

·10−2

Number of evaluations (in thousands)

IG
D

MOEA/D HaD-MOEA NSGA-II NSGA-III

(b) Influence on the IGD metric

0 20 40 60 80 100 120 140 160 180 200

0.05

0.1

Number of evaluations (in thousands)

G
D

MOEA/D HaD-MOEA NSGA-II NSGA-III

(c) Influence on the GD metric

91

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

0 20 40 60 80 100 120 140 160 180 200

10

20

Number of evaluations (in thousands)Pe
rc

en
ta

ge
of

no
nd

om
in

at
ed

so
lu

tio
ns

MOEA/D HaD-MOEA NSGA-II NSGA-III

(d) Influence on the percentage of nondominated solutions metric

0 20 40 60 80 100 120 140 160 180 200
2

4

6

8

10

Number of evaluations (in thousands)

E
ps

ilo
n

MOEA/D HaD-MOEA NSGA-II NSGA-III

(e) Influence on the epsilon metric

0 20 40 60 80 100 120 140 160 180 200

0.7

0.8

0.9

Number of evaluations (in thousands)

Sp
re

ad

MOEA/D HaD-MOEA NSGA-II NSGA-III

(f) Influence on the spread metric

Figure 5.2: Influence of the number of evaluations on the multi-objective metrics

92

5.3. Parameter tuning

Table 5.1 denotes the influence of the multi-objective metrics on the selected population

size. The results show that for all algorithms most of the metrics achieve the best values for the

largest population size. However, for the MOEA/D algorithm for half of the metrics the best

values were achieved for the smallest population size, while for the other half of the metrics

the best values were achieved for the largest population size. Since the hypervolume metric

is used to select the optimal parameter value, the population size of 50 individuals will be

selected for MOEA/D. For the HaD-MOEA and NSGA-II algorithms the population size of

1000 individuals will be used. The NSGA-III algorithm will also use the largest population size.

However, since the number of reference points in NSGA-III depends on the number of criteria

which are optimised, the population size will thus vary for the different optimisation problems.

The population sizes for NSGA-III will therefore be 1275 for three objectives, 1365 for five

objectives, 1287 for six objectives, 924 for seven objectives, and 1287 for nine objectives.

5.3.3 Mutation probability optimisation

The second parameter which also has a large influence on the performance of the algorithms

is the mutation probability. It is important to select a good value of this parameter to ensure

a good balance between convergence of the algorithm and the diversity of the solutions. For

the mutation probability the following five values were used: 0.1, 0.3, 0.5, 0.7 and 0.9. Table

5.2 represents the results achieved for the different multi-objective metrics when using the dif-

ferent values for the mutation probability. The results show that each of the algorithms prefers

a different value for the mutation probability, which is most probably the consequence of the

different selection mechanisms that each of the algorithms use. The results demonstrate that the

multi-objective metrics sometimes achieve their optimal values for different mutation probabil-

ities. As previously when the population size was optimised, the mutation probability which

achieved the best value for the hypervolume metric will be selected.

5.3.4 Algorithm specific parameter optimisation

Since the MOEA/D and HaD-MOEA algorithms use additional parameters, the values of those

parameters will also be optimised. Both algorithms use a parameter which denotes the neigh-

bourhood size. For this parameter five different values were tried out: 2, 3, 5, 10 and 20. The

MOEA/D algorithm uses an additional parameter which determines how the decomposition

of the multi-objective problem is performed. For this algorithm three different decomposition

methods are compared: the Tchebycheff approach, the normalised Tchebycheff approach, and

the boundary intersection (BI) approach.

Table 5.3 represents the influence of the neighbourhood size on the multi-objective metrics.

The results show that both algorithms prefer a smaller neighbourhood size, MOEA/D a neigh-

93

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

Table 5.1: Influence of the population size on the multi-objective metrics

Algorithm Metric Population size

50 100 200 500 1000

MOEA/D

HV 5.692 5.393 5.681 5.536 5.576

IGD 5.759 6.601 5.776 6.097 6.043

GD 1.539 1.295 1.173 0.798 0.745

ND 39.8 23.8 15.2 8.7 5.0

E 2.438 3.012 2.428 2.365 2.253

S 0.725 0.752 0.712 0.704 0.681

HaD-MOEA

HV 4.956 5.55 5.999 7.0377 7.272

IGD 6.897 6.200 5.490 4.060 3.808

GD 2.987 1.401 1.695 1.153 0.998

ND 20.7 25.1 16.1 10.7 7.3

E 3.509 2.904 3.857 2.000 1.829

S 0.821 0.721 0.665 0.601 0.597

NSGA-II

HV 7.107 5.665 8.217 8.474 8.839

IGD 4.782 5.749 3.306 2.862 2.626

GD 3.938 1.439 1.587 0.729 0.477

ND 40.5 21.7 32.5 25.6 18.5

E 3.445 2.388 2.332 1.737 1.511

S 0.548 0.721 0.517 0.497 0.490

NSGA-III population size

56 100 252 462 1287

NSGA-III

HV 6.386 5.703 7.634 8.308 8.381

IGD 5.132 6.024 3.593 2.959 2.790

GD 2.037 1.389 0.902 0.601 0.422

ND 41.5 26.4 30.3 24.2 16

E 2.752 2.722 2.061 1.579 1.394

S 0.692 0.730 0.565 0.531 0.505

94

5.3. Parameter tuning

Table 5.2: Influence of the mutation probability on the multi-objective metrics

Algorithm Metric Mutation probability

0.1 0.3 0.5 0.7 0.9

MOEA/D

HV 5.564 5.553 5.692 5.679 5.687

IGD 6.250 6.157 5.759 5.564 5.790

GD 1.833 1.645 1.539 1.485 1.628

ND 33.9 38.5 39.8 40.9 36.4

E 3.119 2.590 2.438 2.327 2.425

S 0.767 0.737 0.725 0.757 0.776

HaD-MOEA

HV 7.396 7.492 7.272 7.579 7.486

IGD 3.851 3.634 3.808 3.601 3.721

GD 1.258 0.848 0.998 1.050 1.130

ND 7.7 8.1 7.3 6.4 6.1

E 2.289 1.804 1.829 1.925 2.067

S 0.585 0.578 0.597 0.565 0.600

NSGA-II

HV 8.945 8.929 8.839 8.536 8.833

IGD 2.611 2.544 2.626 2.725 2.626

GD 0.444 0.446 0.477 0.522 0.547

ND 20.7 19.2 18.5 18.7 17.7

E 1.448 1.467 1.511 1.477 1.472

S 0.499 0.498 0.490 0.509 0.507

NSGA-III

HV 8.287 8.367 8.381 8.718 8.915

IGD 2.821 2.743 2.790 2.577 2.264

GD 0.410 0.424 0.422 0.431 0.409

ND 14 14.8 16 16.6 17.8

E 1.436 1.429 1.394 1.378 1.387

S 0.509 0.515 0.505 0.513 0.495

95

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

Table 5.3: Influence of the neighbourhood size on the multi-objective metrics

Algorithm Metric Neighbourhood size

2 3 5 10 20

MOEA/D

HV 5.860 5.848 5.708 5.692 5.617

IGD 5.692 5.654 5.846 5.759 5.896

GD 2.349 1.760 1.865 1.539 1.464

ND 29.5 37.8 37.1 39.8 40

E 2.343 2.234 2.410 2.438 2.331

S 0.495 0.738 0.741 0.725 0.703

HaD-MOEA

HV 7.534 7.477 7.579 7.447 7.404

IGD 3.622 3.716 3.601 3.811 3.796

GD 0.962 1.112 1.050 1.066 1.019

ND 6.9 6.3 6.4 6.6 6.8

E 1.996 2.005 1.925 1.904 1.895

S 0.591 0.607 0.565 0.586 0.606

bourhood of size two and HaD-MOEA a neighbourhood of size five. In addition, the results

also denote that for no single parameter value were the two MOGP algorithms able to achieve

the best performance for all multi-objective metrics.

Table 5.4 represents the results obtained for the different decomposition methods used by

the MOEA/D algorithm. The results show that all metrics achieved the best values when the

normalised Tchebycheff decomposition method is used. Therefore, this method will be used by

MOEA/D for all further experiments.

5.4 Results

This section will present the results achieved by the selected algorithms for different multi-

objective and many-objective scheduling problems. In the first part the results achieved by the

MOGP algorithms will be compared to those achieved by SOGP to analyse whether MOGP

algorithms can match the performance of SOGP for individual criteria. The second part of

this section will use the multi-objective metrics to compare the performance of the MOGP

algorithms between themselves. Since most tables in this section will include results for several

criteria combinations, the results achieved for each combination will be separated by a row

96

5.4. Results

Table 5.4: Influence of the decomposition methods on the multi-objective metrics

Algorithm Metric Decomposition method

Tchebycheff Norm. Tchebycheff BI

MOEA/D

HV 5.86 6.449 4.318

IGD 5.692 4.839 8.580

GD 2.349 2.081 2.493

ND 29.5 35.5 27

E 2.343 2.330 2.828

S 0.695 0.661 0.864

denoting the optimised criteria combination for which the subsequent results were obtained.

5.4.1 Comparison of results achieved by MOGP and SOGP

In this section the results obtained by the MOGP algorithms will be compared to the results

obtained by SOGP, for each of the optimised multi-objective and many-objective scheduling

problems. For each scheduling criterion the individual which achieved the best value for that

criterion will be selected from each algorithm run. This means that different individuals can be

selected for the various scheduling criteria. The tables will denote the minimum, median, and

maximum values for each of the optimised objectives, achieved by the best individuals obtained

by all performed algorithm runs. Those experiments for which MOGP achieved significantly

better results than SOGP will be denoted in dark grey, while the experiments for which there

was no significant difference between the results obtained by MOGP and SOGP will be denoted

in light grey.

Table 5.5 represents the results achieved by the different MOGP methods for the simulta-

neous optimisation of three objectives. The table shows some quite interesting and unexpected

results. The MOGP methods achieved results which are not only equal to those of SOGP, but

in most cases even better. The NSGA-III algorithm achieved the best results among all the

MOGP algorithms, and has, except for one occasion, consistently obtained significantly better

results than SOGP. Although the performance of the other MOGP algorithms is not as good as

that of NSGA-III, they can, for most criteria, still achieve significantly better or equally good

results as SOGP. Out of the remaining three MOGP algorithms, NSGA-II achieved the best per-

formance, followed closely by HaD-MOEA, while the MOEA/D algorithm achieved the worst

performance, rarely being able to obtain significantly better results than SOGP. For most criteria

the improvements achieved by MOGP algorithms over SOGP are not large, like for example for

97

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

the Cw criterion where a maximum improvement of 0.7% for the median value was achieved.

However, in certain occasions the improvements have shown to be quite significant. The most

evident example of this is when optimising the (Nwt, Tmax, Twt) criteria combination, where

NSGA-III evolved DRs that outperform the median values of SOGP by 8.1%, 8.5%, and 3%

for the Nwt, Tmax and Twt criterion, respectively.

Figure 5.3 represents the box plot representation of results for all the tested criteria combi-

nations. The figure denotes how for several criteria the MOGP algorithms achieve much better

solution distributions than SOGP. This is especially evident for the Ft and Cw criteria. The mag-

nitude of the improvements largely depends on the combination of criteria which is optimised.

When the Twt criterion was paired with the Nwt, and Tmax criteria, significant improvements

were obtained for that criterion when compared to SOGP. On the other hand, if the Twt criterion

is combined with the Cw and Ft criteria it is evident that the MOGP algorithms do not achieve

any significant improvements, but rather achieve results which are even worse in some cases.

Similarly, the best results for the Cmax criterion are achieved if it is not paired up with any due

date related criteria like Twt, Tmax, or Nwt, but rather if it is optimised together with the Fmax

and Ft criteria. Therefore, by carefully grouping different criteria together, the results achieved

by using MOGP algorithms can be improved, and can even outperform the results obtained by

SOGP in most cases.

Table 5.6 represents the results achieved for optimising five scheduling criteria simultane-

ously. The MOGP algorithms can, in most of the cases, once again achieve equally good results

as the SOGP algorithm. For the (Cw, Etwt, Ft, Nwt, Twt) criteria combination the MOGP

algorithms achieve good performance, even outperforming the minimum value of SOGP by

11.6% for the Etwt criterion. For the (Fmax, Ft, Nwt, Tmax, Twt) criteria combination the algo-

rithms outperform the median values of SOGP by 3.6% for the Twt criterion, 9.6% for the Nwt

criterion, and performing equally well as SOGP for the other three criteria. However, for the

(Cmax, Etwt, Ft, Mut , Twt) criteria combination, the improvements which the MOGP algorithms

achieved for the optimised criteria are not as prominent as for the other criteria combinations.

The NSGA-III algorithm achieves dominant results only for the (Fmax, Ft, Nwt, Tmax, Twt)

criteria combination. For this criteria combination the other MOGP algorithms were also

achieved results which are mostly significantly better or equal to those of SOGP. For the (Cmax,

Cw, Mut , Fmax, Ft) criteria combination the NSGA-III algorithm achieves the best results as

well, however, it did not achieve significantly better results than SOGP for all optimised cri-

teria. For the other two criteria combinations the NSGA-II algorithm achieved the best results

among all the MOGP algorithms, and for most of the objectives it significantly outperformed

the results obtained by SOGP. For this number of criteria it is also evident that the MOGP

algorithms have difficulties in outperforming the results obtained by SOGP. This can best be

observed when optimising the (Cmax, Etwt, Ft, Mut , Twt) criteria combination, for which only

98

5.4. Results

Table 5.5: Results obtained when optimising three objectives simultaneously

Metrics Algorithm

MOEA/D HaD-MOEA NSGA-II NSGA-III SOGP

Cmax, Cw, Twt

Min 38.07 37.87 37.91 37.88 38.02

Med 38.29 38.29 38.22 38.15 38.26Cmax

Max 38.49 38.43 38.37 38.36 38.68

Min 868.6 868.9 868.0 868.6 873.8

Med 870.6 869.5 869.0 869.1 874.9Cw

Max 874.8 871.7 870.9 869.9 877.3

Min 13.38 13.15 12.96 12.70 12.96

Med 14.50 13.82 13.69 13.40 13.60Twt

Max 15.04 14.65 14.29 13.95 14.62

Cmax, Fmax, Ft

Min 37.88 37.95 37.98 37.89 38.02

Med 38.26 38.16 38.13 38.05 38.26Cmax

Max 38.51 38.36 38.28 38.22 38.68

Min 13.82 13.67 13.63 13.59 13.60

Med 14.08 14.02 13.89 13.78 13.96Fmax

Max 14.51 14.62 14.20 14.13 14.48

Min 153.9 153.5 153.1 153.5 154.0

Med 155.0 154.3 154.1 154.0 155.0Ft

Max 158.5 154.9 155.7 155.0 158.6

Cmax, Fmax, Tmax

Min 37.99 37.93 37.83 37.87 38.02

Med 38.26 38.21 38.11 38.09 38.26Cmax

Max 38.47 38.46 38.29 38.27 38.68

Min 13.72 13.81 13.63 13.59 13.60

Med 14.14 14.09 13.86 13.80 13.96Fmax

Max 14.71 14.53 14.13 13.99 14.48

Min 2.372 2.383 2.371 2.371 2.376

Med 2.572 2.478 2.475 2.444 2.653Tmax

Max 2.891 2.690 2.671 2.552 4.051

99

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

Table 5.5: Results obtained when optimising three objectives simultaneously

Metrics Algorithm

MOEA/D HaD-MOEA NSGA-II NSGA-III SOGP

Cw, Ft, Twt

Min 869.3 869.0 867.9 867.9 873.8

Med 870.7 849.5 869.2 869.1 873.8Cw

Max 874.8 873.0 870.7 869.5 874.9

Min 153.4 153.3 153.4 153.1 154.0

Med 154.7 154.4 154.0 153.9 155.0Ft

Max 156.3 155.9 155.4 155.2 158.6

Min 13.19 13.02 13.03 12.79 12.96

Med 14.38 14.23 13.87 13.65 13.60Twt

Max 15.76 15.04 15.32 14.47 14.62

Nwt, Tmax, Twt

Min 6.423 6.235 6.275 6.164 6.384

Med 6.650 6.567 6.456 6.439 7.005Nwt

Max 7.138 7.153 6.810 6.857 7.939

Min 2.391 2.359 2.327 2.249 2.376

Med 2.538 2.521 2.477 2.428 2.653Tmax

Max 2.747 2.789 2.729 2.560 4.051

Min 13.21 12.94 12.72 12.28 12.96

Med 13.74 13.56 13.25 13.19 13.60Twt

Max 14.72 15.72 14.28 14.12 14.62

100

5.4. Results

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

37.8

38

38.2

38.4

38.6

Cmax

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

870

875

Cw

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

13

14

15

Twt

(a) Results obtained when optimising the (Cmax,Cw,Twt) criteria combination

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

37.8

38

38.2

38.4

38.6

Cmax

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

13.5

14

14.5

Fmax

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

154

156

158

Ft

(b) Results obtained when optimising the (Cmax,Fmax,Ft) criteria combination

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

37.8

38

38.2

38.4

38.6

Cmax

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

13.5

14

14.5

Fmax

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

2.5

3

3.5

4

Tmax

(c) Results obtained when optimising the (Cmax,Fmax,Tmax) criteria combination

101

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

870

875

Cw

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

154

156

158

Ft

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

13

14

15

16
Twt

(d) Results obtained when optimising the (Cw,Ft,Twt) criteria combination

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

6

6.5

7

7.5

8

Nwt

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

2.5

3

3.5

4

Tmax

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

12

13

14

15

16
Twt

(e) Results obtained when optimising the (Nwt,Tmax,Twt) criteria combination

Figure 5.3: Box plot representation of the results obtained when optimising three objectives
simultaneously

102

5.4. Results

Table 5.6: Results obtained when optimising five objectives simultaneously

Metrics Algorithm

MOEA/D HaD-MOEA NSGA-II NSGA-III SOGP

Cmax, Cw, Mut , Fmax, Ft

Min 38.06 37.90 37.83 37.85 38.02

Med 38.31 38.16 38.06 38.04 38.26Cmax

Max 38.52 38.32 38.25 38.21 38.68

Min 868.3 869.4 868.5 868.0 873.8

Med 871.9 870.1 869.6 869.2 874.9Cw

Max 880.2 874.9 874.0 870.2 877.3

Min 0.048 0.049 0.047 0.046 0.046

Med 0.057 0.057 0.054 0.054 0.054Mut

Max 0.076 0.064 0.057 0.059 0.058

Min 13.90 13.76 13.74 13.85 13.60

Med 14.17 14.03 13.91 13.92 13.96Fmax

Max 14.73 14.56 14.29 14.08 14.48

Min 153.8 153.4 153.7 153.2 154.0

Med 155.7 154.4 154.1 153.7 155.0Ft

Max 167.3 157.0 155.2 154.5 158.6

Cmax, Etwt, Ft, Mut , Twt

Min 38.09 37.90 37.87 38.01 38.02

Med 38.49 38.17 38.16 38.28 38.26Cmax

Max 39.64 38.34 38.42 38.53 38.68

Min 267.7 269.1 200.0 239.9 236.9

Med 300.3 315.1 265.5 273.8 274.4Etwt

Max 394.4 360.6 305.8 291.1 303.0

Min 153.4 153.3 153.3 155.7 154.0

Med 157.0 155.7 154.5 163.3 155.0Ft

Max 171.6 159.3 156.8 178.2 158.6

Min 0.051 0.052 0.046 0.048 0.46

Med 0.063 0.061 0.051 0.052 0.54Mut

Max 0.077 0.070 0.056 0.056 0.58

Min 13.67 13.01 13.16 13.42 12.96

Med 15.25 13.83 13.75 14.02 13.60Twt

Max 18.48 14.71 14.26 15.16 14.62

103

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

Table 5.6: Results obtained when optimising five objectives simultaneously

Metrics Algorithm

MOEA/D HaD-MOEA NSGA-II NSGA-III SOGP

Cw, Etwt, Ft, Nwt, Twt

Min 869.3 869.2 869.3 867.0 873.8

Med 875.2 871.8 871.0 871.3 874.9Cw

Max 888.5 877.6 874.5 875.4 877.3

Min 261.0 279.8 209.4 242.7 236.9

Med 302.9 320.5 260.6 273.8 274.4Etwt

Max 393.0 420.2 284.6 298.3 303.0

Min 153.5 153.7 153.4 153.9 154.0

Med 156.9 155.7 154.6 155.3 155.0Ft

Max 171.4 160.6 156.8 157.2 158.6

Min 6.454 6.457 6.329 6.270 6.384

Med 6.885 6.600 6.546 6.476 7.005Nwt

Max 7.395 7.036 6.946 6.694 7.939

Min 13.12 13.19 12.86 12.66 12.96

Med 14.28 13.64 13.36 13.34 13.60Twt

Max 15.60 14.70 14.17 13.67 14.62

Fmax, Ft, Nwt, Tmax, Twt

Min 13.90 13.70 13.60 13.66 13.60

Med 14.48 14.11 13.90 13.81 13.96Fmax

Max 15.42 15.55 14.16 14.10 14.48

Min 153.9 153.4 153.3 153.3 154.0

Med 155.3 154.3 153.7 153.8 155.0Ft

Max 157.4 155.9 154.7 154.6 158.6

Min 6.342 6.365 6.174 6.121 6.384

Med 6.742 6.632 6.391 6.414 7.005Nwt

Max 6.979 6.932 6.731 6.584 7.939

Min 2.361 2.385 2.330 2.350 2.376

Med 2.593 2.457 2.424 2.398 2.653Tmax

Max 2.800 2.635 2.547 2.478 4.051

Min 13.32 12.80 12.68 12.72 12.96

Med 14.01 13.65 13.13 13.11 13.60Twt

Max 14.82 14.79 13.86 13.47 14.62

104

5.4. Results

the NSGA-II algorithm achieved a good performance for all the optimised criteria. The other

MOGP algorithms did not perform well for this criteria combination, since they achieved sig-

nificantly worse results than SOGP for some of the criteria. Therefore, it is evident that for a

small increase in the number of optimised criteria a single algorithm is unable to achieve the

best results for all the considered optimisation problems.

Figure 5.4 shows the box plot representation of the results for optimising five scheduling

criteria simultaneously. Once again it can be seen that the choice of the criteria which are

optimised together heavily influences the performance of the MOGP algorithms. For example,

when the flowtime and due date related criteria are paired together as in the (Fmax, Ft, Nwt,

Tmax, Twt) criteria combination, the MOGP algorithms can achieve good performance for all

the criteria. However, if the Twt criterion is paired with the Cmax criterion, the performance

of the MOGP algorithms on both criteria is similar to that of SOGP. Pairing the Ft criterion

with the Etwt criterion also causes the MOGP algorithms to achieve bad performance for the

Ft criterion. The MOGP methods achieved the worst results when optimising the (Cmax, Etwt,

Ft, Mut , Twt) criteria combinations, which is probably due to the fact that it consists of several

different criteria types, and therefore it is hard for the MOGP algorithms to obtain good values

for all the criteria.

Table 5.7 represents the results achieved for optimising six criteria simultaneously. For this

number of criteria, only the combination which was used for optimising the algorithm param-

eters will be considered. The NSGA-III algorithm achieved significantly better results than

SOGP for all of the optimised criteria. The other algorithms were able to achieve good results

as well, performing significantly better or equally well as SOGP for most of the optimised cri-

teria. Out of the other algorithms, NSGA-II can even perform better for certain criteria than

NSGA-III. For the due date related criteria the MOGP algorithms achieved improvements over

the median values obtained by SOGP of approximately 9.5% for the Nwt criterion, 10.1% for

the Tmax criterion, and 4.8% for the Twt criterion. For the other optimised criteria the obtained

improvements are not as prominent. Even though scheduling criteria of different types were

optimised together, it did not have any negative influence on the performance of the MOGP

methods. The reason for this could be that the Etwt and Mut criteria were not included in the

optimised combination of criteria.

Figure 5.5 shows the box plot representation of the results for optimising six criteria simulta-

neously. The figure denotes that the NSGA-III algorithm obtains the best solution distributions

out of all MOGP algorithms for all six criteria. The NSGA-II algorithm also achieved good re-

sults on all of the tested criteria, while the other two algorithms struggle on certain criteria. Out

of the optimised criteria, the NSGA-III algorithm achieved much better solution distributions

than SOGP for the Cmax, Ft, Nwt, Tmax and Twt criteria, while on the other hand the method

struggled mostly for the Fmax criterion, but still managed to achieve significantly better results

105

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

SOGP
37.8 38

38.2

38.4

38.6

C
m

ax

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

SOGP

870

875

880

C
w

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

SOGP

13.5 14

14.5

F
m

ax

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

SOGP

155

160

165

F
t

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

SOGP

0.05

0.06

0.07

M
ut

(a)R
esults

obtained
w

hen
optim

ising
the

(C
m

ax ,C
w

,F
m

ax ,F
t,M

ut)criteria
com

bination

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

SOGP

38

38.5 39

39.5

C
m

ax

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

SOGP

200

300

400

E
tw

t

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

SOGP

160

170

180
F

t

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

SOGP

0.05

0.06

0.07

M
ut

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

SOGP

14 16 18

T
w

t

(b)R
esults

obtained
w

hen
optim

ising
the

(C
m

ax ,E
tw

t,F
t,M

ut ,T
w

t)criteria
com

bination

106

5.4. Results

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

SOGP

87
0

88
0

89
0

C
w

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

SOGP

20
0

30
0

40
0

E
tw

t

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

SOGP

15
5

16
0

16
5

17
0

F
t

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

SOGP

6.
57

7.
58

N
w

t

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

SOGP
131415

T
w

t

(c
)R

es
ul

ts
ob

ta
in

ed
w

he
n

op
tim

is
in

g
th

e
(C

w
,E

tw
t,

F
t,

N
w

t,
T

w
t)

cr
ite

ri
a

co
m

bi
na

tio
n

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

SOGP

1415

F m
ax

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

SOGP

15
4

15
6

15
8

F
t

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

SOGP

6

6.
57

7.
58

N
w

t

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

SOGP

2.
53

3.
54

T m
ax

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

SOGP

131415
T

w
t

(d
)R

es
ul

ts
ob

ta
in

ed
w

he
n

op
tim

is
in

g
th

e
(F

m
ax

,F
t,

N
w

t,
T m

ax
,T

w
t)

cr
ite

ri
a

co
m

bi
na

tio
n

Fi
gu

re
5.

4:
B

ox
pl

ot
re

pr
es

en
ta

tio
n

of
th

e
re

su
lts

ob
ta

in
ed

w
he

n
op

tim
is

in
g

fiv
e

ob
je

ct
iv

es
si

m
ul

ta
ne

ou
sl

y

107

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

Table 5.7: Results obtained when optimising six objectives simultaneously

Metrics Algorithm

MOEA/D HaD-MOEA NSGA-II NSGA-III SOGP

Min 38.10 38.04 37.89 37.87 38.02

Med 38.34 38.23 38.11 38.07 38.26Cmax

Max 38.47 38.38 38.25 38.24 38.68

Min 13.97 13.69 13.64 13.55 13.60

Med 14.25 14.06 13.87 13.82 13.96Fmax

Max 15.14 14.39 14.05 14.08 14.48

Min 153.7 153.4 153.1 153.2 154.0

Med 154.9 154.1 153.7 153.5 155.0Ft

Max 157.2 155.7 154.7 154.4 158.6

Min 6.480 6.272 6.188 6.183 6.384

Med 6.730 6.606 6.338 6.380 7.005Nwt

Max 6.993 6.915 6.624 6.567 7.939

Min 2.423 2.337 2.301 2.347 2.376

Med 2.611 2.428 2.398 2.384 2.653Tmax

Max 2.800 2.665 2.494 2.516 4.051

Min 13.13 12.85 12.59 12.70 12.96

Med 14.20 13.49 13.09 12.95 13.60Twt

Max 14.94 14.44 13.85 13.60 14.62

108

5.4. Results

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P
37.8

38

38.2

38.4

38.6

Cmax

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

13.5

14

14.5

15

Fmax

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

154

156

158

Ft

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

6.5

7

7.5

8

Nwt
M

O
E

A
/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

2.5

3

3.5

4

Tmax

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

13

14

15

Twt

Figure 5.5: Box plot representation of the results obtained when optimising six objectives
simultaneously

than SOGP even for that criterion.

Table 5.8 represents the results which are achieved by the MOGP algorithms when optimis-

ing seven criteria simultaneously. For the (Cmax, Cw, Fmax, Ft, Nwt, Tmax, Twt) criteria com-

bination the NSGA-II and NSGA-III algorithms both achieved the best results, with NSGA-II

achieving slightly better results for most of the criteria. For the given criteria combination both

algorithms achieve significantly better results than SOGP for six criteria, and equally good re-

sults on the remaining criterion. The other MOGP algorithms are unable to perform equally

well, but can still outperform SOGP for several optimised criteria. The MOGP algorithms

again achieve good performance for the due date related criteria, resulting in improvements of

8.4%, 9.5%, and 4.0% over the median values of SOGP for the Nwt, Tmax, and Twt criteria,

respectively. This proves that even for larger criteria combinations the MOGP algorithms can

significantly outperform the results of SOGP. However, on the other two criteria combinations

the NSGA-II algorithm achieves the best performance, with NSGA-III and HaD-MOEA per-

forming worse to a small extent. For those two criteria combinations one can observe that for

certain criteria the multi-objective methods are unable to achieve significantly better results than

109

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

SOGP.

Figure 5.6 shows the box plot representation of the results for optimising seven criteria

simultaneously. The figure denotes that the best solutions for all criteria are mostly achieved

when optimising the (Cmax,Cw,Fmax,Ft,Nwt,Tmax,Twt) criteria combination. For the other

two criteria combinations the NSGA-II algorithm is usually the only method which achieved

good solution distributions for most of the criteria. The other three algorithms exhibit more

problems on these two criteria combinations. By analysing the criteria combinations on which

the multi-objective algorithms do not perform well, it is can be observed that in those two

criteria combinations the Mut or Etwt criteria are optimised. Based on the fact that the multi-

objective methods achieved inferior results when these criteria were also included in the five

objective optimisation problems, it can be concluded that the algorithms perform well if the

Etwt and Mut criteria are not included in the optimisation set. On the other hand, the inclusion

of those two criteria in the optimisation set has a negative effect on the performance of the

MOGP algorithms, especially on NSGA-III which with the inclusion of those criteria becomes

unable to match the performance of NSGA-II.

Table 5.9 represents the results for optimising all nine scheduling criteria simultaneously.

For this criteria combination the MOGP algorithms exhibit further deterioration in their perfor-

mance. The NSGA-II algorithm again achieved the best results out of all the considered MOGP

algorithms. When compared to the results obtained by SOGP, NSGA-II achieved significantly

better results in five occasions. The other three algorithms achieved significantly better results

than SOGP for at most three criteria. Therefore, for this criteria combination the NSGA-II

algorithm is the most dominant out of all the MOGP algorithms. It should be noted that the

NSGA-III algorithm achieved a significant deterioration in the results, achieving even the worst

results out of all methods for certain criteria. Therefore, NSGA-III seems to perform poorly

when many different criteria types are optimised together. For this criteria combination the

algorithms are unable to achieve equally good improvements over SOGP as previously.

Figure 5.7 shows the box plot representation of the results for optimising all nine criteria

simultaneously. The figure shows that although the differences in the results between MOGP

algorithms and SOGP are not as large as for smaller criteria combinations, the MOGP algo-

rithms can still outperform SOGP for certain criteria. The figure also demonstrates how for

several criteria the NSGA-III algorithm achieves quite bad solution distributions, in many cases

even worse than that of SOGP. The worst solution distributions by the MOGP algorithms are

achieved for the Etwt, Fmax, Ft and Twt criteria.

The results have demonstrated that the MOGP algorithms can outperform, or perform at

least equally well as SOGP for most of the tested criteria combinations. Although MOGP

algorithms achieved better performance on smaller criteria combinations than on larger ones, it

nevertheless seems that the combination of criteria which are optimised has a larger influence

110

5.4. Results

Table 5.8: Results obtained when optimising seven objectives simultaneously

Metrics Algorithm

MOEA/D HaD-MOEA NSGA-II NSGA-III SOGP

Cmax, Cw, Fmax, Ft, Nwt, Tmax, Twt

Min 38.07 38.02 37.88 37.96 38.02

Med 38.29 38.28 38.11 38.14 38.26Cmax

Max 38.41 38.43 38.30 38.25 38.68

Min 869.3 868.2 868.4 868.7 873.8

Med 871.2 870.3 869.1 869.5 874.9Cw

Max 874.7 874.3 869.6 871.0 877.3

Min 13.75 13.70 13.50 13.64 13.60

Med 14.21 14.17 13.91 13.88 13.96Fmax

Max 14.97 14.77 14.29 14.05 14.48

Min 153.5 153.5 153.1 153.2 154.0

Med 154.2 154.0 153.5 153.9 155.0Ft

Max 155.3 155.2 154.3 154.7 158.6

Min 6.557 6.163 6.112 6.164 6.384

Med 6.837 6.593 6.416 6.428 7.005Nwt

Max 7.154 6.884 6.758 6.678 7.939

Min 2.440 2.376 2.352 2.357 2.376

Med 2.609 2.459 2.402 2.404 2.653Tmax

Max 2.766 2.658 2.654 2.496 4.051

Min 13.44 12.83 12.58 12.77 12.96

Med 14.31 13.59 13.13 13.06 13.60Twt

Max 15.04 14.17 14.11 13.88 14.62

111

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

Table 5.8: Results obtained when optimising seven objectives simultaneously

Metrics Algorithm

MOEA/D HaD-MOEA NSGA-II NSGA-III SOGP

Cmax, Cw, Fmax, Ft, Mut , Tmax, Twt

Min 38.07 37.84 37.86 37.90 38.02

Med 38.35 38.17 38.14 38.21 38.26Cmax

Max 38.61 38.33 38.38 38.43 38.68

Min 868.8 869.2 869.2 869.2 873.8

Med 874.6 871.6 870.3 873.9 874.9Cw

Max 878.5 877.1 873.4 879.2 877.3

Min 13.91 13.85 13.65 13.76 13.60

Med 14.52 14.06 14.03 14.09 13.96Fmax

Max 15.87 14.50 14.36 14.60 14.48

Min 153.5 153.3 153.5 153.6 154.0

Med 156.2 154.3 154.0 154.8 155.0Ft

Max 169.0 156.7 155.5 162.2 158.6

Min 0.054 0.047 0.046 0.047 0.046

Med 0.066 0.061 0.052 0.052 0.054Mut

Max 0.080 0.068 0.058 0.059 0.058

Min 2.446 2.377 2.359 2.412 2.376

Med 2.605 2.454 2.420 2.478 2.653Tmax

Max 3.238 2.672 2.532 2.733 4.051

Min 13.24 13.01 12.85 13.75 12.96

Med 14.44 13.88 13.57 14.11 13.60Twt

Max 17.09 14.54 14.69 15.21 14.62

112

5.4. Results

Table 5.8: Results obtained when optimising seven objectives simultaneously

Metrics Algorithm

MOEA/D HaD-MOEA NSGA-II NSGA-III SOGP

Cmax, Etwt, Fmax, Ft,Mut , Nwt, Tmax

Min 38.00 38.04 37.97 38.18 38.02

Med 38.34 38.19 38.19 38.34 38.26Cmax

Max 39.12 38.33 38.36 38.59 38.68

Min 217.6 270.4 213.0 224.9 236.9

Med 303.7 311.3 269.8 301.7 274.4Etwt

Max 400.8 377.8 284.9 357.7 303.0

Min 13.88 13.83 13.78 13.97 13.60

Med 14.30 14.17 14.07 14.48 13.96Fmax

Max 15.98 14.69 14.28 15.72 14.48

Min 154.1 153.8 153.8 153.5 154.0

Med 157.9 156.5 155.2 159.2 155.0Ft

Max 180.1 163.8 157.8 173.3 158.6

Min 0.052 0.049 0.047 0.046 0.046

Med 0.065 0.061 0.051 0.051 0.054Mut

Max 0.080 0.067 0.054 0.059 0.058

Min 6.545 6.357 6.407 6.492 6.384

Med 7.087 6.707 6.716 6.870 7.005Nwt

Max 7.445 6.925 6.929 7.247 7.939

Min 2.427 2.362 2.188 2.344 2.376

Med 2.714 2.423 2.423 2.478 2.653Tmax

Max 3.047 2.523 2.531 2.598 4.051

113

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

MOEA/D
HaD-MOEA

NSGA-II
NSGA-III

SOGP

38

38.2

38.4

38.6

C
m

ax

MOEA/D
HaD-MOEA

NSGA-II
NSGA-III

SOGP

870

875

C
w

MOEA/D
HaD-MOEA

NSGA-II
NSGA-III

SOGP

13.5 14

14.5 15

F
m

ax

MOEA/D
HaD-MOEA

NSGA-II
NSGA-III

SOGP

154

156

158

F
t

MOEA/D
HaD-MOEA

NSGA-II
NSGA-III

SOGP

6

6.5 7

7.5 8

N
w

t

MOEA/D
HaD-MOEA

NSGA-II
NSGA-III

SOGP

2.5 3

3.5 4

T
m

ax

MOEA/D
HaD-MOEA

NSGA-II
NSGA-III

SOGP

13 14 15

T
w

t

(a)R
esults

obtained
w

hen
optim

ising
the

(C
m

ax ,C
w

,F
m

ax ,F
t,N

w
t,T

m
ax ,T

w
tcriteria

com
bination

MOEA/D
HaD-MOEA

NSGA-II
NSGA-III

SOGP

37.8 38

38.2

38.4

38.6

C
m

ax

MOEA/D
HaD-MOEA

NSGA-II
NSGA-III

SOGP

870

875

880
C

w
MOEA/D

HaD-MOEA
NSGA-II

NSGA-III
SOGP

14 15 16

F
m

ax

MOEA/D
HaD-MOEA

NSGA-II
NSGA-III

SOGP

155

160

165

170
F

t

MOEA/D
HaD-MOEA

NSGA-II
NSGA-III

SOGP

0.05

0.06

0.07

0.08

M
ut

MOEA/D
HaD-MOEA

NSGA-II
NSGA-III

SOGP

2.5 3

3.5 4

T
m

ax

MOEA/D
HaD-MOEA

NSGA-II
NSGA-III

SOGP

14 16

T
w

t

(b)R
esults

obtained
w

hen
optim

ising
the

(C
m

ax ,C
w

,F
m

ax ,F
t,M

ut ,T
m

ax ,T
w

tcriteria
com

bination

114

5.4. Results

MOEA/D
HaD-MOEA
NSGA-II
NSGA-III
SOGP

38

38
.539

C
m

ax

MOEA/D
HaD-MOEA
NSGA-II
NSGA-III
SOGP

20
0

30
0

40
0

E
tw

t

MOEA/D
HaD-MOEA
NSGA-II
NSGA-III
SOGP

141516

F m
ax

MOEA/D
HaD-MOEA
NSGA-II
NSGA-III
SOGP

16
0

17
0

18
0

F
t

MOEA/D
HaD-MOEA
NSGA-II
NSGA-III
SOGP

0.
05

0.
06

0.
07

0.
08

M
ut

MOEA/D
HaD-MOEA
NSGA-II
NSGA-III
SOGP

6.
57

7.
58

N
w

t
MOEA/D
HaD-MOEA
NSGA-II
NSGA-III
SOGP

2.
53

3.
54

T m
ax

(c
)R

es
ul

ts
ob

ta
in

ed
w

he
n

op
tim

is
in

g
th

e
(C

m
ax

,E
tw

t,
F m

ax
,F

t,
M

ut
,N

w
t,

T m
ax

cr
ite

ri
a

co
m

bi
na

tio
n

Fi
gu

re
5.

6:
B

ox
pl

ot
re

pr
es

en
ta

tio
n

of
th

e
re

su
lts

ob
ta

in
ed

w
he

n
op

tim
is

in
g

se
ve

n
ob

je
ct

iv
es

si
m

ul
ta

ne
ou

sl
y

115

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

Table 5.9: Results obtained when optimising nine objectives simultaneously

Metrics Algorithm

MOEA/D HaD-MOEA NSGA-II NSGA-III SOGP

Min 37.89 38.00 37.98 38.09 38.02

Med 38.36 38.21 38.19 38.30 38.26Cmax

Max 38.67 38.35 38.43 38.55 38.68

Min 870.5 870.4 869.8 874.2 873.8

Med 874.8 874.5 872.5 878.4 874.9Cw

Max 885.4 885.8 877.0 887.1 877.3

Min 275.9 282.5 253.7 270.3 236.9

Med 313.1 327.0 278.6 288.9 274.4Etwt

Max 368.9 382.2 320.8 328.8 303.0

Min 14.03 13.89 13.76 13.90 13.60

Med 14.39 14.21 14.04 14.49 13.96Fmax

Max 16.64 15.36 14.56 15.98 14.48

Min 154.3 154.1 153.7 154.4 154.0

Med 157.6 156.3 155.7 160.7 155.0Ft

Max 168.8 166.9 157.6 171.6 158.6

Min 0.052 0.048 0.046 0.048 0.046

Med 0.064 0.062 0.050 0.052 0.054Mut

Max 0.078 0.069 0.055 0.062 0.058

Min 6.536 6.414 6.434 6.531 6.384

Med 6.978 6.700 6.685 6.802 7.005Nwt

Max 7.268 6.981 6.906 7.128 7.939

Min 2.389 2.279 2.269 2.325 2.376

Med 2.649 2.400 2.431 2.453 2.653Tmax

Max 3.034 2.588 2.581 2.546 4.051

Min 13.39 12.97 13.08 13.48 12.96

Med 14.59 13.58 13.73 14.13 13.60Twt

Max 17.52 14.53 14.53 15.08 14.62

116

5.4. Results

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

38

38.2

38.4

38.6

Cmax

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

870

875

880

885

Cw

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

250

300

350

Etwt

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

14

15

16

Fmax

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

155

160

165

170

Ft

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

0.05

0.06

0.07

0.08

Mut

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

6.5

7

7.5

8

Nwt

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

2.5

3

3.5

4

Tmax

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

SO
G

P

14

16

Twt

Figure 5.7: Box plot representation of the results obtained when optimising nine objectives
simultaneously

117

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

on the possibility of the MOGP algorithms to outperform SOGP. By grouping together similar

criteria, like in the (Nwt, Tmax, Twt) criteria combination, MOGP algorithms can significantly

outperform SOGP for each of the optimised criteria. It seems that by grouping similar criteria

together the MOGP algorithms have a "wider" look on the problem, which allows them to

achieve much better performance on each of the optimised criteria. However, when different

criteria types are mixed with each other, the performance of the MOGP algorithms will depend

on which types of criteria were combined. For example, combining flowtime and completion

time criteria did not have an influence on the effectiveness of the MOGP algorithms, but when

combining the due date related criteria with the completion time criteria as in the (Cmax, Cw,

Twt) criteria combination, or when combining different types of criteria as in the (Cw, Ft, Twt)

criteria combination, the performance of the MOGP algorithms decreases, and some are even

unable to outperform SOGP for certain criteria. It is interesting to note that as the number of

criteria increases, but they still contain different criteria types as in the (Fmax, Ft, Nwt, Tmax,

Twt) and (Cmax, Cw, Fmax, Ft, Nwt, Tmax, Twt) combinations, the MOGP algorithms are able

to outperform SOGP in most of the cases. It is also interesting to note that the performance

of some MOGP algorithms can even improve when optimising criteria combinations consisting

of five and six criteria. Therefore it seems to be beneficial to include several criteria of the

same type in the combination, since this can lead to better performance instead of using only

a single criteria of each type. On the other hand, combining criteria of the same definitions

(like maximum values, or weighted sums) did not show any significant influence on the results,

therefore it seems that grouping criteria in this way is not beneficial.

It is interesting to analyse how the inclusion of the Etwt and Mut criteria influences the

performance of MOGP algorithms. When optimising five criteria, by including either the

Etwt or Mut criterion, the MOGP algorithm are still able to outperform SOGP. However, the

MOEA/D and HaD-MOEA algorithms start to have more problems when these criteria are in-

cluded. When both of the criteria are included at the same time, then even the performance of

NSGA-III declines, and only NSGA-II can outperform the results of SOGP almost consistently.

A similar thing can be observed when optimising seven criteria simultaneously. NSGA-II usu-

ally outperforms results of SOGP for almost all objectives. On the other hand, the other three

algorithms struggle much more to outperform SOGP, especially if both the Etwt and Mut criteria

are optimised simultaneously. When optimising nine criteria, even NSGA-II starts to struggle

to outperform SOGP. Based on the previous observations, it is evident that for a smaller number

of criteria including either Etwt or Mut will not be problematic, and most algorithms will still

be able to outperform SOGP. However, by increasing the number of criteria or including both

criteria in the combination, the results of all algorithms start to deteriorate, and the algorithms

become unable to outperform SOGP for an increasing number of criteria.

Based on the results shown in this section, it can be concluded that MOGP algorithms can

118

5.4. Results

perform better or equally well as SOGP, for most criteria combinations. If criteria of the same

type are grouped together and optimised, the MOGP algorithms can achieve significantly better

performance than SOGP. As for the dependency on the criteria combinations, it was shown

that the performance of MOGP algorithms depends more on the combination of criteria which

are optimised, than on the number of optimised criteria. MOGP algorithms perform well for

optimising all criteria combinations which do not include the Etwt and Mut criteria, since in

most cases optimising those two criteria leads to a poor performance on all other optimised

criteria. The root of this issue seems to originate from the fact that the Pareto front becomes

quite elongated by optimising those two criteria, and therefore the algorithms tend to focus more

on finding the solutions along the Pareto front, and focus much less on finding solutions at the

extreme points of each criterion. Thus, the search space increases drastically with the inclusion

of those two criteria, which negatively influences the algorithms.

5.4.2 Performance comparison of MOGP algorithms

In order to analyse the performance of the selected MOGP algorithms with regards to the quality

of the Pareto fronts they obtain, the values of the multi-objective metrics will be calculated for

the tested multi-objective and many-objective problems. The tables will represent the average

values of the metrics based on 30 executions for each criteria combination. The best values

achieved for the different criteria combinations will be denoted in bold. Since the HV and IGD

metrics are the two most commonly used multi-objective metrics, which take into consideration

both the convergence and diversity of the Pareto front, statistical tests will be applied for those

two metrics to determine which algorithms achieve the best results. In addition, the values

for all metric, except for the number of nondominated solutions, will be represented with box

plots. The number of nondominated solutions will not be presented since it does not provide

any significant information about the quality of the obtained Pareto fronts.

Table 5.10 represents the results achieved for the multi-objective metrics when optimising

three criteria simultaneously. The NSGA-III algorithm consistently achieved the best values for

the HV and IGD metrics across all the criteria combinations. The MOEA/D algorithm achieved

the largest number of nondominated solution, which is expected since it was applied with a

small population size. The results also denote that all the algorithms achieved a very small value

for that metric, which means that they obtained Pareto fronts consisting of a small number of

solutions. For the other three criteria no single algorithm achieved the best values across all

criteria combinations. NSGA-II has mostly achieved the best results for the GD metric, while

NSGA-III achieved the best values for the E and S metrics.

Figure 5.8 shows the box plot representation of the multi-objective metrics when three cri-

teria are optimised simultaneously. The figure denotes that the NSGA-II and NSGA-III algo-

rithms achieve the best results for all the metrics, whereas the other two algorithms achieve

119

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

Table 5.10: Multi-objective metric values obtained when optimising three objectives simultaneously

Metrics Algorithm

MOEA/D HaD-MOEA NSGA-II NSGA-III

Cmax, Cw, Twt

HV 3.312 5.040 6.651 7.201

IGD 0.025 0.021 0.019 0.018

GD 0.073 0.039 0.022 0.024

ND 15.4 2.1 3.8 2.7

E 3.826 2.147 1.451 1.569

S 0.816 0.796 0.837 0.768

Cmax, Fmax, Ft

HV 3.840 5.031 6.661 7.341

IGD 0.033 0.028 0.021 0.020

GD 0.64 0.041 0.020 0.024

ND 15 1.7 3.1 2.2

E 2.234 1.274 1.157 1.031

S 0.781 0.737 0.779 0.731

Cmax, Fmax, Tmax

HV 3.036 4.006 6.649 7.309

IGD 0.052 0.050 0.040 0.037

GD 0.336 0.116 0.060 0.064

ND 4 0.2 0.3 0.23

E 0.625 0.551 0.375 0.349

S 0.751 0.795 0.816 0.770

Cw, Ft, Twt

HV 3.523 5.539 7.400 7.578

IGD 0.030 0.025 0.022 0.019

GD 0.058 0.043 0.021 0.025

ND 15 1.5 3.25 2.1

E 4.215 2.985 1.888 1.871

S 0.847 0.884 0.874 0.800

Nwt, Tmax, Twt

HV 4.698 5.706 6.872 7.25

IGD 0.708 0.589 0.443 0.382

GD 1.221 1.187 0.512 0.494

ND 5 0.35 0.45 0.31

E 1.548 1.312 1.018 0.909

S 0.899 0.859 0.794 0.777

120

5.4. Results

inferior results. The differences are usually the smallest for the S metric, which means that

all algorithms evolve Pareto fronts with good a dispersion. However, the convergence of the

obtained Pareto fronts by MOEA/D and HaD-MOEA are worse than that of the other two al-

gorithms. For the HV metric, NSGA-II and NSGA-III achieve significantly better results for

all criteria combinations when compared to the other two algorithms. Between those two algo-

rithms, NSGA-III is significantly better when optimising the (Cmax, Fmax, Tmax) and (Cmax, Fmax,

Ft) criteria combinations, while for the other three criteria combinations there is no significant

difference. As for the IGD metric, NSGA-III and NSGA-II have again proven to be significantly

better than the other two algorithms, with NSGA-III achieving significantly better results than

NSGA-II for all criteria combinations except the (Nwt, Tmax, Twt) criteria combination. There-

fore, when optimising three criteria simultaneously, the NSGA-III algorithm obtained Pareto

fronts of the best quality among all the tested algorithms.

Table 5.11 represents the results for the multi-objective metrics achieved for optimising five

criteria simultaneously. Since small values were achieved for the IGD and GD metrics, they

were both multiplied by 100 to more easily denote their values in the table. The NSGA-III

algorithm achieved the best performance on most of the criteria combinations, however NSGA-

II also achieved good performance, even outperforming NSGA-III for certain metrics. As for

the percentage of nondominated solutions, the value for this metric is larger than it was when

only three criteria were optimised. Therefore, it seems that the value of this metric depends

on the number of criteria which are optimised. A larger percentage of nondominated solutions

usually signalises that certain criteria are negatively correlated and therefore many solutions

which balance between those criteria can be obtained. This is best evident when optimising

the (Cmax, Etwt, Ft,Mut , Twt) and (Cw, Etwt, Ft, Nwt, Twt) criteria combinations, which both

include the Etwt criterion. For both of those combinations the percentage of nondominated

solutions was at least two times larger than for the other optimised criteria combinations.

Figure 5.9 shows the box plot representation of the metric values for the simultaneous op-

timisation of five criteria. The figure denotes that once again the NSGA-II and NSGA-III al-

gorithms achieved better performance than the other two algorithms. On the other hand the

MOEA/D algorithm usually achieved the worst results for all the metrics. For the HV metric,

NSGA-II achieves significantly better results than all other algorithms for all criteria combina-

tions, except for the (Cmax, Cw, Fmax, Ft, Mut) and (Fmax, Ft, Nwt, Tmax, Twt) criteria combina-

tions where there is no significant difference between it and NSGA-III. For the IGD criteria, the

NSGA-III algorithm achieved significantly better results for all criteria combinations, except

for (Cmax, Etwt, Ft, Mut , Twt) and (Fmax, Ft, Nwt, Tmax, Twt), where there was no significant

difference between it and NSGA-II, and for (Cw, Etwt, Ft, Nwt, Twt) where NSGA-II achieved

better results.

Based on the results achieved by the metrics for the five criteria optimisation problems,

121

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0 5 10

H
V

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.01

0.02

0.03

IG
D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0

0.05

0
.1

0.15

G
D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

2 4 6

E

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.6

0.8 1

S

(a)R
esults

obtained
w

hen
optim

ising
the

(C
m

ax ,C
w

,T
w

t)criteria
com

bination

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0 5 10

H
V

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.02

0.04

0.06

IG
D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0

0.05

0
.1

G
D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

2 4

E

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.6

0.8 1

S

(b)R
esults

obtained
w

hen
optim

ising
the

(C
m

ax ,F
m

ax ,F
t)criteria

com
bination

122

5.4. Results

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0510

H
V

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.
04

0.
06

IG
D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0

0.
1

0.
2

G
D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.
51

E

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.
4

0.
6

0.
81

S

(c
)R

es
ul

ts
ob

ta
in

ed
w

he
n

op
tim

is
in

g
th

e
(C

m
ax

,F
m

ax
,T

m
ax

)c
ri

te
ri

a
co

m
bi

na
tio

n

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0510

H
V

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.
02

0.
03

0.
04

IG
D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0

0.
050.
1

0.
15

G
D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

246

E

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.
6

0.
81

1.
2

S

(d
)R

es
ul

ts
ob

ta
in

ed
w

he
n

op
tim

is
in

g
th

e
(C

w
,F

t,
T

w
t)

cr
ite

ri
a

co
m

bi
na

tio
n

123

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0 5 10

H
V

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.5 1

1.5

IG
D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0 2 4 6

G
D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0 1 2 3

E

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.6

0.8 1

S

(e)R
esults

obtained
w

hen
optim

ising
the

(N
w

t,T
m

ax ,T
w

t)criteria
com

bination

Figure
5.8:

B
ox

plotrepresentation
ofm

ulti-objective
m

etrics
obtained

w
hen

optim
ising

three
objectives

sim
ultaneously

124

5.4. Results

Table 5.11: Multi-objective metric values obtained when optimising five objectives simultaneously

Metrics Algorithm

MOEA/D HaD-MOEA NSGA-II NSGA-III

Cmax, Cw, Fmax, Ft, Mut

HV 2.926 6.274 8.787 8.958

IGD 0.244 0.157 0.124 0.112

GD 2.677 0.794 0.304 0.186

ND 36.7 8.1 18.8 20.2

E 7.274 4.073 2.797 1.529

S 0.890 0.796 0.691 0.730

Cmax, Etwt, Ft, Mut , Twt

HV 2.733 5.276 8.078 7.478

IGD 0.191 0.120 0.077 0.075

GD 2.394 0.325 0.240 0.191

ND 72.6 35.7 40.9 47.5

E 146.5 118.7 66.53 74.40

S 0.574 0.745 0.586 0.620

Cw, Etwt, Ft, Nwt, Twt

HV 1.871 3.558 8.453 7.61

IGD 0.210 0.156 0.080 0.087

GD 2.159 0.531 0.228 0.204

ND 65.6 24 52.3 52.2

E 168.7 122.6 52.29 66.79

S 0.693 0.937 0.652 0.708

Fmax, Ft, Nwt, Tmax, Twt

HV 2.54 4.599 7.582 7.735

IGD 1.018 0.790 0.524 0.495

GD 6.113 2.612 1.055 0.959

ND 27.9 4.4 17.5 11.7

E 2.342 1.686 1.122 1.056

S 0.654 0.572 0.510 0.547

125

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0 5 10

H
V

MOEA/D

HaD-MOEA

NSGA-II

NSGA-IIIa

0.001

0.002

0.003

IG
D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0

0.02

0.04

G
D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0 5 10 15
E

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.6

0.8 1

S

(a)R
esults

obtained
w

hen
optim

ising
the

(C
m

ax ,C
w ,F

m
ax ,F

t,M
ut)criteria

com
bination

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0 5 10

H
V

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.001

0.001

0.002

0.002

IG
D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0

0.02

0.04

0.06
G

D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

100

200

E

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.4

0.6

0.8

S

(b)R
esults

obtained
w

hen
optim

ising
the

(C
m

ax ,E
tw

t,F
t,M

ut ,T
w

t)criteria
com

bination

126

5.4. Results

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0510

H
V

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.
00

1

0.
00

2

IG
D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0

0.
02

0.
04

0.
06

G
D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

10
0

20
0

E

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.
4

0.
6

0.
81

S

(c
)R

es
ul

ts
ob

ta
in

ed
w

he
n

op
tim

is
in

g
th

e
(C

w
,E

tw
t,

F
t,

N
w

t,
T

w
t)

cr
ite

ri
a

co
m

bi
na

tio
n

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0510

H
V

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.
00

4

0.
00

6

0.
00

8

0.
01

0.
01

2

IG
D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0

0.
1

0.
2

0.
3

G
D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

1234

E

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.
4

0.
6

0.
8

S

(d
)R

es
ul

ts
ob

ta
in

ed
w

he
n

op
tim

is
in

g
th

e
(F

m
ax

,F
t,

N
w

t,
T m

ax
,T

w
t)

cr
ite

ri
a

co
m

bi
na

tio
n

Fi
gu

re
5.

9:
B

ox
pl

ot
re

pr
es

en
ta

tio
n

of
m

ul
ti-

ob
je

ct
iv

e
m

et
ri

cs
ob

ta
in

ed
w

he
n

op
tim

is
in

g
fiv

e
ob

je
ct

iv
es

si
m

ul
ta

ne
ou

sl
y

127

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

Table 5.12: Multi-objective metric values obtained when optimising six objectives simultaneously

Metrics Algorithm

MOEA/D HaD-MOEA NSGA-II NSGA-III

Cmax, Fmax, Ft, Nwt, Tmax, Twt

HV 6.449 7.579 8.945 8.915

IGD 4.839 3.601 2.611 2.264

GD 2.081 1.050 0.444 0.409

ND 35.5 6.4 20.7 17.8

E 2.330 1.925 1.448 1.387

S 0.661 0.565 0.499 0.495

it can be seen that the NSGA-III algorithm performs well on problems which do not include

criteria with a high negative correlation. Therefore NSGA-III performs quite well on the (Fmax,

Ft, Nwt, Tmax, Twt) and (Cmax, Cw, Fmax, Ft, Mut) criteria combinations. However, for the other

two criteria combinations which include a criterion that is negatively correlated with the others,

the performance of NSGA-III is inferior to that of NSGA-II. It seems that NSGA-III performs

better on problems where the Pareto front is not highly dispersed and where the algorithm can

focus more on convergence than on diversity.

Table 5.12 represents the metric values achieved when simultaneously optimising six crite-

ria. Since the values for the IGD and GD metrics were quite small, for an easier representation

in the table their values were multiplied by 1000 and 100, respectively. The results show that

NSGA-III and NSGA-II perform similarly for all the metrics, but NSGA-III achieves better

results for all metrics, except for the HV and ND metrics. Since the value of the ND metric is

not too large for all algorithms, it can be presumed that the optimised criteria are not correlated

negatively to a great extent.

Figure 5.10 represents the box plot representation of the multi-objective metrics when six

criteria are optimised simultaneously. The figure shows that NSGA-II and NSGA-III consis-

tently achieve superior results for all multi-objective metrics when compared to the other two

MOGP algorithms. By comparing these two algorithms between themselves, it is evident that

they achieve a similar performance. This is also backed up by the statistical tests performed

for the HV and IGD metrics. The statistical test show that for both metrics the NSGA-II and

NSGA-III algorithms perform significantly better than the other two algorithms, however, no

significant difference exists between those two algorithms.

Table 5.13 represents the results for the multi-objective metrics which are achieved by op-

128

5.4. Results

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

0

5

10

HV

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II
0.002

0.004

0.006

IGD

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

0

0.02

0.04

GD

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

1

2

3

4

E

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

0.4

0.6

0.8

S

Figure 5.10: Box plot representation of multi-objective metrics obtained when optimising six
objectives simultaneously

129

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

timising seven criteria simultaneously. Once again the GD and IGD values were multiplied by

100 to represent them easier in the table. The results denote that for this number of criteria

the NSGA-II algorithm outperforms the results achieved by NSGA-III. Only for the (Cmax, Cw,

Fmax, Ft, Nwt, Tmax, Twt) criteria combination the NSGA-III algorithm achieved better HV and

GD values than NSGA-II. However, NSGA-II still achieved better performance for the other

three metrics. When optimising the (Cmax, Etwt, Fmax, Ft, Mut , Nwt, Tmax) criteria combination

the algorithms achieve a much higher value for the percentage of nondominated solutions than

for the other criteria, which means that more solutions are needed to approximate the Pareto

front. The reason for this is due to the fact that both the Etwt and Mut criteria are included,

which drastically increases the size of the Pareto front.

Figure 5.11 shows the box plot representation of the multi-objective metrics when optimis-

ing seven criteria simultaneously. Even for these criteria combinations NSGA-II and NSGA-III

perform better than the other two MOGP algorithms. However, when optimising seven criteria

the NSGA-II algorithm outperforms NSGA-III for most of the metrics. For the HV metric the

NSGA-II algorithm achieved significantly better results than any other algorithm for the (Cmax,

Cw, Fmax, Ft, Mut , Tmax, Twt) and (Cmax, Etwt, Fmax, Ft, Mut , Nwt, Tmax) criteria combinations,

while for the (Cmax, Cw, Fmax, Ft, Nwt, Tmax, Twt) combination there was no significant dif-

ference between it and NSGA-III. For the IGD metric, NSGA-II achieved significantly better

results than any other algorithm, except for the (Cmax, Cw, Fmax, Ft, Mut , Tmax, Twt) criteria

combination, where it did not achieve significantly better results than NSGA-III. Therefore, the

NSGA-II algorithm performs better on problems which include criteria that are highly nega-

tively correlated, whereas if those criteria are not optimised, the NSGA-III algorithm performs

equally well as NSGA-II.

Table 5.14 represents the results achieved for the multi-objective metrics when optimising

all nine scheduling criteria simultaneously. The results show that the NSGA-III algorithm out-

performs the NSGA-II algorithm for all metrics except the HV and ND metrics. It seems that

this number of criteria was simply too large for the NSGA-II algorithm to perform well on it,

whereas the NSGA-III algorithm performs well even when optimising such a large number of

criteria. For this criteria combination the percentage of nondominated solutions obtained by all

algorithms is usually above 50%, which means that a large number of solutions was required to

obtain a good Pareto front.

Figure 5.12 shows the box plot representation of the achieved multi-objective metric values

for optimising nine criteria simultaneously. For this criteria combination the NSGA-III algo-

rithm achieves significantly better results than the other algorithms, for both the HV and IGD

metrics. Therefore, NSGA-III obtains the most diverse Pareto front out of all the algorithms for

this criteria combination.

Through the experiments it was shown that no single algorithm achieved the best results

130

5.4. Results

Table 5.13: Multi-objective metric values obtained when optimising seven objectives simultaneously

Metrics Algorithm

MOEA/D HaD-MOEA NSGA-II NSGA-III

Cmax, Cw, Fmax, Ft, Nwt, Tmax, Twt

HV 1.55 4.449 7.561 7.592

IGD 0.767 0.613 0.432 0.450

GD 3.612 2.316 0.890 0.841

ND 43.1 7.7 23.7 24.3

E 4.656 4.009 1.543 2.178

S 0.689 0.628 0.516 0.539

Cmax, Cw, Fmax, Ft, Mut , Tmax, Twt

HV 3.541 7.196 9.1 8.1

IGD 0.406 0.257 0.149 0.154

GD 6.744 1.026 0.491 0.700

ND 39.5 13.2 24.9 24.8

E 7.674 4.780 4.151 5.893

S 0.928 0.814 0.721 0.788

Cmax, Etwt, Fmax, Ft, Mut , Nwt, Tmax

HV 2.949 6.674 8.756 7.773

IGD 0.174 0.116 0.081 0.085

GD 2.193 0.397 0.350 0.258

ND 77.9 44.2 59.5 66.8

E 148.7 110.8 61.98 94.64

S 0.602 0.738 0.552 0.551

131

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0 5 10

H
V

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.004

0.006

0.008

IG
D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0

0.05

0
.1

0.15

G
D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

2 4 6

E

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.4

0.6

0.8

S

(a)R
esults

obtained
w

hen
optim

ising
the

(C
m

ax ,C
w

,F
m

ax ,F
t,N

w
t,T

m
ax ,T

w
t)criteria

com
bination

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0 5 10

H
V

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.002

0.004

0.006

0.008

IG
D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0

0.05

0
.1

G
D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0 5 10 15 20

E

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.6

0.8 1

1.2

S

(b)R
esults

obtained
w

hen
optim

ising
the

(C
m

ax ,C
w

,F
m

ax ,F
t,M

ut ,T
m

ax ,T
w

t)criteria
com

bination

132

5.4. Results

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0510

H
V

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.
00

1

0.
00

2

0.
00

2

IG
D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0

0.
02

0.
04

G
D

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III
5010

0

15
0

20
0

E

MOEA/D

HaD-MOEA

NSGA-II

NSGA-III

0.
6

0.
8

S

(c
)R

es
ul

ts
ob

ta
in

ed
w

he
n

op
tim

is
in

g
th

e
(C

m
ax

,E
tw

t,
F m

ax
,F

t,
M

ut
,N

w
t,

T m
ax

)c
ri

te
ri

a
co

m
bi

na
tio

n

Fi
gu

re
5.

11
:B

ox
pl

ot
re

pr
es

en
ta

tio
n

of
m

ul
ti-

ob
je

ct
iv

e
m

et
ri

cs
ob

ta
in

ed
w

he
n

op
tim

is
in

g
se

ve
n

ob
je

ct
iv

es
si

m
ul

ta
ne

ou
sl

y

133

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

Table 5.14: Multi-objective metric values obtained when optimising nine objectives simultaneously

Metrics Algorithm

MOEA/D HaD-MOEA NSGA-II NSGA-III

HV 2.565 6.497 7.872 8.179

IGD 0.157 0.104 0.077 0.068

GD 1.492 0.365 0.431 0.196

ND 81.3 44.9 58.2 63.3

E 157.2 97.73 73.65 76.79

S 0.616 0.736 0.643 0.564

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

0

5

10

HV

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

0.001

0.002

IGD

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

0

0.01

0.02

0.03

GD

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

50

100

150

200

E

M
O

E
A

/D

H
aD

-M
O

E
A

N
SG

A
-I

I

N
SG

A
-I

II

0.6

0.8

1

S

Figure 5.12: Box plot representation of multi-objective metrics obtained when optimising nine
objectives simultaneously

134

5.4. Results

over all of the tested criteria combinations. For the smallest combination sizes of three crite-

ria, the best results were usually achieved by the NSGA-III algorithm, which can be seen not

only from the HV and IGD values, but also through the fact that it achieved the best values

for most of the optimised criteria. However, as the number of criteria grew, it is possible to

observe that the NSGA-III starts to encounter difficulties, as it was sometimes outperformed

by NSGA-II. For optimising five criteria, NSGA-III still achieves better results than NSGA-II

for most of the criteria (except for the combination where both the Etwt and Mut criteria are

included). However, based on the HV and IGD metrics, there was mostly no difference be-

tween the two algorithms. When optimising the six criteria combination, where the Etwt and

Mut criteria were not included, the NSGA-III algorithm achieved the best values for the most of

the multi-objective metrics. NSGA-II also achieved good performance, without there being a

statistically significant difference between the results achieved by it and NSGA-III for the HV

and IGD metrics. Similar behaviour as when optimising five criteria is also evident when seven

criteria are optimised, since NSGA-III achieved worse results than NSGA-II for most of the

objectives, especially those which include the Etwt and Mut criteria. For the HV and IGD met-

rics the NSGA-II algorithm even outperformed NSGA-III for two out of the three tested criteria

combinations. In the case of nine criteria, NSGA-III once again outperformed NSGA-II.

Such behaviour is quite surprising, since it would be expected that the NSGA-III algorithm

performs better than NSGA-II for larger criteria combinations. The reason for this seems to

originate from the way in which the solutions are selected into the next generation by the two

algorithms. The reference point selection mechanism present in NSGA-III seems to favour

convergence more than it does diversification. This behaviour is probably caused by the fact

that more reference points will be present at the centre of the Pareto front, and therefore the

algorithm will simply select more solutions which are close to the centre. On the other hand,

NSGA-II will select solutions in areas that are less populated, which will most likely be on the

edges of the Pareto fronts. As a consequence, NSGA-III will perform well on smaller criteria

combinations, where the Pareto front is not large, and therefore the algorithm will easily con-

verge to good solutions. In addition, NSGA-III also handles larger criteria combinations well,

as long as the criteria which are included in those combinations are not negatively correlated,

where optimising one criterion would lead to bad values for other criteria (such as with the in-

clusion of Etwt and Mut), since in such a situation the Pareto front becomes large, and there is

more need for diversification. The solution distributions also back-up these observations, since

for several criteria NSGA-III obtains less distributed solutions than NSGA-II, like for (Cmax,

Cw, Mut , Fmax, Ft), (Cw, Etwt, Ft, Nwt, Twt), (Cmax, Etwt, Fmax, Ft, Mut , Nwt, Tmax), and when

optimising all nine criteria simultaneously. However, this is not the first time that NSGA-II

outperforms NSGA-III for a large number of criteria. Similar observations were also noticed in

papers which dealt with comparison of many-objective algorithms on different types of prob-

135

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

lems [261, 262]. Those papers show that NSGA-III performed quite poor for several different

types of problems, and that NSGA-II outperformed NSGA-III when optimising larger sets of

criteria. The papers also suggest that the recently proposed many-objective algorithms (such as

MOEA/D and NSGA-III) use selection mechanisms which are well suited for standard prob-

lems that are used to test the performance of many-objective algorithms. However, when tested

on other types of problems the algorithms can exhibit performance which is inferior to that of

NSGA-II.

HaD-MOEA achieved results which are mostly inferior to the results of NSGA-II and

NSGA-III. This algorithm works in a similar fashion as NSGA-II, with the only difference

being the way in which the crowding distance is calculated. In HaD-MOEA the crowding dis-

tance is calculated as the harmonic distance of the n closest neighbours of the current solution.

By using such a crowding distance measure, HaD-MOEA achieved a very small percentage of

nondominated solutions in each run. In addition, when optimising criteria combinations that in-

clude the Etwt and Mut criteria, it is obvious, from the solution distributions, that HaD-MOEA

tends to focus mostly on the other criteria, and thus achieved quite bad solution distributions

for the Etwt and Mut criteria. The cause for this problem is probably due to the fact that the

closest neighbours are used to calculate the crowding distance. This crowding distance can per-

form poorly if small groups of solutions exist, which are far apart from each other in the search

space. Since the crowding distance is calculated only on the nearest neighbours of a solution,

it is possible that all solutions will have a similar value of the crowding distance, and there-

fore all the solutions could be deleted even if they are far away from all other solutions. This

can have a negative effect on diversity, which is especially important when optimising criteria

combinations with large Pareto fronts.

The MOEA/D algorithm achieved quite a poor performance for most of the optimised cri-

teria. The reasons for such behaviour are probably twofold. The first reason is the same as

for NSGA-III, meaning that the way the algorithm was designed is not appropriate for optimis-

ing the tested criteria combinations. The second reason is connected to the way in which the

parameters were optimised, since the generic parameters were optimised first, after which the

algorithm specific parameters were optimised. It is possible that the combination method which

is used in MOEA/D has a great influence on all other generic parameters, and therefore the

optimal parameters for that combination method could largely differ from the ones which were

determined in the first optimisation steps. Since MOEA/D also uses a quite small population

compared to the other algorithms, it will be much more difficult for it to obtain a good set of

solutions, especially for problems with large Pareto fronts.

Based on the results it can be concluded that there is much difference in the performance

of the different MOGP algorithms. Because of its strong convergence ability, NSGA-III per-

formed well when a smaller number of criteria were optimised simultaneously, and for larger

136

5.5. Comparison with standard DRs

combinations in which there are no criteria which have a strong negative correlation with other

criteria (like Etwt and Mut). Since out of all the tested algorithms NSGA-II produced the most

diverse solutions and is therefore better able to cover the Pareto front, it was the most appro-

priate method for handling combinations which consisted out of negatively correlated criteria.

Although the other two MOGP algorithms perform well on certain objective combinations, they

were in most cases inferior to NSGA-II and NSGA-III.

5.5 Comparison with standard DRs

In the last section it was shown that the MOGP algorithms generated DRs which can in most

cases outperform those obtained by SOGP. However, based on those results all alone it is not

possible to determine the performance of individual DRs on several criteria simultaneously. For

that purpose, several automatically generated DRs by using MOGP algorithms will be selected

and compared with manually designed DRs. In this way it will be possible to determine if the

automatically designed DRs can outperform manually designed DRs not only for one criterion,

but rather for several different criteria simultaneously. The following five manual DRs will be

used for the comparison: MCT, ATC, RC, COVERT and sufferage. MCT was selected since

it represents one of the simplest DRs, but nevertheless achieves the best result for the Fmax

criterion. On the other hand, ATC was selected since it represents the rule which can achieve

the best results for the due date related criteria. The COVERT and RC rules were selected

because they achieve good results on several criteria simultaneously, and therefore represent

the best manually designed multi-objective DRs. Finally, the sufferage rule was selected since

it achieves a good value for the makespan and flowtime criteria.

The results will be presented in tables where the values achieved by the selected standard

DR will be presented at the top, while the rest of the table will include results achieved by

automatically designed DRs evolved for different criteria combinations. For each criteria com-

bination, automatically generated DRs that achieved better results than the considered standard

DR for most of the criteria were selected. If more such DRs exist, then one of them is selected

randomly. For automatically designed DRs the table includes results only for those criteria for

which the considered DR was optimised, while the values for the other criteria are denoted with

"-". Each criterion value for which the automatically generated DRs achieved better results than

standard DRs, is denoted in bold.

5.5.1 Comparison of automatically generated DRs with MCT

Table 5.15 represents the results of automatically generated DRs when compared to the MCT

rule. The results denote that when optimising six criteria or less, the automatically generated

137

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

rules achieve better values than the MCT rule on all the tested criteria. When optimising seven

criteria simultaneously, only for one out of the three tested criteria combination the automati-

cally generated DRs did not achieve a better performance than the MCT rule for each individual

criterion. For that one criteria combination the automatically generated DRs were unable to

achieve a better result only for the Etwt criterion. Even the DR which was evolved for opti-

mising nine criteria simultaneously outperformed the MCT rule for eight criteria, only failing

to surpass the MCT rule for the Mut criterion. The strength of the automatically generated DRs

is even further signified by the fact that for each criteria combination which included the Fmax

criterion, it was possible to achieve better values for that criterion than by using the MCT rule.

Therefore, such simple manual DRs do not seem to be competitive to automatically generated

DRs, which consistently outperformed the MCT rule, even for the criterion for which the MCT

rule achieved the best result.

5.5.2 Comparison of automatically generated DRs with ATC

Table 5.16 represents the comparison of the results achieved by the automatically generated

DRs with the ATC rule. When three criteria are optimised the evolved DRs usually outper-

form the ATC rule for two or three criteria. Although the rules R1 and R2 were evolved for

the same criteria combination, rule R1 could not outperform ATC for the Twt criterion, while

rule R2 could not outperform ATC for the Cmax criterion. Therefore, even though the MOGP

algorithms were unable to generate a rule which can perform better than the ATC rule for all

three criteria, it is possible to select a DR which achieves the required trade off between the

various optimised criteria, since the MOGP algorithms evolve a Pareto front of solutions. The

results obtained for rule R6 are especially interesting, since this rule was evolved only on the

three due date related criteria. For all three due date related criteria the rule achieves a better

performance than the ATC rule. This rule achieves an increase in performance over the ATC

rule of 1.7%, 7%, and 7.7% for the Nwt, Tmax, and Twt criteria, respectively. Therefore, by

using the MOGP algorithms it was possible to develop a DR which performs better than the

best manually designed DR for the due date related criteria.

When five and six criteria are optimised simultaneously, the generated DRs usually outper-

form the ATC rule for four or five criteria. Rules like R7 were easily able to outperform the

ATC rule, since they did not optimise any due date related criteria. However, it is interesting to

observe that for the (Cmax, Etwt, Ft, Mut , Twt) criteria combination neither of the MOGP algo-

rithms generated a DR which would achieve a good performance for the Twt criterion, while

also achieving good results for the other criteria as well. The R8 rule achieved poor results for

the Twt criterion, although it performed well on all the other criteria it was optimised for. The

other rules achieved better performance than the ATC rule for all criteria, except for the Fmax

criterion. It seems that when more due date related criteria are included in the set of optimised

138

5.5. Comparison with standard DRs

Table 5.15: Comparison of automatically generated multi-objective DRs with the MCT rule

Method Criteria

Cmax Cw Etwt Fmax Ft Mut Nwt Tmax Twt

MCT 38.57 902.3 977.2 14.03 181.1 0.130 8.007 2.891 18.88

Evolved DRs - three objectives

R1 38.16 875.3 - - - - - - 14.50

R2 37.91 - - 13.59 177.2 - - - -

R3 38.05 - - 13.59 - - - 2.760 -

R4 - 874.0 - - 154.0 - - - 14.73

R5 - - - - - - 6.566 2.249 12.28

Evolved DRs - five objectives

R6 38.15 897.9 - 13.74 178.3 0.126 - - -

R7 38.07 - 976.0 - 175.3 0.125 - - 14.65

R8 - 879.1 973.8 - 170.6 - 6.968 - 14.89

R9 - - - 13.61 175.0 - 7.248 2.690 17.17

Evolved DRs - six objectives

R10 37.89 - - 13.55 170.1 - 7.265 2.656 17.32

Evolved DRs - seven objectives

R11 38.08 891.3 - 13.62 170.7 - 7.047 2.787 17.19

R12 38.33 897.7 - 13.79 177.4 0.123 - 2.844 18.53

R13 38.15 - 980.5 13.86 178.5 0.124 7.322 2.793 -

Evolved DRs - nine objectives

R14 38.47 900.3 976.6 13.89 180.4 0.139 7.701 2.843 18.54

139

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

Table 5.16: Comparison of automatically generated multi-objective DRs with the ATC rule

Method Criteria

Cmax Cw Etwt Fmax Ft Mut Nwt Tmax Twt

ATC 38.26 901.5 968.5 14.27 195.9 0.127 6.686 2.418 13.30

Evolved DRs - three objectives

R1 38.21 887.2 - - - - - - 13.36

R2 38.62 869.9 - - - - - - 12.70

R3 37.89 - - 13.61 175.5 - - - -

R4 38.17 - - 15.41 - - - 2.383 -

R5 - 893.4 - - 173.5 - - - 12.79

R6 - - - - - - 6.566 2.249 12.28

Evolved DRs - five objectives

R7 38.11 882.5 - 14.17 161.9 0.126 - - -

R8 38.10 - 963.0 - 179.3 0.122 - - 19.43

R9 - 900.5 968.5 - 179.3 - 6.333 - 13.00

R10 - - - 17.00 173.5 - 6.440 2.401 12.68

Evolved DRs - six objectives

R11 38.22 - - 16.45 178.1 - 6.306 2.410 12.85

Evolved DRs - seven objectives

R12 38.08 903.1 - 15.22 182.9 - 6.650 2.390 13.22

R13 39.19 894.3 - 17.49 173.0 0.145 - 2.409 13.08

R14 38.41 - 968.0 16.22 177.0 0.125 6.651 2.646 -

Evolved DRs - nine objectives

R15 39.31 904.0 967.9 17.65 182.5 0.145 6.566 2.477 13.08

140

5.5. Comparison with standard DRs

criteria, it will be easier for the MOGP algorithms to evolve DRs that perform well on them.

For the case when seven and nine criteria are optimised, the DRs usually outperform the

ATC rule only on four or five criteria. Rules R12 and R13 outperform the ATC rule for all

the due date related criteria they were optimised on, which demonstrates the effectiveness for

generating good DRs even when larger criteria combinations are optimised. The remaining two

rules were unable to outperform ATC for all due date related criteria, and generally outperform

the ATC rule only for four scheduling criteria.

5.5.3 Comparison of automatically generated DRs with RC

Table 5.17 represents the results of the comparison between the automatically generated DRs

and the RC rule. The RC rule is an example of a rule which achieves the best results for the

makespan and flowtime related criteria, but also performs well on other criteria as well. In

addition, this rule obtains the best result for the Ft criterion out of all the manually designed

DRs.

When three criteria are optimised, the automatically designed DRs usually outperform the

RC rule for two or three criteria. It can be observed that the problems mostly arise if the Cw

or Ft criteria are optimised with either the Cmax or Fmax criteria, in which case the evolved DRs

were able to perform better than the RC rule on only one of those two groups of criteria, but

not on both. Rules R1 and R2 were optimised on such criteria combinations, and therefore

outperform the RC rule for at most two criteria. However, rules R3 and R4 demonstrate that

if only one of those groups of criteria is optimised, the evolved DRs can outperform the RC

rule for all optimised criteria. The R5 rule also shows that it is easy to obtain a DR which

outperforms the RC rule when optimising only the due date related criteria.

A similar situation can be also observed when optimising five criteria simultaneously. Rules

like R6, R7, and R10 focus more on optimising the Cmax and Fmax criteria. When neither of

those two criteria are included in the optimisation set, like for rules R8 and R9 the DRs achieved

better results for the Cw and Ft criteria. However, for neither of these two rules was it possible

to achieve a better value for the Ft criterion than the one achieved by the RC rule. Therefore it

seems difficult for the MOGP algorithms to generate a rule which can not only achieve a good

performance for the Ft criterion, but that can perform well on other criteria as well. When

six criteria are optimised simultaneously the MOGP algorithms evolved DRs which performed

better than the RC rule for all criteria except the Ft criterion.

The same behaviour is observed even for the larger criteria combinations. The DRs usually

performed better for the Cmax and Fmax criteria and for most of the due date related criteria.

Rules R12, R13 and R15 are examples of such DRs. The generated DRs usually achieved better

values than the RC rule for five criteria. The MOGP algorithms evolved DRs which perform

better than the RC rule for the Ft and Cw criteria even when a larger number of objectives were

141

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

Table 5.17: Comparison of automatically generated multi-objective DRs with the RC rule

Method Criteria

Cmax Cw Etwt Fmax Ft Mut Nwt Tmax Twt

RC 38.11 874.9 998.3 14.91 154.1 0.128 6.786 2.863 15.40

Evolved DRs - three objectives

R1 38.47 874.0 - - - - - - 14.30

R2 37.89 - - 13.61 175.5 - - - -

R3 37.97 - - 13.62 - - - 2.754 -

R4 - 872.4 - - 153.8 - - - 14.93

R5 - - - - - - 6.566 2.249 12.28

Evolved DRs - five objectives

R6 38.06 899.4 - 13.96 177.7 0.127 - - -

R7 38.07 976.0 - 175.3 0.125 - - 14.65

R8 - 874.1 988.4 - 163.9 - 7.361 - 15.23

R9 - 877.5 992.5 - 157.1 - 6.734 - 14.46

R10 - - - 14.68 159.0 - 6.743 2.683 14.53

Evolved DRs - six objectives

R11 38.04 - - 14.64 172.1 - 6.667 2.379 13.51

Evolved DRs - seven objectives

R12 37.98 890.0 - 14.20 168.0 - 6.762 2.562 14.63

R13 38.03 898.5 - 14.90 175.8 0.128 - 2.638 14.95

R14 38.41 - 968.0 16.22 177.0 0.125 6.651 2.646 -

Evolved DRs - nine objectives

R15 38.08 900.1 972.2 14.74 179.4 0.142 6.984 2.511 14.59

142

5.5. Comparison with standard DRs

optimised, however those rules achieved inferior performance than the RC rule for all the other

criteria.

5.5.4 Comparison of automatically generated DRs with COVERT

Table 5.18 compares the results achieved by the generated DRs with the COVERT DR. COVERT

is another rule which achieves good performance on several criteria. This rule performs well on

the due date related criteria, as well as for the Cmax and Fmax criteria. However, unlike the RC

rule, the COVERT rule does not obtain an overall best solution out of all the tested standard DRs

on either of the scheduling criteria. When three criteria are optimised, the MOGP algorithms

generated DRs which, for all the tested criteria combinations, outperform the COVERT rule on

all the optimised criteria. The achieved improvements over the COVERT rule depend on the

criteria combination which was optimised. For example, rule R1 achieves small improvements

over the COVERT rule for all three optimised criteria, while the R2 rule significantly outper-

forms the COVERT rule for the Fmax and Ft criteria. Therefore, when a small number of criteria

is considered, the MOGP algorithms can easily generate DRs which outperform the COVERT

rule for various criteria combinations.

The good performance of the automatically generated DRs can be observed even when a

larger number of criteria are optimised. Rules R6 and R8 can even outperform the COVERT rule

for all of the optimised objectives, even though different criteria types are optimised together.

On the other hand, rules R7 and R9 outperform the COVERT rule for four out of the five

optimised criteria. Even when optimising six criteria, the evolved DRs can outperform the

COVERT rule for five criteria. Thus, the generated DRs can be deemed superior than the

COVERT rule even when a larger number of criteria is optimised simultaneously.

However, when seven criteria are optimised simultaneously, the performance of the gen-

erated DRs depends more on the combination of criteria which is optimised. Thus, rule R11

achieved better results than the COVERT rule for all criteria except the Fmax and Nwt criteria.

As the Mut and Etwt criteria are introduced in the optimisation set, the number of criteria for

which the generated DRs achieve better results than the COVERT rule decreases. When all

nine criteria are optimised simultaneously, the generated rule outperforms the COVERT rule

for five objectives. Therefore, it seems that when a larger number of criteria is optimised simul-

taneously, better results over the COVERT rule can be achieved when the Mut and Etwt are not

optimised.

5.5.5 Comparison of automatically generated DRs with the sufferage rule

Table 5.19 shows the comparison of the generated DRs with the sufferage rule. This rule was

selected since it achieves the second best performance for the Cmax criterion, while still achiev-

143

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

Table 5.18: Comparison of automatically generated multi-objective DRs with the COVERT rule

Method Criteria

Cmax Cw Etwt Fmax Ft Mut Nwt Tmax Twt

COVERT 38.26 903.1 967.1 14.57 182.3 0.126 6.755 2.442 13.50

Evolved DRs - three objectives

R1 38.21 887.2 - - - - - - 13.49

R2 37.89 - - 13.61 175.5 - - - -

R3 38.02 - - 14.37 - - - 2.427 -

R4 - 893.4 - - 173.5 - - - 12.79

R5 - - - - - - 6.566 2.249 12.28

Evolved DRs - five objectives

R6 38.06 900.0 - 14.01 177.7 0.126 - - -

R7 38.10 - 963.0 - 179.3 0.122 - - 19.43

R8 - 899.3 967.1 - 179.0 - 6.686 - 13.26

R9 - - - 17.00 173.5 - 6.440 2.401 12.68

Evolved DRs - six objectives

R10 38.22 - - 16.45 178.1 - 6.306 2.410 12.85

Evolved DRs - seven objectives

R11 38.12 886.4 - 15.71 164.4 - 6.776 2.426 13.49

R12 38.14 896.2 - 14.49 175.2 0.126 - 2.665 15.15

R13 38.15 - 980.5 13.86 178.5 0.124 7.322 2.793 -

Evolved DRs - nine objectives

R14 38.87 894.4 977.0 16.81 173.3 0.142 6.566 2.420 12.97

144

5.6. Analysis of the correlation between the scheduling criteria

ing good performance on the other criteria as well. When three criteria are optimised, the results

demonstrate that the generated DRs have the most problems in outperforming the sufferage rule

for the Cmax criterion. This is expected, since the sufferage rule achieves an extremely good

value for that criterion. The R3 rule managed to slightly outperform the sufferage rule for the

Cmax criterion, however at the expense of achieving slightly worse results than the sufferage rule

for the Fmax criterion. When the Cmax criterion is not included in the optimisation set, then the

MOGP algorithms have no problem of evolving DRs which outperform the sufferage rule for

all of the criteria.

A similar situation can be observed even when five and six criteria are optimised simulta-

neously. For the Cmax criterion the selected rules are unable to outperform the sufferage rule,

however for the other criteria the generated DRs achieved consistently better results. Neverthe-

less, some rules still achieve good performance for the Cmax criterion. For example, the R11

rule, which is evolved for optimising six criteria, achieves only 0.3% worse results than the

sufferage rule for the Cmax criterion, but for the other criteria it can achieve significant improve-

ments over the sufferage rule, like 3.4% for Fmax, and 12.4% for Twt. Therefore, even if the

generated DRs can not outperform the sufferage rule for the Cmax criterion, in many cases they

do not achieve significantly worse results.

When seven and nine criteria are optimised simultaneously, the generated DRs outperform

the sufferage rule for five or six criteria. Rule R12 can be seen to outperform the sufferage

rule for six out of seven criteria, and it achieves inferior results only for the Cmax criterion

by only 0.6%. For other criteria, especially the due date related ones, this rules can achieve

large improvements over the sufferage rule. Therefore, this rule can be considered as a good

alternative to the sufferage rule, since it achieves only slightly worse result for the Cmax criterion

than the sufferage rule. Rules R13, R14, and R15 also achieve good results and outperform the

sufferage rule for most of the optimised criteria, however, the values which these rules achieve

for the Cmax criterion are worse than that of the R12 rule.

5.6 Analysis of the correlation between the scheduling crite-

ria

Through the optimisation of different criteria combinations it was shown that for certain com-

binations the MOGP algorithms achieved better performance than on others. Usually, if criteria

which are positively correlated are optimised together, the MOGP algorithms achieved better

performance. For that reason it is important to analyse how the different criteria are correlated

with each other, so that if possible a good combination of criteria can be selected. The analy-

sis of the correlation of the different criteria was performed in a way that the Pareto fronts for

all MOGP algorithms, which were obtained by optimising nine criteria simultaneously, were

145

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

Table 5.19: Comparison of automatically generated multi-objective DRs with the sufferage rule

Method Criteria

Cmax Cw Etwt Fmax Ft Mut Nwt Tmax Twt

Sufferage 37.88 881.6 989.6 14.50 165.7 0.128 6.986 2.854 15.94

Evolved DRs - three objectives

R1 38.16 875.3 - - - - - - 14.50

R2 38.06 - - 14.07 161.9 - - - -

R3 37.86 - - 14.55 - - - 2.599 -

R4 37.97 - - 13.62 - - - 2.754 -

R5 - 874.0 - - 154.0 - - - 14.73

R6 - - - - - - 6.566 2.249 12.28

Evolved DRs - five objectives

R7 38.14 879.1 - 14.26 162.3 0.126 - - -

R8 38.61 - 986.3 - 163.9 0.128 - - 14.96

R9 - 881.5 984.7 - 163.0 - 6.761 - 13.92

R10 - - - 14.25 163.9 - 6.810 2.710 15.12

Evolved DRs - six objectives

R11 38.01 - - 14.01 162.3 - 6.837 2.486 13.96

Evolved DRs - seven objectives

R12 38.12 881.6 - 14.32 160.5 - 6.816 2.534 14.49

R13 38.32 879.3 - 14.41 159.0 0.130 - 2.774 15.11

R14 38.46 - 988.5 15.77 161.6 0.127 6.876 2.826 -

Evolved DRs - nine objectives

R15 38.62 881.0 988.9 16.28 161.0 0.141 6.796 2.734 14.17

146

5.6. Analysis of the correlation between the scheduling criteria

combined into a single Pareto front of nondominated solutions. The combined Pareto front was

used to plot all pairwise criteria combinations. In that way it is possible to obtain a notion of

how two different criteria influence each other.

Figure 5.13 represents the the correlation of the Cmax criterion with the other criteria. The

figure shows that this criterion correlates the best with the Fmax criterion. Good correlations are

also achieved with both the Ft and Cw criteria. On the other hand, the worst correlations are

achieved with the Etwt and Mut criterion, which can be seen from the Pareto fronts, since with

the minimisation of Cmax the values for the other two criteria increase significantly. The Cmax

criterion also does not correlate positively with the due date related criteria, since the increase in

the value of Cmax will usually deteriorate their values. However, they are not as nearly negatively

correlated as was the case with the Etwt criterion, where the increase in the value of the Cmax

criterion leads to a great deterioration in the values of the Etwt criterion. Therefore, the increase

in the value of the Cmax criterion will not lead to a severe decline in the values for the due date

related criteria.

Figure 5.14 represents the influence between the Cw criterion and the other eight tested

criteria. The Cw criterion achieves the best correlation with the Ft criterion, which can be seen

from the fact that the Pareto front for that pair of criteria forms almost a straight line. However,

this is expected since the definition for those two criteria are quite similar. Good correlation is

also achieved with the Cmax and Fmax criteria, but not to such a great extent. The correlation

between the Cw criterion and the due date related criteria is not as good as for the previous

three criteria. Nevertheless, the improvement in the Cw criterion will not cause extremely bad

results for the due date related criteria. In addition, the Cw criterion correlates much better

with Twt than the other two due date related criteria, which makes it is more beneficial to

simultaneously optimise the Cw criterion with Twt. Finally, the Etwt and Mut criteria are also

negatively correlated with the Cw criterion to an extremely large extent.

The correlation of the Etwt criterion with the other considered criteria is shown in Figure

5.15. The figure denotes that the Etwt criterion is negatively correlated with all other scheduling

criteria. The largest negative correlation can be observed with the completion time and flowtime

related criteria. This can be seen by the fact that if a good value is achieved for the Etwt criterion

this necessarily leads to a very bad result in any of the flowtime or completion time related

criteria. The negative correlation between the Etwt criterion and the Nwt and Mut criteria is less

severe, which makes it easier to achieve relatively good values for both criteria. For the other

two due date related criteria the negative correlation is the smallest. This is expected since one

of the goals of the Etwt criterion is to reduce the tardiness of all jobs, and therefore this also

has an effect that better values can be achieved for the Tmax and Twt criteria.

Figure 5.16 represents the correlation between the Fmax criterion and the other tested schedul-

ing criteria. The figure denotes that Fmax is strongly correlated with the Cmax criterion, but also

147

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

40 50 60 70 80

1000

1500

2000

Cmax

C
w

40 50 60 70 80

500

1000

Cmax

E
tw

t

40 50 60 70 80

20

40

60

Cmax

F m
ax

40 50 60 70 80

500

1000

1500

Cmax

F
t

40 50 60 70 80

0.05

0.1

0.15

0.2

Cmax

M
ut

40 50 60 70 80

10

20

30

40

Cmax

N
w

t

40 50 60 70 80
0

10

20

30

40

Cmax

T m
ax

40 50 60 70 80
0

200

400

600

800

Cmax

T
w

t

Figure 5.13: Correlation of the Cmax criterion with the other criteria

148

5.6. Analysis of the correlation between the scheduling criteria

1000 1500 2000

40

60

80

Cw

C
m

ax

1000 1500 2000

500

1000

Cw

E
tw

t

1000 1500 2000

20

40

60

Cw

F m
ax

1000 1500 2000

500

1000

1500

Cw

F
t

1000 1500 2000

0.05

0.1

0.15

0.2

Cw

M
ut

1000 1500 2000

10

20

30

40

Cw

N
w

t

1000 1500 2000
0

10

20

30

40

Cw

T m
ax

1000 1500 2000
0

200

400

600

800

Cw

T
w

t

Figure 5.14: Correlation of the Cw criterion with the other criteria

149

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

200 400 600 800 1000 1200

40

60

80

Etwt

C
m

ax

200 400 600 800 1000 1200

1000

1500

2000

Etwt

C
w

200 400 600 800 1000 1200

20

40

60

Etwt

F m
ax

200 400 600 800 1000 1200

500

1000

1500

Etwt

F
t

200 400 600 800 1000 1200

0.05

0.1

0.15

0.2

Etwt

M
ut

200 400 600 800 1000 1200

10

20

30

40

Etwt

N
w

t

200 400 600 800 1000 1200
0

10

20

30

40

Etwt

T m
ax

200 400 600 800 1000 1200
0

200

400

600

800

Etwt

T
w

t

Figure 5.15: Correlation of the Etwt criterion with the other criteria

150

5.6. Analysis of the correlation between the scheduling criteria

with the other two completion time and flowtime related criteria. The worst correlation of the

Fmax criterion is achieved with the Mut and Etwt criteria. On the other hand, the Fmax criterion

also correlates well with the Tmax and Twt criteria. The reason for this is due to the fact that if

the maximum flowtime is reduced it is also very likely that the maximum tardiness will also be

reduced to a certain extent, since the jobs will be in the system for a shorter amount of time,

and therefore the jobs will have less chance of being late.

Figure 5.17 represents the correlation between the Ft criterion and the other eight tested cri-

teria. The best correlation is achieved for the Cw criterion. A good correlation can be observed

for the Twt criterion as well. Therefore, the optimisation of the Ft criterion will not lead to

overly bad results for the Twt criterion. As previously described, the Cmax and Fmax criteria are

also positively correlated with the Ft criterion, at least to a certain extent. The other two due

date related criteria have a worse correlation with Ft, but again not as extremely negative as in

the case when the Ft criterion was optimised with the Etwt and Mut criteria.

The correlation between the Mut criterion and the other scheduling criteria are represented

in Figure 5.18. The figure shows that Mut correlates negatively with all the other scheduling

criteria. This is expected since the Mut criterion tries to disperse the load on all machines

equally, and thus can cause the jobs to wait until they are scheduled on a certain machine.

However, this criterion is not as negatively correlated with the other criteria, as was the case

with the Etwt criterion. It shows the most negative correlation with the flowtime and completion

time related criteria, but it is less negatively correlated with the due date related criteria. The

reason for this is that the delay of the jobs has less effect on the due date related criteria, since

the job can be freely delayed until its due date, without any increase in the value of the criteria.

Figure 5.19 represents the correlation of the Nwt criterion with the other scheduling criteria.

The most negative correlation of the Nwt criterion can be observed with the Mut and Etwt

criteria. The Nwt criterion also negatively correlates with the flowtime and completion time

related criteria, but only to a smaller extent. Positive correlation with the Nwt criterion is

achieved by the other two due date related criteria. Out of those two criteria, better correlation

is achieved with the Twt criterion, since the decrease in the number of tardy jobs will usually

lead to a smaller value in the total tardiness.

Figure 5.20 represents the correlation between the Tmax criterion with the other scheduling

criteria. This criterion achieves the most positive correlation with the Twt criterion. The reason

for this is that decreasing the maximum tardiness will also, to a certain degree, decrease the total

tardiness. A good correlation can be observed between the Tmax criterion and the Nwt and Fmax

criteria. The reason why Tmax is less correlated with Nwt is because reducing the Tmax value

will not necessarily lead to less jobs being tardy. With the other criteria the correlation is worse

to a certain extent, especially for Etwt and Mut where the correlation is extremely negative.

The correlation between the Twt criterion with the other scheduling criteria is shown in Fig-

151

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

20 40 60

40

60

80

Fmax

C
m

ax

20 40 60

1000

1500

2000

Fmax

C
w

20 40 60

500

1000

Fmax

E
tw

t

20 40 60

500

1000

1500

Fmax

F
t

20 40 60

0.05

0.1

0.15

0.2

Fmax

M
ut

20 40 60

10

20

30

40

Fmax

N
w

t

20 40 60
0

10

20

30

40

Fmax

T m
ax

20 40 60
0

200

400

600

800

Fmax

T
w

t

Figure 5.16: Correlation of the Fmax criterion with the other criteria

152

5.6. Analysis of the correlation between the scheduling criteria

500 1000 1500

40

60

80

Ft

C
m

ax

500 1000 1500

1000

1500

2000

Ft

C
w

500 1000 1500

500

1000

Ft

E
tw

t

500 1000 1500

20

40

60

Ft

F m
ax

500 1000 1500

0.05

0.1

0.15

0.2

Ft

M
ut

500 1000 1500

10

20

30

40

Ft

N
w

t

500 1000 1500
0

10

20

30

40

Ft

T m
ax

500 1000 1500
0

200

400

600

800

Ft

T
w

t

Figure 5.17: Correlation of the Ft criterion with the other criteria

153

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

5 ·10−2 0.1 0.15 0.2

40

60

80

Mut

C
m

ax

5 ·10−2 0.1 0.15 0.2

1000

1500

2000

Mut

C
w

5 ·10−2 0.1 0.15 0.2

500

1000

Mut

E
tw

t

5 ·10−2 0.1 0.15 0.2

20

40

60

Mut

F m
ax

0.05 0.1 0.15 0.2

500

1000

1500

Mut

F
t

5 ·10−2 0.1 0.15 0.2

10

20

30

40

Mut

N
w

t

5 ·10−2 0.1 0.15 0.2
0

10

20

30

40

Mut

T m
ax

5 ·10−2 0.1 0.15 0.2
0

200

400

600

800

Mut

T
w

t

Figure 5.18: Correlation of the Mut criterion with the other criteria

154

5.6. Analysis of the correlation between the scheduling criteria

10 20 30 40

40

60

80

Nwt

C
m

ax

10 20 30 40

1000

1500

2000

Nwt

C
w

10 20 30 40

500

1000

Nwt

E
tw

t

10 20 30 40

20

40

60

Nwt

F m
ax

10 20 30 40

500

1000

1500

Nwt

F
t

10 20 30 40

0.05

0.1

0.15

0.2

Nwt

M
ut

10 20 30 40
0

10

20

30

40

Nwt

T m
ax

10 20 30 40
0

200

400

600

800

Nwt

T
w

t

Figure 5.19: Correlation of the Nwt criterion with the other criteria

155

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

0 10 20 30 40

40

60

80

Tmax

C
m

ax

0 10 20 30 40

1000

1500

2000

Tmax

C
w

0 10 20 30 40

500

1000

Tmax

E
tw

t

0 10 20 30 40

20

40

60

Tmax

F m
ax

0 10 20 30 40

500

1000

1500

Tmax

F
t

0 10 20 30 40

0.05

0.1

0.15

0.2

Tmax

M
ut

0 10 20 30 40

10

20

30

40

Tmax

N
w

t

0 10 20 30 40
0

200

400

600

800

Tmax

T
w

t

Figure 5.20: Correlation of the Tmax criterion with the other criteria

156

5.7. Conclusion

ure 5.21. The best correlation is achieved with the Nwt and Tmax criteria. This is expected since

by decreasing the total tardiness, the number of tardy jobs and maximum tardiness will also

implicitly be reduced. Good correlation can also be observed between the Twt criterion and the

Ft criterion, since if the jobs spend less time in the system, they will have a smaller probability

of being late. For the other flowtime and completion time related criteria the correlation is neg-

ative, but only to a small degree. Therefore, better Twt values will worsen the values of those

criteria to a smaller extent. The worst correlation is again achieved with the Etwt and the Mut

criteria.

5.7 Conclusion

Multi-objective and many-objective optimisation represents an increasingly growing field of

research. The main reason for this is the fact that in many real world problems it is required to

optimise several criteria simultaneously. Therefore, it is important to analyse how the different

MOGP algorithms perform for various problems, and if they can find solutions competitive to

those obtained by other methods.

In this chapter four MOGP algorithms were applied on several multi-objective and many-

objective scheduling problems. The main aim of this chapter was to analyse whether DRs

evolved by MOGP algorithms can outperform standard DRs and DRs evolved by SOGP, for

various scheduling criteria. Since four MOGP algorithms were applied, a short analysis on the

performance of all algorithms was also performed. Finally, the chapter also gives an analysis

about the correlation of the different scheduling criteria.

The results obtained in this chapter show that the multi-objective DRs evolved by the MOGP

algorithms were able to perform better than several standard manually designed DRs for most

of the optimisation problems which were considered. The MOGP algorithms have also proven

that they can even outmatch the performance of DRs which were evolved only for a single cri-

terion. This demonstrates that although the algorithms are designed for optimising several cri-

teria simultaneously, they are nevertheless powerful enough to obtain extreme solutions which

in many cases outperform DRs evolved by SOGP. Out of the tested MOGP algorithms, NSGA-

II and NSGA-III achieved the best results. However, the performance of the MOGP methods

heavily depends on the combination of criteria which is optimised. Since NSGA-III has good

convergence, it performed better for problems where the Pareto front is compact. On the other

hand, the NSGA-II algorithm performs better on scheduling problems which include criteria

that have a strong negative correlation with other criteria, and for which the diversification of

solutions seems to be more important. In addition, the performance of the algorithms depends

on the combination of criteria which is optimised. This also outlines the importance of selecting

the appropriate set of criteria that should be optimised. The algorithms achieved the best per-

157

5. Automatic development of dispatching rules for multi-objective and many-objective
problems

0 200 400 600 800

40

60

80

Twt

C
m

ax

0 200 400 600 800

1000

1500

2000

Twt

C
w

0 200 400 600 800

500

1000

Twt

E
tw

t

0 200 400 600 800

20

40

60

Twt

F m
ax

0 200 400 600 800

500

1000

1500

Twt

F
t

0 200 400 600 800

0.05

0.1

0.15

0.2

Twt

M
ut

0 200 400 600 800

10

20

30

40

Twt

N
w

t

0 200 400 600 800
0

10

20

30

40

Twt

T m
ax

Figure 5.21: Correlation of the Twt criterion with the other criteria

158

5.7. Conclusion

formance if they are used to optimise criteria combinations which contain criteria of the same

type (for example only due date related criteria), or criteria which are positively correlated.

Even if the criteria are negatively correlated, but only to a smaller extent (like the due date and

makespan related criteria), the algorithms still obtain good results. On the other hand, when

optimising a criteria combination which includes criteria (like Mut or Etwt) that are negatively

correlated with all the other criteria, the performance of the algorithms deteriorates heavily.

Therefore, in order for the MOGP algorithms to evolve better DRs, a set of criteria, which does

not contain heavily conflicting objectives, should be used.

Based on the obtained results, it can be concluded that the MOGP algorithms are extremely

well suited for evolving DRs which are capable for optimising several scheduling criteria si-

multaneously. However, there are still many open research topics in this area. Since there is a

variety of MOGP algorithms, the first area of interest would be to test additional algorithms like:

strength Pareto evolutionary algorithm 2 (SPEA2) [263], many-objective metaheuristic based

on the R2 indicator (MOMBI) [264], and adaptive NSGA-III (A-NSGA-III) [265]. Another

open topic would also be to include more non-standard scheduling criteria in the optimisation

sets, to analyse how the algorithms would perform in those cases. Finally, it would be useful

to perform a deeper analysis of the evolved multi-objective rules to extract knowledge on their

behaviour.

159

Chapter 6

Designing ensembles of dispatching rules

Ensemble learning is often used to improve the performance of classifier systems in machine

learning [266]. Although ensemble learning approaches like bagging [267] or boosting [268]

are commonly used in the machine learning community, ensemble learning approaches have not

been as extensively used together with GP to improve its performance. Some notable examples

of applying ensembles to GP include classification with unbalanced data [269, 270], pattern

classification [271] and intrusion detection [272].

Although DRs do not perform classification, they nevertheless need to perform a decision

on which job should be scheduled on which machine at the current moment in time. Creating

a single DR which will always perform good decisions is quite a difficult task. For that reason,

it could prove more beneficial to use an ensemble of DRs to perform the decisions, because the

ensemble could include DRs which perform well on different situations and for different kinds

of problems. Ensemble learning techniques have rarely been used for creating ensembles of

dispatching rules. In [35] an ensemble learning method was proposed, in which the ensemble is

constructed by using the cooperative coevolution algorithm. The ensemble learning GP proce-

dure generally produced more robust rules than the single rule GP. Unfortunately, this approach

was applied only for the static scheduling problem. A second approach, named NELLI-GP, was

proposed in [36]. This method creates the ensemble in a way that each DR, which is contained

in the ensemble, is created to optimise only a certain subset of training instances. Therefore, the

ensemble will consist of DRs where each rule will focus on solving a different subset of prob-

lem instances. Although this approach achieves good results, it was also applied only on the

static job shop scheduling problem. In [37], the authors shortly investigate fitness sharing for

evolving ensembles of DRs. The initial experiments show that with the proposed method it is

possible to reduce the sizes of the ensembles, while retaining a relatively similar performance.

Park et al. [38] apply the approach proposed in [35] to dynamic job shop scheduling problems,

and also propose the use of a multilevel GP to create ensembles of DRs. However, ensem-

bles generated by the proposed multilevel GP method achieve inferior results to the ensembles

161

6. Designing ensembles of dispatching rules

generated by the cooperative coevolution approach.

This chapter will analyse whether using ensembles of DRs can lead to better performance

than when using individual DRs. The ensembles will be generated by five ensemble learning

methods, two of which are proposed in this thesis, while the other three are taken from the

literature. In the first section the applied ensemble learning methods will be shortly described.

Following that, the design of the experiments will be explained, after which the results for all

of the tested ensemble learning methods are presented. A short discussion about the different

observations which were made during the experiments is also given. Lastly, an analysis of the

best ensembles achieved by the different ensemble learning methods is performed to obtain a

deeper insight on how the different ensemble learning approaches construct the ensembles. The

chapter is concluded with a short overview and directions for further research.

6.1 GP ensemble learning methods

6.1.1 Simple ensemble combination

Simple ensemble combination (SEC) represents an ensemble learning approach which, unlike

the other tested approaches, creates ensembles out of already existing DRs. Therefore, the

approach has a smaller computational complexity, since it does not need to evolve new DRs

which would constitute the ensemble. This allows for a greater flexibility in the choice of the

DRs which can be used for the creation of ensembles.

The SEC approach consists of two independent steps which need to be specified. The first is

the way in which the DRs in the ensemble will be combined to perform a joint decision, while

the second is the procedure that selects which DRs will form the ensemble. The benefit of the

SEC approach is that there is much freedom in defining how each of those steps will work,

thus allowing for the design of different variants of the approach. The rest of this section will

describe both of these steps in detail.

Combination of DRs into an ensemble

One of the most important things which need to be specified for the SEC method is the way

in which the ensemble will perform its decisions based on the DRs which are contained in

the ensemble. In order for the DRs which are contained in the ensemble to perform a joint

decision, two combination methods, which are based on similar procedures in the machine

learning community [266], are used: sum and vote. Both combination methods will also be

used by other ensemble learning approaches in order for the entire ensemble to perform its

decision.

The sum combination method is defined as a sum of the priority values of all DRs contained

162

6.1. GP ensemble learning methods

in the ensemble. The result of that sum represents the priority value which will be assigned

to a job-machine pair. This value is used by the schedule generation scheme to schedule jobs

on machines in a way that the job-machine pair which received the best priority value will

be chosen for scheduling. The obvious advantage of this approach is its inherent simplicity,

since the values of all DRs in the ensemble only need to be summed up. There is however

one open issue with this combination method which needs to be addressed and explained. The

issue is that if the ensemble consists of DRs which are independently generated, then there is

no guarantee that the priority values obtained from the different DRs will be of the same order

of magnitude. Because of that reason it is possible that some DRs in the ensemble would not

have any influence on the final decision of the ensemble, since the contribution of their priority

values would be insignificant when compared to the priority values of other DRs. This issue

could be solved by normalising the priority values obtained by each DR. Unfortunately, this can

not be easily achieved, since the range of priority values which can be obtained by a DR is not

known in dynamic environments. In static environments it would, for example, be possible to

determine the range of priority values for each DR by using interval arithmetic [137]. However,

this issue does not influence the ensemble decisions as much as it would be expected, since it

was shown that the priority values of different DRs were usually of the same order of magnitude,

and thus each DR in the ensemble had a similar influence on the decision of the entire ensemble.

On the other hand, the vote combination method functions a bit differently. In the vote

method, instead of summing the priority values of all DRs in the ensemble, each DR casts a

vote for the element which received the best priority value by that rule, and the element which

received the most votes is the one that should be selected for scheduling. An obvious problem

with this procedure is that ties can appear much more often than with the sum method. For

example, if there are many elements for which the DR can cast a vote, then it is possible that

each element receives at most one vote, and thus it would be problematic to determine which

element should be selected. In order to alleviate this problem, the voting is not performed

for all job-machine pairs immediately, but will be split up in several parts. In the first part,

for the currently considered job, each DR will cast a vote for the machine that received the

best priority value for that job. The machine which received the most votes is assigned to the

currently considered job. If this was the first job for which a machine was assigned to, the

procedure is repeated for the next unscheduled job which is already released into the system.

However, if there exists already an association of a machine to a job, then the vote method is

used again to determine which of those two associations is better. In this second step each DR

casts a vote for either job-machine association, and the one which receives the most votes is

kept, while the other is deleted. This procedure is repeated for all unscheduled, but released

jobs. In the end of the procedure, one job-machine association will remain, and if the machine

in that association is free, the job which was associated to the machine will be scheduled on it.

163

6. Designing ensembles of dispatching rules

Algorithm 6.1 represents a pseudo-code of the vote combination method. If at any time of the

vote combination method several job-machine associations receive the same number of votes,

then the one whose job has the earlier release time will be chosen. Naturally, a better way could

have been used to deal with ties, for example using the sum combination method, but in this

thesis it was decided to focus only on the two simple methods, and to leave the possibilities

for their improvements for further research. An obvious advantage of the vote method over the

sum combination method is that the magnitudes of priority values are not important, since each

DR casts a vote of the same weight. Therefore, the vote combination method is more stable,

since it will not allow a single DR to have a large influence on the decisions of the ensemble,

which could happen for the sum combination method. However, unlike in the sum combination

method, ties between jobs are more probable to occur in this method, especially for problems

with a larger number of jobs and machines.

Algorithm 6.1 The vote combination method

1: Let bestPair represent the best selected job-machine association (empty at the beginning)
2: for each unscheduled job which is already released into the system do
3: for each DR in the ensemble do
4: Calculate the priority value by using the selected DR for all machines
5: Determine the machine for which the DR achieved the best value and vote for it
6: end for
7: Select the machine with the most votes
8: Let currentPair denote the job-machine association chosen in this iteration
9: if bestPair is not empty then

10: for each DR in the ensemble do
11: Make a vote between currentPair and bestPair
12: end for
13: if currentPair received more votes than bestPair then
14: bestPair← currentPair
15: end if
16: else
17: bestPair← currentPair
18: end if
19: end for
20: Schedule the job in the bestPair on the machine in the bestPair

Creation of ensembles of DRs

The second and more difficult part of SEC is to define the procedure for choosing which DRs

will form the ensemble. Since scheduling is performed in dynamic conditions, the ensem-

ble needs to be constructed in advance, preferably on an independent problem set from the one

which was used to generate the DRs, to reduce the probability of overfitting. Five ensemble con-

struction methods will be proposed for constructing the ensembles: random selection method,

164

6.1. GP ensemble learning methods

probabilistic selection method, grow method, grow-destroy method, and instance based method.

The most simple of the proposed ensemble construction methods is the random selection

method. This method constructs the ensemble in a way that it randomly selects which of the

available DRs should form the ensemble. In this method, all DRs will have the same probability

of being selected for the ensemble. Unfortunately, the probability of obtaining a good ensemble

by trying out only one combination of DRs is quite small. For that reason, instead of construct-

ing a single ensemble, this method constructs a certain number of ensembles, evaluates them

on the problem instance set, and selects the one which achieved the best value for the optimised

objective. The number of ensembles which will be created and tested is a parameter of the

random selection method. Naturally, the complexity and execution time of this approach will

increase as the number of the tested ensembles increases. The pseudo-code of this approach is

presented in Algorithm 6.2. The approach will not keep track if duplicate ensembles appear,

so it is possible that the approach creates the same ensemble several times. However, because

of the sheer number of combinations this does not pose a serious problem. In addition, if the

number of possible combinations is smaller than the number of ensembles which should be

constructed, then an exhaustive search can applied rather than a random search. The main dis-

advantage of this approach is that the ensemble construction is performed completely randomly,

without using any information about the quality of the DRs or generated ensembles.

Algorithm 6.2 The random selection method

1: Let R represent the set of available DRs
2: bestE ← /0
3: while the number of created ensembles is less than the maximum allowed value do
4: E ← /0
5: while Size of E is smaller than the given ensemble size do
6: Select a random DR from R∖E, and add it to E
7: end while
8: if bestE is empty then
9: bestE ← E

10: else if E achieves a better fitness than bestE then
11: bestE ← E
12: end if
13: end while

An extension of the previous approach is the probabilistic selection method. In this method

each DR has a different probability of being selected, which depends on the quality of the

obtained DRs. Therefore, DRs which perform better will have a higher probability of being

selected into the ensemble. Algorithm 6.3 represents the pseudo-code of the probabilistic se-

lection method. In the proposed method the selection probability of a DR was defined to be

proportional to the value of its fitness. An additional ε value is used to scale all fitness values

to prevent the worst individual of having the probability of being selected equal to 0. Natu-

165

6. Designing ensembles of dispatching rules

rally, other more sophisticated ways of calculating the selection probabilities of DRs can also

be used, like for example windowing [64]. The motivation behind this method is to guide the

search towards those DRs which individually have a better fitness, in hope that better ensembles

will consist of DRs which individually achieve good fitness values.

Algorithm 6.3 The probabilistic selection method

1: Let R represent the set of available DRs
2: bestE ← /0
3: Let worstFit represent the best fitness achieved by any of the DRs in R
4: Let ε represent an arbitrary constant
5: for each rule in R do
6: Let f it represent the fitness of rule
7: Calculate the probability of rule as worstFit− f it + ε

8: end for
9: Normalise the probabilities of all rules

10: while the number of created ensembles is less than the maximum allowed value do
11: E ← /0
12: while Size of E is smaller than the given ensemble size do
13: Select a random DR from R∖E based on the assigned probabilities and add it to E
14: end while
15: if bestE is empty then
16: bestE ← E
17: else if E achieves a better fitness than bestE then
18: bestE ← E
19: end if
20: end while

The grow method is a greedy heuristic which functions differently than the previous two

methods. Unlike the aforementioned two methods, which randomly select DRs that should

form the ensemble, and evaluate only the final ensemble, the grow method creates the ensemble

incrementally. The method starts with a single DR which can either be a randomly selected DR,

the DR with the best fitness value, or a DR selected by certain other criteria. In each iteration

of the method, the DR which leads to the highest increase in the quality of the ensemble is

added into it. This is done until the ensemble reaches its specified size. The pseudo-code of the

procedure is given in Algorithm 6.4. Unlike the previous two construction methods, this one

behaves deterministically if the same initial DR is used. It can happen that in certain iterations

the growth of the ensemble can lead to a worse result than that achieved in the previous iteration.

Since such situations can quite often represent only local minima, the procedure is continued

until the ensemble of the desired size is obtained. The motivation behind this method is that the

DRs which increase the overall quality of the ensemble should be selected to form the ensemble.

The grow-destroy method represents an extension of the previous method. The first part of

the method is the same as in the grow method, however, instead of building up an ensemble of

166

6.1. GP ensemble learning methods

Algorithm 6.4 The grow method

1: Let R represent the set of available DRs
2: E ← /0
3: Select a random DR from R and add it to E
4: while the size of E is smaller than the given ensemble size do
5: Select the DR from R∖E whose addition to E would lead to the best results, and add it

to E
6: end while

the specified size, this method creates an ensemble twice the size. After this step is done, the

method iteratively removes DRs from the ensemble, until it reaches the specified size. In each

iteration the method chooses to remove the DR whose removal would result in the best fitness

of the smaller ensemble. Algorithm 6.5 represents the pseudo-code of the described method. As

the previous method, this one is also deterministic given the same starting DR. The motivation

for this method is to allow for the ensemble to grow over the specified size and to collect more

good DRs in the ensemble. Then in the next step the methods removes those DRs which least

contribute to the quality of the ensemble.

Algorithm 6.5 The grow-destroy method

1: Let R represent the set of available DRs
2: E ← /0
3: Select a random DR from R and add it to E
4: while the size of E is smaller than twice of the specified ensemble size do
5: Select the DR from R∖E whose addition to E would lead to the best results, and add it

to E
6: end while
7: while the size of E is larger than the specified ensemble size do
8: Select the DR from E whose removal would lead to the best results, and remove it from

E
9: end while

Finally, the instance based method works similarly as the grow method, but it uses a com-

pletely different way of selecting the DRs which will form the ensemble. To select the DRs

which should be added to the ensemble, the decision of this method will be based on the prob-

lem instances for which the ensemble does not perform well. In the first step for each problem

instance the minimum objective value, achieved by any of the available DRs, is determined.

The first DR of the ensemble can be chosen either randomly, by its fitness, or by the number of

problem instances for which it achieves the best result. The method then iteratively adds DRs

to the ensemble. However, the method selects those DRs which achieve the best performance

on those problem instances on which the ensemble does not achieve a value at least as good

as the best value achieved by any of the DRs on their own. Therefore, this approach does not

necessarily guide the search towards ensembles which have a better overall fitness, but rather

167

6. Designing ensembles of dispatching rules

to those ensembles which solve the most problem instances as best as possible. Algorithm 6.6

represents the pseudo-code of the instance based method. The motivation for such a selection

method is to create an ensemble which achieves good performance on as many problem in-

stances as possible. Such a selection method should hopefully produce an ensemble suited for

solving a variety of problem instances well, that should also produce good results on unseen

problem instances. Another benefit of this approach is that at each iteration it evaluates only

one ensemble, since DRs are selected based on their individual performance, and the ensemble

needs to be evaluated only at the end of each iteration to determine on which problem instances

it does not perform well.

Algorithm 6.6 The instance based method

1: Let R represent the set of available DRs
2: E ← /0
3: Let P represent the set of problem instances in the validation set
4: Select a random DR from R and add it to E
5: for each problem instance p in P do
6: determine the best objective value achieved by any DR in R and denote it as opt[p]
7: end for
8: while Size of E is smaller than the specified ensemble size do
9: Let NP denote the set of problem instances for which the ensemble E can not achieve

better or equal values than those in opt
10: for each rule r in R∖E do
11: iop[r] = 0
12: for each problem instance p in NP do
13: Let f it denote the fitness of rule r on instance p
14: if f it > opt[p] then
15: iop[r]+ = f it−opt[p]
16: end if
17: end for
18: end for
19: Select rule r from R∖E which has the smallest value of iop[r] and add it to E
20: end while

6.1.2 BagGP

BagGP is an ensemble learning approach which applies the bagging procedure to GP [273].

This approach evolves DRs in a way that each DR is evolved on a different training set, which is

constructed by sampling with repetition from the original training set. The evolved DRs are then

combined to form an ensemble. The motivation for this approach is that by evolving DRs on

different training sets it is more likely that the evolved DRs will specialise for solving instances

with different characteristics. This should in turn also allow the ensemble to perform better

on a wider set of problems. The pseudo-code of the BagGP approach is given in Algorithm

168

6.1. GP ensemble learning methods

6.7. This approach, in addition to the ensemble size and combination method, has an additional

parameter, called bag size, which determines the size of the sampled training set used to evolve

the DRs. The size of the newly sampled training set can be set to an almost arbitrary value,

which can be smaller, larger or equal to the original training set size.

Algorithm 6.7 The BagGP approach

1: Let P represent the validation set of problem instances
2: Let n represent the size of the ensemble which should be constructed
3: E ← /0
4: while |E|< n do
5: Create a problem instance set S by sampling with repetition from P
6: Use GP on S to evolve a new DR
7: Add the evolved DR into the ensemble E
8: end while

6.1.3 BoostGP

BoostGP is an approach which applies the AdaBoost [268] algorithm to GP [274, 275]. This

ensemble learning approach evolves several DRs so that it weights the training set instances

in a way that problem instances which were solved poorly in previous GP runs get a higher

importance in the following GP runs, so that newly evolved DRs focus more on solving such

problematic instances. Algorithm 6.8 denotes the BoostGP approach. The approach is mostly

the same as the ones denoted in the literature with one notable difference. Since this algorithm is

adapted from the regression problem in which the fitness is usually calculated as the difference

between the value which was achieved by the evolved individual and the expected value | fi−yi|,
there is a need to adapt it to the case of evolving DRs where there does not exist an explicit

expected value which needs to be achieved, but rather a certain criterion is minimised. Since

neither of the criteria which will be used for testing can have a value lower than zero, the

approach is adjusted to treat zero as the expected values for each criterion.

In order to combine the DRs into a single ensemble, four different combination methods are

used. The first two methods are the sum and vote methods described previously. The other two

methods represent the weighted sum and vote methods which use the confidences obtained for

each DR as the weights which will be used to multiply the vote of the DR in the vote method,

and the priority value of the DR in the sum method. In addition to the combination method, the

second parameter of this approach is the size of the ensemble which needs to be generated.

169

6. Designing ensembles of dispatching rules

Algorithm 6.8 The BoostGP approach

1: Let P be the number of problem instances in the training set and T the ensemble size
2: Initialise the weights for each problem instance as D1(k) = 1/P
3: for t=1..T do
4: Run GP with the following fitness function: f itnesst = ∑

P
k=1(f (individual, pk) *

Dt(k)) * P where f represents the original fitness function, pk the problem instance
on which the fitness is calculated, and individual the individual for which the fitness is
calculated

5: Let the best individual in the GP run be denoted as ind
6: Compute the loss for each problem instance: Lk =

| ft(ind,pk)|
maxk=1..P(ft(ind,pk))

7: Compute average loss: L̄ = ∑
P
k=1 Lk *D(k)

8: Compute the confidence for the DR: βt =
L̄

1−L̄

9: Update the distribution Dt+1(k) =
Dt(k)*β 1−Li

t
Zt

, where Zt represents the normalisation
factor

10: Add the DR represented by ind into the ensemble E
11: end for

6.1.4 Cooperative coevolution

The cooperative coevolution approach is an evolutionary algorithm which divides the optimi-

sation problem into several sub-problems, which are solved independently in order to solve the

original problem [276]. Each sub-problem is solved by one sub-population in the evolution-

ary algorithm, and the only interaction between individuals from different sub-populations is

when they are combined for evaluation. Naturally, it is not possible to combine one individual

with all individuals from the other sub-populations and calculate its fitness for all the combina-

tions, since this would be too time consuming. For that reason, there usually exists a list which

contains a representative solution from each sub-population. An individual is then evaluated

in combination with the representative individuals from other sub-populations. Each time an

individual which improves the fitness of the representative list is found, it is included in the

representative list and replaces the previous representative from its sub-population. Algorithm

6.9 represents the pseudo-code of the cooperative coevolution algorithm. This approach can

also easily be used to evolve ensembles of DRs in a way that each sub-population evolves a

single DR which are then combined with DRs from other sub-populations to form an ensemble.

The ensemble size and ensemble combination method are the only parameters which need to be

defined for this approach.

6.1.5 Ensemble subset search

In order to additionally improve the performance of the ensemble learning approaches, an ad-

ditional search will be performed on ensembles after the learning process. The objective of

170

6.1. GP ensemble learning methods

Algorithm 6.9 The cooperative coevolution approach

1: Initialise a number of populations P equal to the size of the ensemble which needs to be
generated

2: Let R represent the list of representatives from each population, and R[p] the representative
of population p

3: Randomly select a single individual from each population and add it to R
4: Evaluate R on the problem instances
5: for each population p in P do
6: for each individual ind in p do
7: Let C denote a copy of R
8: C[p]← ind
9: Evaluate the ensemble C on the problem instances

10: if C achieved a better fitness than R then
11: R←C
12: end if
13: end for
14: end for
15: do
16: for each population p in P do
17: Select k individuals from the population p
18: Perform the crossover operator on the best two of the k selected individuals to create

a new individual ind
19: Perform the mutation operator on ind with a certain probability
20: Replace the worst of the k selected individuals with the newly created individual
21: Let C denote a copy of R
22: C[p]← ind
23: Evaluate the ensemble C on the problem instances
24: if C achieved a better fitness than R then
25: R←C
26: end if
27: end for
28: while termination criterion is not met

171

6. Designing ensembles of dispatching rules

this procedure is to determine the optimal subset of DRs contained in the ensemble. The in-

tuition behind this approach is that the ensembles which are evolved by the ensemble learning

approaches do not have to be optimal, and that it could be possible to construct a better ensem-

ble by using only a subset of the DRs contained in the original ensemble. This is especially

possible when using approaches where the DRs of the ensemble are evolved independently of

each other, like in BagGP or BoostGP. In those approaches the DRs forming the ensemble are

evolved in independent GP runs, after which they are collected to form the ensemble. Therefore

it is possible that the ensemble contains DRs that do not contribute to the quality of the ensem-

ble. To remedy this, the original ensemble can be modified by removing the unnecessary DRs

from the ensemble and consequentially improve the overall performance. By reducing the size

of the ensemble, the execution speed and interpretability of ensembles can also be improved.

This approach takes the ensemble evolved by one of the ensemble learning approaches and

uses the DRs that form the original ensemble to build ensembles of smaller sizes. If the size

of the original ensemble is not too large, it is possible to try out all ensemble combinations of

smaller sizes in a reasonable amount of time, and therefore determine the optimal ensemble

subset. Then either the best overall ensemble subset, or the best ensemble subset of a concrete

size can be selected. Otherwise, if the original ensemble is too large to perform an exhaustive

search, the ensemble subsets need to be generated randomly, or by using a certain heuristic

approach. Since the ensembles tested in this thesis will not contain more than ten DRs, it is

possible to perform an exhaustive search with ensemble subset search (ESS). The description

shows that ESS is similar to the SEC approach, with the differences being that it is applied on

an existing ensemble of DRs, and that it constructs ensembles of different sizes (smaller than

the original ensemble), unlike the SEC approach which creates ensembles of a predefined size

only.

The benefit of this approach is that it can not only decrease the ensemble size, but also

improve its performance. However, for ESS it is usually good to use an additional problem in-

stance set to determine the optimal combination of the DRs that will form the ensemble subset.

The additional problem instance set is used to reduce the probability of overfitting on the train-

ing set. After the optimal ensemble combination is determined, it can be used to solve unseen

scheduling problems.

6.2 Experimental design

A set of 180 problem instances will be used to create and evaluate the ensembles. This set of

problem instances is dived into three disjunct problem sets, each of which consists of a third

of the problem instances. The first set represents the training set which is used by the different

approaches to evolve the DRs. Since the SEC approach uses independently evolved DRs, which

172

6.3. Performance analysis of the SEC approach

were evolved on the training set, it needs to use an additional problem instance set to determine

the combination of DRs that should form the ensemble. ESS, which is applied on already

existing ensembles, also needs to use an additional set of problem instances to determine the

optimal ensemble subset. Therefore, these two approaches use a second problem instance set,

called the validation set, to determine the combination of DRs which will form the ensemble.

The final problem instance set, called the test set, is used to evaluate all the DRs and ensembles.

The parameters which are used by GP for evolving DRs are the same as those denoted in

table 4.3. The SEC approach will simply use DRs which were previously evolved by GP, and

therefore it is not required to generate new DRs. On the other hand, the other three ensemble

learning methods need to generate new DRs. The BagGP and BoostGP approaches execute the

GP algorithm for each DR they need to generate for the ensemble, since each DR is evolved

independently in a separate GP run. This means that for the creation of one ensemble they will

perform more iterations than when GP is used to evolve a single DR. It might seem that this

leads to an unfair comparison between these approaches and the individual DRs evolved by GP.

However, GP achieved no improvement with the increase of the number of iterations beyond

the one which was used, but rather the performance of the generated DRs started to deteriorate,

which means that the method began to overfit on the training set. Since cooperative coevolution

evolves the DRs of an ensemble simultaneously, it will perform the same number of iterations

as the GP which evolves individual DRs. All experiments were executed 30 times to obtain

statistically significant results.

6.3 Performance analysis of the SEC approach

In this section it will be analysed how the different parts of the SEC approach influence its per-

formance. For all experiments it will be tested whether the ensembles constructed by the SEC

approach achieve significantly better results than the DRs out of which they were constructed.

All experiments for which the SEC approach achieves significantly better results than the indi-

vidual DRs will be denoted in grey. In addition, the best results achieved for different ensemble

sizes will be denoted in bold.

6.3.1 Influence of different ensemble construction methods

This section will analyse the influence of the different ensemble construction methods on the

performance of the ensembles. The five ensemble construction methods described in Section

6.1.1 will be compared. The random selection method and probabilistic selection method will

use several values for the number of ensembles they create to determine the influence of that

parameter on the performance of the construction methods. The number of ensembles which

173

6. Designing ensembles of dispatching rules

were constructed in one run of the method will be denoted in the tables alongside the name of the

ensemble construction procedure. In addition, when the random selection method creates 20000

ensembles, the method will perform an exhaustive search when creating ensembles of size three,

since for this ensemble size the number of distinct ensembles which can be constructed is less

than 20000. Even if the approach would perform a random search it would still usually converge

to the same value.

Table 6.1 represents the results achieved for the different ensemble construction methods

when the sum combination method is applied. The results show that for all experiments the

SEC approach achieved significantly better results than the DRs generated by GP. The largest

improvement of SEC over GP amounts to 3.7% for the minimum value and 5.1% for the me-

dian value. Both those improvements were obtained when using ensembles of five DRs. An

additional benefit of the SEC approach over GP is that it generates much less dispersed results,

which can be seen by the maximum values which are in all cases smaller than the maximum

value achieved by GP. This means that the SEC approach is more stable and will thus have a

greater probability of obtaining good solutions than GP.

Although all the ensemble construction methods achieve significantly better results than

GP, the quality of the ensembles depends heavily on both the size and the ensemble construc-

tion method. This can best be seen from Figure 6.1 which shows the box plot representation

of the results. When creating ensembles of size three, the best results for the median value

were achieved by the random selection method with 500 created ensembles, followed by the

probabilistic selection method with 1000 created ensembles. The performance of the random

selection method and probabilistic selection method depends heavily on the number of ensem-

bles the methods construct. If a too large number of ensembles is constructed, then the methods

tend to converge to the solution which is optimal on the validation set. This behaviour should

be avoided, since the approaches start to overfit on the validation set and therefore do not per-

form well on unseen problem instances. Nevertheless, even in such occasions do the ensemble

construction methods achieve significantly better results than DRs generated by GP. The grow-

destroy and instance based methods also achieve quite good results, especially the instance

based method which achieves the overall best solution when constructing ensembles of size

three.

For larger ensemble sizes the behaviour of the approaches is different. First of all, the

random and probabilistic selection methods achieve better results when creating a larger number

of ensembles. As the number of constructed ensembles decreases, the results tend to deteriorate.

For the ensemble size of five DRs, the best results for the median value were achieved by the

random selection method when creating 20000 ensembles, followed closely by the probabilistic

selection method when creating 20000 and 10000 ensembles. The grow, grow-destroy and

instance based methods also perform rather well for the ensembles of size five. Those methods

174

6.3. Performance analysis of the SEC approach

Table 6.1: Influence of the ensemble construction methods on the results obtained by SEC with the sum
combination method

Procedure Ensemble size

3 5 7

Min Med Max Min Med Max Min Med Max

Rand 100 14.85 15.53 16.04 14.67 15.62 16.13 14.97 15.36 16.17

Rand 500 14.91 15.32 15.79 14.81 15.47 16.66 14.89 15.25 15.93

Rand 1000 14.86 15.38 16.10 14.96 15.36 15.91 14.95 15.52 15.86

Rand 5000 15.16 15.59 15.84 14.87 15.53 16.26 15.10 15.34 15.90

Rand 10000 15.16 15.59 15.72 14.80 15.37 15.90 15.10 15.40 15.93

Rand 20000 15.59 - - 14.84 15.12 15.66 14.94 15.14 15.61

Prob 100 14.90 15.61 16.22 14.93 15.29 15.92 15.02 15.40 16.10

Prob 500 14.85 15.44 15.80 15.01 15.54 15.91 15.10 15.36 15.99

Prob 1000 14.76 15.33 16.10 14.88 15.39 15.84 15.06 15.31 16.17

Prob 5000 15.16 15.59 15.84 14.75 15.53 15.82 14.89 15.31 15.87

Prob 10000 15.21 15.59 15.72 14.80 15.16 15.88 15.01 15.32 15.86

Prob 20000 15.33 15.59 15.59 14.76 15.17 15.76 15.04 15.30 15.78

Grow 15.04 15.70 16.73 14.96 15.27 16.15 14.93 15.20 16.13

Grow-dest 15.03 15.45 16.63 14.95 15.32 16.15 14.89 15.38 16.23

Inst 14.70 15.51 16.08 14.87 15.33 15.88 14.93 15.22 15.88

GP 15.23 15.94 17.59 15.23 15.94 17.59 15.23 15.94 17.59

175

6. Designing ensembles of dispatching rules

G
P

ra
nd

-1
00

ra
nd

-5
00

ra
nd

-1
00

0

ra
nd

-5
00

0

ra
nd

-1
00

00

ra
nd

-2
00

00

pr
ob

-1
00

pr
ob

-5
00

pr
ob

-1
00

0

pr
ob

-5
00

0

pr
ob

-1
00

00

pr
ob

-2
00

00

gr
ow

gr
ow

-d
es

t

in
st

15

16

17

18

(a) Comparison of the ensemble construction methods for ensembles of size three

G
P

ra
nd

-1
00

ra
nd

-5
00

ra
nd

-1
00

0

ra
nd

-5
00

0

ra
nd

-1
00

00

ra
nd

-2
00

00

pr
ob

-1
00

pr
ob

-5
00

pr
ob

-1
00

0

pr
ob

-5
00

0

pr
ob

-1
00

00

pr
ob

-2
00

00

gr
ow

gr
ow

-d
es

t

in
st

15

16

17

18

(b) Comparison of the ensemble construction methods for ensembles of size five

G
P

ra
nd

-1
00

ra
nd

-5
00

ra
nd

-1
00

0

ra
nd

-5
00

0

ra
nd

-1
00

00

ra
nd

-2
00

00

pr
ob

-1
00

pr
ob

-5
00

pr
ob

-1
00

0

pr
ob

-5
00

0

pr
ob

-1
00

00

pr
ob

-2
00

00

gr
ow

gr
ow

-d
es

t

in
st

15

16

17

18

(c) Comparison of the ensemble construction methods for ensembles of size seven

Figure 6.1: Box plot representation of the results obtained by SEC with the sum combination method,
when using different ensemble construction methods

176

6.3. Performance analysis of the SEC approach

did not perform equally well as the random and probabilistic selection methods for a larger

number of generated ensembles. For most of the other cases they achieved equally good or

even better results. Out of those three methods the instance based method seems to be the most

stable and, and also obtains the best result.

For the ensembles of seven DRs, the best result is achieved by the random selection method

which generates 20000 ensembles. The grow and instance based methods also obtain excellent

results, achieving better median values than the random and probabilistic selection methods for

almost all experiments. Also, for this ensemble size the performance of the random and proba-

bilistic selection methods does not change much with the increase of the number of ensembles

they create.

Table 6.2 represents the results for the different ensemble construction methods when the

vote combination method is used. The SEC method achieved significantly better results than

GP for all except two of the experiments. The maximum improvements of the SEC approach

over DRs generated by GP amount to 2.7% for the minimum and median values. As with the

sum combination method, the SEC approach has also shown to be more stable than GP when

the vote combination method is used.

Figure 6.2 represents the box plot representation of the results for the vote combination

method. For the ensemble size of three DRs, the best median value was achieved by the random

selection method when creating 1000 ensembles. The worst median values are achieved by the

grow, grow-destroy, instance based, and the probabilistic selection method when creating larger

numbers of ensembles. Even for the vote combination method the random and probabilistic

selection methods achieve the best results for a medium number of created ensembles. For a

larger number of created ensembles, the two ensemble creation methods once again start to

overfit on the validation set, and achieve bad results.

When creating ensembles of size five, mostly the same results were achieved as when creat-

ing ensembles of size three. However, for this ensemble size the best median value was achieved

by the instance based method, followed by the probabilistic selection method when creating 500

ensembles. Unlike for the sum combination method, where the best results for the random se-

lection method and probabilistic selection method were achieved for a larger number of created

ensembles, here this is not the case, since the methods perform better when using a smaller or

medium sized number of created ensembles. Also, the probabilistic selection method mostly

achieved better results than the random selection method, but in most cases without any signif-

icant difference. The other two methods, grow and grow-destroy, achieved quite bad results for

this ensemble size.

Finally, for the ensemble size of seven DRs the best median value is achieved by the random

selection method with 20000 created ensembles, followed by the probabilistic selection method,

with the number of created ensembles equalling to 5000. It is interesting to note that, except

177

6. Designing ensembles of dispatching rules

Table 6.2: Influence of the ensemble construction methods on the results obtained by SEC with the vote
combination method

Procedure Ensemble size

3 5 7

Min Med Max Min Med Max Min Med Max

Rand 100 15.08 15.68 16.55 15.09 15.65 16.51 14.96 15.67 16.19

Rand 500 15.20 15.64 16.14 15.17 15.74 16.40 15.34 16.65 16.13

Rand 1000 15.05 15.59 15.89 14.98 14.69 16.32 15.18 15.66 16.22

Rand 5000 15.23 16.69 15.87 15.16 15.72 16.47 15.19 15.64 16.35

Rand 10000 15.20 15.69 15.86 15.08 15.66 16.39 15.07 15.67 16.38

Rand 20000 15.86 - - 14.91 15.81 16.32 15.14 15.55 15.92

Prob 100 14.94 15.67 16.10 15.18 15.57 16.17 15.04 15.60 16.42

Prob 500 15.18 15.69 16.02 15.06 15.58 16.14 15.02 15.62 16.06

Prob 1000 15.20 15.63 16.02 15.15 15.71 16.05 15.17 15.68 16.35

Prob 5000 15.20 15.66 15.89 14.93 15.69 16.17 15.01 15.57 16.11

Prob 10000 15.20 15.82 15.87 14.95 15.70 16.25 15.10 15.64 16.14

Prob 20000 15.62 15.85 15.87 14.93 15.71 16.32 14.94 15.64 16.30

Grow 15.07 15.69 16.40 15.19 15.70 16.40 14.82 15.70 16.22

Grow-dest 15.07 15.73 16.40 15.12 15.69 16.40 15.08 15.65 16.22

Inst 15.14 15.73 16.29 14.99 15.53 16.46 15.07 15.66 16.02

GP 15.23 15.96 17.59 15.23 15.96 17.59 15.23 15.96 17.59

178

6.3. Performance analysis of the SEC approach

for the random selection method with 20000 created ensembles, the increase in the number of

created ensembles does not necessarily lead to better results, like it was the case for the sum

combination method. However, for this ensemble size, all the tested ensemble construction

methods achieved very similar results.

By comparing the results of the vote and sum combination methods, it can be seen that the

sum combination method consistently achieves better results than the vote combination method

for all ensemble sizes and ensemble creation methods. Even the best median values achieved by

the vote combination method were worse than most of the median values achieved by the sum

combination method. For example, the best median value achieved by the vote combination

method was inferior to the worst median values achieved by the sum combination method for

ensemble sizes of five and seven. This clearly denotes that the sum method is better suited for

creating ensembles of better performance.

Based on the previously analysed results, it can be concluded that the ensemble construc-

tion methods have a significant influence on the quality of the generated ensembles. These

differences are more prominent for the sum combination method, while with the vote combina-

tion method the results achieved by the various approaches are mostly similar. However, apart

from the quality of the evolved ensembles, the different construction methods also differ in the

number of the DRs that they create during their execution.

In most cases the best median values of results were achieved by the random selection

method. However, for which number of constructed ensembles the random selection procedure

will obtain the best results depends largely on the size of the ensemble which needs to be

constructed. In most cases for smaller ensemble sizes it is preferred to create a smaller or

medium number of ensembles, while as the ensemble size grows the number of constructed

ensembles should also increase. For the smaller ensemble sizes it was demonstrated that if a

too big number of ensembles are constructed the approach will start to overfit on the validation

set. This is expected, since for the ensemble size of three DRs there is not an extensive number

of combinations which can be tried out, therefore it is highly probable that the construction

method will find the ensemble which is optimal on the validation set. This behaviour should be

avoided, since in most cases such an ensemble does not perform well on the test set. The same

is also true for the probabilistic selection method. Although the probabilistic selection method

tries to enhance the random selection method in a way that the DRs which are selected to form

the ensemble are not selected completely by random, but rather depending on their fitness, it did

not manage to achieve results which are better than those of the random selection method. The

cause for this seems to originate from the fact that ensembles with the best quality usually do

not necessarily contain DRs which individually perform quite differently. Therefore, it seems

as if the individual quality of the DRs does not represent relevant information which should be

used for selecting DRs that should form the ensemble. Because of that reason the probabilistic

179

6. Designing ensembles of dispatching rules

G
P

ra
nd

-1
00

ra
nd

-5
00

ra
nd

-1
00

0

ra
nd

-5
00

0

ra
nd

-1
00

00

ra
nd

-2
00

00

pr
ob

-1
00

pr
ob

-5
00

pr
ob

-1
00

0

pr
ob

-5
00

0

pr
ob

-1
00

00

pr
ob

-2
00

00

gr
ow

gr
ow

-d
es

t

in
st

15

16

17

18

(a) Comparison of the ensemble construction methods for ensembles of size three

G
P

ra
nd

-1
00

ra
nd

-5
00

ra
nd

-1
00

0

ra
nd

-5
00

0

ra
nd

-1
00

00

ra
nd

-2
00

00

pr
ob

-1
00

pr
ob

-5
00

pr
ob

-1
00

0

pr
ob

-5
00

0

pr
ob

-1
00

00

pr
ob

-2
00

00

gr
ow

gr
ow

-d
es

t

in
st

15

16

17

18

(b) Comparison of the ensemble construction methods for ensembles of size five

G
P

ra
nd

-1
00

ra
nd

-5
00

ra
nd

-1
00

0

ra
nd

-5
00

0

ra
nd

-1
00

00

ra
nd

-2
00

00

pr
ob

-1
00

pr
ob

-5
00

pr
ob

-1
00

0

pr
ob

-5
00

0

pr
ob

-1
00

00

pr
ob

-2
00

00

gr
ow

gr
ow

-d
es

t

in
st

15

16

17

18

(c) Comparison of the ensemble construction methods for ensembles of size seven

Figure 6.2: Box plot representation of the results obtained by SEC with the vote combination method,
when using different ensemble construction methods

180

6.3. Performance analysis of the SEC approach

selection method does not offer any advantage over the random selection method.

The motivation for the other three proposed methods is to guide the search towards good

ensembles, but instead of using the individual fitness values of DRs, the influence of the se-

lected DR on the entire ensemble will be used for guiding the search. Except for the ensemble

size of three DRs, these three methods were shown to perform quite well, and were able to out-

perform the random and probabilistic selection methods in several occasions. The reason why

the methods do not perform well on the smaller ensembles is because their search space is very

limited, and therefore they will not be able to locate good solutions. Among the three tested

methods, the best results were achieved by the instance based method, which even obtains the

best results out of all the tested methods for certain parameter values. This is an important

indicator which demonstrates that increasing the fitness of the ensemble is not necessarily the

most important criteria which should be used to select the DRs which constitute the ensemble.

Rather, it is more advantageous to use a procedure which guides the search towards those DRs

which perform well on problem instances on which the entire ensemble performs poorly. Thus,

the grow and grow-destroy construction methods are more likely to overfit on the validation set,

while the instance based method is more resistant to overfitting, since the fitness value is not the

main driving force of the search.

In addition, the grow, grow-destroy and instance based methods also evaluate a smaller

number of ensembles, which means that they will usually execute faster. For example the grow

method will evaluate around 300 ensembles when constructing an ensemble of size seven, while

the grow-destroy method will evaluate around 600 ensembles. The instance based method will

evaluate even less ensembles, concretely only 7, therefore making it the least expensive out of

the tested methods. An additional important thing is that since these methods build the ensem-

bles incrementally, in earlier iterations the ensembles which are constructed will be smaller and

therefore evaluated faster. Therefore the execution time of the grow and grow-destroy methods

is comparable to the execution time of random selection methods when creating 100 and 500

ensembles, depending on the size of the constructed ensemble. For that reason, if it is crucial

that the ensembles are obtained in the smallest possible time, then these three methods should

be preferred, since they can obtain good ensembles in a much shorter amount of time.

Since the best results were achieved by the random selection method, the rest of the ex-

periments will use this construction method to generate the ensembles. The random selection

method will generate 20000 ensembles, since for that parameter value the best median results

were achieved in several cases.

6.3.2 Influence of the method used for the generation of DRs

This section will analyse how the method which is used to generate the DRs influences the

performance of the constructed ensembles. The motivation behind this analysis is to determine

181

6. Designing ensembles of dispatching rules

whether DRs generated by certain methods are more suitable for creating ensembles, or if there

is no such correlation. In the results an additional GP method denoted as UGP (unoptimised

GP) will be included. This method represents the standard GP procedure which, instead of the

optimised parameters, uses unoptimised parameter values which were determined as a rule of

thumb. The parameter values for the UGP procedure are the same as those shown in table 4.3,

except for the maximum tree depth which was set to 7, and the set of crossover operators which

additionally included the one-point crossover operator. The motivation behind testing UGP is to

analyse whether generating DRs with a highly optimised GP leads to significant improvements

in the results achieved by the ensembles, since parameter optimisation is usually a quite time

consuming process. Therefore, if there would be no significant difference between the results

of the two methods, then there would be no need to perform the parameter optimisation process.

Table 6.3 represents the results achieved for ensembles of DRs generated by different GP

methods. The table shows that the ensembles constructed by the SEC approach in most cases

achieved a significantly better performance than the individual DRs. When using DRs which

were generated by GP and UGP for the creation of ensembles, then for all experiments the

constructed ensembles achieved a significantly better performance than the individual DRs. On

the other hand, when DRs generated by GEP are used, then the SEC approach is unable to

generate ensembles which outperform those DRs in two occasions, while for DRs generated by

DAGP this happens in six occasions. It is also interesting to note that for the Twt and Ft criteria

the ensembles created from all DRs outperformed the individual DRs, while on the other hand

for the Cmax criterion the ensembles were in most cases unable to achieve significantly better

results than individual DRs. The results also show that the extent of the improvements largely

depend on the criterion which is optimised. The smallest improvements in the median values

are achieved for the Ft and Cmax criteria, which amount to around 1%. However, for the Twt

and Nwt criteria the SEC approach outperforms the median value of individual DRs up to 6.2%

for the Twt criterion, and up 5.4% to for the Nwt criterion.

Figure 6.3 additionally shows the box plot representation of the results. The box plots

which represent the results of the individual DRs will be denoted in grey. The figure shows

how in many cases the ensembles obtain results which are much less dispersed than those of the

individual DRs. This shows that the stability of the approach does not depend on the GP method

which was used to generate the DRs. It is also evident that most of the generated ensembles

achieve a better performance when compared to the median value of the results obtained by

the individual DRs. This shows that the ensemble learning methods are likely to construct

ensembles which perform better than most of the individual DRs.

182

6.3.
Perform

ance
analysis

ofthe
SE

C
approach

Table 6.3: Influence of the different GP methods on the results obtained by SEC

Approach Twt Nwt Ft Cmax

Ensemble

Combination Size
Min Med Max Min Med Max Min Med Max Min Med Max

- - 15.23 15.96 17.59 7.674 8.107 8.669 158.1 159.3 161.6 38.29 38.70 39.45

3 15.59 - - 7.792 - - 158.2 - - 38.70 - -

5 14.84 15.12 15.76 7.556 8.064 8.276 157.6 158.7 160.3 38.34 38.51 38.73Sum

7 14.94 15.30 15.84 7.670 8.091 8.300 157.5 158.7 160.4 38.39 38.48 38.63

3 15.86 - - 7.586 - - 157.8 - - 38.74 - -

5 14.91 15.81 16.32 7.699 7.946 8.212 157.6 158.5 159.4 38.28 38.37 38.71

GP

Vote

7 15.14 15.55 15.92 7.511 7.906 8.321 157.5 158.6 159.6 38.34 38.48 38.79

- - 15.25 16.12 20.99 7.532 8.123 8.834 158.4 160.3 163.2 38.46 38.76 39.77

3 15.73 - - 8.107 - - 158.0 - - 38.51 - -

5 14.86 15.12 15.66 7.531 7.837 8.094 157.3 158.5 160.5 38.34 38.52 38.63Sum

7 14.77 15.14 15.61 7.461 7.693 8.210 157.4 158.0 160.8 37.38 38.50 38.66

3 15.15 - - 7.890 - - 158.6 - - 38.56 - -

5 15.08 15.53 16.05 7.424 7.734 8.151 157.9 158.5 159.4 38.28 38.46 38.82

UGP

Vote

7 15.01 15.36 15.74 7.399 7.687 7.934 157.8 158.7 159.5 38.30 38.42 38.65

183

6.D
esigning

ensem
bles

ofdispatching
rules

Table 6.3: Influence of the different GP methods on the results obtained by SEC

Approach Twt Nwt Ft Cmax

Ensemble

Combination Size
Min Med Max Min Med Max Min Med Max Min Med Max

- - 15.16 15.99 16.93 7.799 8.027 8.367 157.5 159.9 164.9 38.38 38.68 39.28

3 15.99 - - 7.772 - - 158.2 - - 38.79 - -

5 14.88 15.16 16.11 7.927 8.033 8.222 156.9 158.3 160.0 38.60 38.71 38.93Sum

7 14.75 15.26 15.92 7.817 8.005 8.216 156.9 158.3 159.4 38.68 38.73 38.99

3 15.94 - - 8.253 - - 159.0 - - 38.77 - -

5 15.16 15.55 15.98 7.755 7.925 8.206 157.1 158.7 159.9 38.44 38.84 38.97

DAGP

Vote

7 15.01 15.45 15.99 7.765 7.911 8.100 157.9 158.7 159.4 38.37 38.77 38.93

- - 15.35 16.03 17.32 7.631 8.082 8.919 157.8 160.0 162.9 38.26 38.58 38.94

3 15.30 - - 8.012 - - 159.8 - - 38.81 - -

5 15.06 15.51 15.93 7.840 7.970 8.118 157.6 158.9 160.7 38.45 38.66 38.81Sum

7 15.01 15.28 15.64 7.653 7.867 8.176 157.4 158.3 159.9 38.44 38.52 38.71

3 15.46 - - 7.760 - - 159.4 - - 38.33 - -

5 15.18 15.63 16.22 7.516 7.857 8.156 158.1 159.0 160.0 38.24 38.32 38.38

GEP

Vote

7 15.21 15.65 16.15 7.681 7.935 8.123 157.7 158.6 159.7 38.25 38.30 38.40

184

6.3. Performance analysis of the SEC approach

The results show that the SEC method did not achieve the overall best results for all criteria

by using DRs generated by only one of the tested GP methods. For the Twt criterion the SEC

approach achieves the best results when using DRs evolved by standard GP and UGP. For the

Nwt criterion the best results are achieved by using DRs generated by UGP. On the other hand

for the Ft criterion the best results are achieved by using DRs generated by DAGP and UGP,

while for the Cmax criterion the best results are achieved when using DRs generated by GEP.

However, the differences between the results achieved by the various approaches are usually

not significant. The reason why the SEC method performs better for different criteria by using

DRs which are generated by different GP methods is probably connected to the complexity of

the generated DRs. When optimising the Twt and Nwt criteria, it seems to be more beneficial

to construct ensembles by using more complex DRs, which are usually generated by GP and

UGP. On the other hand, for the other two criteria ensembles which are created from simpler

DRs, like those generated by GEP and DAGP, usually performed better.

The performance of the SEC approach also depends on the ensemble combination method

which is used. However, the results demonstrate that the criterion which is optimised will in-

fluence which of the two combination methods will achieve a better performance. For example,

the sum combination method performs better on the Twt and Ft criteria, while the vote com-

bination method performs better when applied for optimising the Nwt and Cmax criteria. The

size of the ensemble also has a severe influence on the performance. Usually the best results

are achieved by ensembles either of size five or seven. However, the results do not give enough

information to conclude which of those two ensemble sizes is preferable for which situations.

Another very interesting thing which the results show is that the ensembles of DRs generated

by GP and UGP perform quite similarly. In some occasions the ensembles of DRs generated

by UGP perform even better. Thus, the performance of the SEC approach does not depend too

much on whether the DRs were created by a highly optimised procedure or not. This is an

important fact to consider, since the parameters used for GP were carefully optimised to obtain

DRs which achieve the best performance. With this parameter optimisation, GP achieved results

with not only a better median value, but which were also less dispersed than the results achieved

by UGP. However, the parameter optimisation process which was performed to obtain those

results was in itself extremely time consuming. Therefore, even though parameter optimisation

is an important step for GP to achieve good results, it seems that this step could be skipped or

largely reduced, since SEC will be able to create good ensembles even from unoptimised DRs.

When all things are considered, it can be concluded that the SEC approach has shown to

consistently increase the performance over individual DRs. The approach has proven to be

more efficient when using DRs which are not constructed by methods which limit the diversity

of DRs they create (like DAGP), or methods which generate less complex DRs (like GEP).

Therefore, for the construction method of the SEC approach it is better to use a set of DRs

185

6. Designing ensembles of dispatching rules

G
P

G
P-

s-
3

G
P-

s-
5

G
P-

s-
7

G
P-

v-
3

G
P-

v-
5

G
P-

v-
7

U
G

P

U
G

P-
s-

3

U
G

P-
s-

5

U
G

P-
s-

7

U
G

P-
v-

3

U
G

P-
v-

5

U
G

P-
v-

7

D
A

G
P

D
A

G
P-

s-
3

D
A

G
P-

s-
5

D
A

G
P-

s-
7

D
A

G
P-

v-
3

D
A

G
P-

v-
5

D
A

G
P-

v-
7

G
E

P

G
E

P-
s-

3

G
E

P-
s-

5

G
E

P-
s-

7

G
E

P-
v-

3

G
E

P-
v-

5

G
E

P-
v-

7

14

16

18

20

22

(a) Comparison of the GP approaches for the Twt criterion

G
P

G
P-

s-
3

G
P-

s-
5

G
P-

s-
7

G
P-

v-
3

G
P-

v-
5

G
P-

v-
7

U
G

P

U
G

P-
s-

3

U
G

P-
s-

5

U
G

P-
s-

7

U
G

P-
v-

3

U
G

P-
v-

5

U
G

P-
v-

7

D
A

G
P

D
A

G
P-

s-
3

D
A

G
P-

s-
5

D
A

G
P-

s-
7

D
A

G
P-

v-
3

D
A

G
P-

v-
5

D
A

G
P-

v-
7

G
E

P

G
E

P-
s-

3

G
E

P-
s-

5

G
E

P-
s-

7

G
E

P-
v-

3

G
E

P-
v-

5

G
E

P-
v-

7

7.5

8

8.5

9

(b) Comparison of the GP approaches for the Nwt criterion

G
P

G
P-

s-
3

G
P-

s-
5

G
P-

s-
7

G
P-

v-
3

G
P-

v-
5

G
P-

v-
7

U
G

P
U

G
P-

s-
3

U
G

P-
s-

5
U

G
P-

s-
7

U
G

P-
v-

3
U

G
P-

v-
5

U
G

P-
v-

7
D

A
G

P
D

A
G

P-
s-

3
D

A
G

P-
s-

5
D

A
G

P-
s-

7
D

A
G

P-
v-

3
D

A
G

P-
v-

5
D

A
G

P-
v-

7
G

E
P

G
E

P-
s-

3
G

E
P-

s-
5

G
E

P-
s-

7
G

E
P-

v-
3

G
E

P-
v-

5
G

E
P-

v-
7

160

165

(c) Comparison of the GP approaches for the Ft criterion

G
P

G
P-

s-
3

G
P-

s-
5

G
P-

s-
7

G
P-

v-
3

G
P-

v-
5

G
P-

v-
7

U
G

P
U

G
P-

s-
3

U
G

P-
s-

5
U

G
P-

s-
7

U
G

P-
v-

3
U

G
P-

v-
5

U
G

P-
v-

7
D

A
G

P
D

A
G

P-
s-

3
D

A
G

P-
s-

5
D

A
G

P-
s-

7
D

A
G

P-
v-

3
D

A
G

P-
v-

5
D

A
G

P-
v-

7
G

E
P

G
E

P-
s-

3
G

E
P-

s-
5

G
E

P-
s-

7
G

E
P-

v-
3

G
E

P-
v-

5
G

E
P-

v-
7

38

38.5

39

39.5

40

(d) Comparison of the GP approaches for the Cmax criterion

Figure 6.3: Box plot representation of the results obtained by SEC, when using DRs evolved by
different GP approaches for constructing the ensembles

186

6.3. Performance analysis of the SEC approach

which consists out of DRs with a lot of variety between them. SEC has also shown to be a very

stable and reliable approach, which is evident from the dispersion of the solutions it obtains.

This means that the ensembles constructed by SEC have a much higher chance of obtaining

better solutions than those obtained by individual DRs.

Since it was not shown that the SEC method performs consistently better by using DRs gen-

erated by a single procedure, the DRs generated by GP will be used for creating the ensembles

in further experiments.

6.3.3 Influence of the size of the generated DRs

This section will analyse how different sizes of the generated DRs have an influence on the

performance of the ensembles. The motivation for this analysis is to determine whether there

is a preferred DR size which should be used by the ensembles. In the experiments the SEC

approach will use DRs generated by using three different maximum tree depths: three, five and

seven. The DRs generated when using the maximum tree depths of three, five and seven will

be denoted as GP-3, GP-5, and GP-7, respectively. Since no function node in the primitive set

has more than two arguments, the maximum sizes of the DRs which can be generated by these

three GP methods consist of 15, 63, and 255 nodes respectively for GP-3, GP-5, and GP-7.

Table 6.4 represents the results achieved by the SEC approach when constructing ensem-

bles from DRs of different sizes. The results show that when using DRs generated by GP-3

the constructed ensembles did not achieve significantly better results in three occasions, while

the ensembles constructed from DRs generated by GP-7 did not achieve significantly better re-

sults in only one occasion. For the Nwt and Cmax criteria the ensembles were always able to

significantly outperform individual DRs regardless of the size of the generated DRs. The im-

provements achieved by the ensembles of DRs for the median values of the Ft and Cmax criteria

were again quite small and amount up to around 1%. For the other two criteria the ensem-

bles achieved a maximum improvement of 5.3% for the Twt criterion, and 4.7% for the Nwt

criterion.

Figure 6.4 shows the box plot representation of the results achieved by the SEC approach

when DRs of different sizes are used. The figure denotes that the SEC approach is more stable

than GP, which can be seen from the fact that the results of the ensembles are usually less

dispersed than those of the individual DRs. The SEC approach delivers the least dispersed

results when DRs of the smallest sizes are used.

187

6.D
esigning

ensem
bles

ofdispatching
rules

Table 6.4: Influence of the maximum tree depth used to generate DRs on the results obtained by SEC

Approach Twt Nwt Ft Cmax

Ensemble

Combination Size
Min Med Max Min Med Max Min Med Max Min Med Max

- - 15.26 16.23 17.23 7.780 8.185 8.663 158.7 160.0 161.9 38.31 38.84 39.18

3 15.37 - - 7.878 - - 159.9 - - 38.34 - -

5 15.16 15.39 15.97 7.730 7.976 8.033 159.7 160.0 160.5 38.34 38.39 38.47Sum

7 15.23 15.50 15.66 7.962 8.001 8.098 159.0 159.2 159.9 38.31 38.38 38.45

3 16.21 - - 7.638 - - 159.8 - - 38.69 - -

5 16.03 16.23 16.26 7.645 7.806 8.235 159.0 159.2 159.7 38.27 38.37 38.47

GP-3

Vote

7 15.75 16.23 16.46 7.572 7.914 8.302 159.0 159.4 159.9 38.24 38.34 38.48

- - 15.23 15.96 17.59 7.674 8.107 8.669 158.1 159.3 161.6 38.29 38.70 39.45

3 15.59 - - 7.792 - - 158.2 - - 38.70 - -

5 14.84 15.12 15.76 7.556 8.064 8.276 157.6 158.7 160.3 38.34 38.51 38.73Sum

7 14.94 15.30 15.84 7.670 8.091 8.300 157.5 158.7 160.4 38.39 38.48 38.63

3 15.86 - - 7.586 - - 157.8 - - 38.74 - -

5 14.91 15.81 16.32 7.699 7.946 8.212 157.6 158.5 159.4 38.28 38.37 38.71

GP-5

Vote

7 15.14 15.55 15.92 7.511 7.906 8.321 157.5 158.6 159.6 38.34 38.48 38.79

188

6.3.
Perform

ance
analysis

ofthe
SE

C
approach

Table 6.4: Influence of the maximum tree depth used to generate DRs on the results obtained by SEC

Approach Twt Nwt Ft Cmax

Ensemble

Combination Size
Min Med Max Min Med Max Min Med Max Min Med Max

- - 15.28 16.18 20.51 7.727 8.131 8.906 158.6 160.6 163.0 38.38 38.85 39.41

3 15.77 - - 7.795 - - 159.7 - - 38.37 - -

5 14.96 15.58 16.03 7.499 7.765 7.884 158.2 159.6 161.3 38.37 38.61 38.63Sum

7 14.91 15.58 16.04 7.557 7.751 7.978 158.2 160.5 161.4 38.37 38.62 38.73

3 15.51 - - 7.669 - - 159.4 - - 38.43 - -

5 15.00 15.45 16.06 7.540 7.750 8.007 158.5 159.4 160.5 38.32 38.62 38.80

GP-7

Vote

7 15.03 15.33 15.91 7.508 7.774 8.165 158.3 159.3 160.2 38.35 38.57 38.89

189

6. Designing ensembles of dispatching rules

The results show that for different criteria DRs of different sizes are more appropriate.

Therefore, for the Cmax criterion the best results were achieved by using DRs of the smallest

size, which were generated by the GP-3 method. This again shows that for this criterion less

complex DRs are more suitable and can achieve better performance. The best results for the

Twt and Ft criteria were achieved by using the GP-5 method, while the GP-7 method achieved

the best results for the Nwt criterion. An interesting thing which can also be noticed is how

the performance of the ensemble combination methods also depends on the maximum depth

of the DRs. For the Twt criterion the performance of the vote combination method increases

with the increase of the depth used to generate the DRs, however for the sum method this is

not the case, since GP-5 achieves the best results. For the Nwt criterion it is evident that for

both combination methods the results improve as the maximum depth used for generating the

DRs increases. For the Ft criterion the best results for both combination methods are achieved

for ensembles of DRs generated by GP-5, which suggests that DRs of medium complexity are

preferred for this criterion. Finally, for the Cmax criterion the performance of both combination

methods deteriorates with the increase of the DR size.

6.4 Results obtained by different ensemble learning methods

In this section the results achieved by ensembles of DRs, created by different ensemble learning

approaches, will be presented. First the results for each individual approach on the Twt criterion

will be presented, and the influence of the ensemble size and ensemble combination method on

the performance of the approaches will be analysed. In the last section the methods will be

compared with each other on four different scheduling criteria.

ESS will be applied on ensembles obtained by all approaches to determine whether by using

this method it is possible to further improve the performance of the obtained ensembles. In the

tables which represent the results obtained by ESS, the underlined experiments denote those for

which ESS performs significantly better than the ensembles of the same size which was obtained

without ESS. This means that, for example, the ensembles of size five constructed by ESS from

ensembles generated by BagGP, will be compared to ensembles of size five constructed by

BagGP. This comparison will show whether for a concrete ensemble size ESS can construct

better ensembles.

In addition, where possible, it was tested if there is a statistical difference between ensem-

bles of sizes two, five, and ten when not using ESS, and sizes of two, five, and nine when using

ESS. In such a way it is possible to obtain a rough estimation of the performance of smaller,

medium, and larger ensembles, since testing the significant difference between all sizes would

be too time consuming.

190

6.4. Results obtained by different ensemble learning methods

G
P3

G
P3

-s
-3

G
P3

-s
-5

G
P3

-s
-7

G
P3

-v
-3

G
P3

-v
-5

G
P3

-v
-7

G
P5

G
P5

-s
-3

G
P5

-s
-5

G
P5

-s
-7

G
P5

-v
-3

G
P5

-v
-5

G
P5

-v
-7

G
P7

G
P7

-s
-3

G
P7

-s
-5

G
P7

-s
-7

G
P7

-v
-3

G
P7

-v
-5

G
P7

-v
-7

14

16

18

20

(a) Comparison of the maximum tree depths for the Twt criterion

G
P3

G
P3

-s
-3

G
P3

-s
-5

G
P3

-s
-7

G
P3

-v
-3

G
P3

-v
-5

G
P3

-v
-7

G
P5

G
P5

-s
-3

G
P5

-s
-5

G
P5

-s
-7

G
P5

-v
-3

G
P5

-v
-5

G
P5

-v
-7

G
P7

G
P7

-s
-3

G
P7

-s
-5

G
P7

-s
-7

G
P7

-v
-3

G
P7

-v
-5

G
P7

-v
-7

7.5

8

8.5

9

(b) Comparison of the maximum tree depths for the Nwt criterion

G
P3

G
P3

-s
-3

G
P3

-s
-5

G
P3

-s
-7

G
P3

-v
-3

G
P3

-v
-5

G
P3

-v
-7

G
P5

G
P5

-s
-3

G
P5

-s
-5

G
P5

-s
-7

G
P5

-v
-3

G
P5

-v
-5

G
P5

-v
-7

G
P7

G
P7

-s
-3

G
P7

-s
-5

G
P7

-s
-7

G
P7

-v
-3

G
P7

-v
-5

G
P7

-v
-7

158

160

162

164

(c) Comparison of the maximum tree depths for the Ft criterion

G
P3

G
P3

-s
-3

G
P3

-s
-5

G
P3

-s
-7

G
P3

-v
-3

G
P3

-v
-5

G
P3

-v
-7

G
P5

G
P5

-s
-3

G
P5

-s
-5

G
P5

-s
-7

G
P5

-v
-3

G
P5

-v
-5

G
P5

-v
-7

G
P7

G
P7

-s
-3

G
P7

-s
-5

G
P7

-s
-7

G
P7

-v
-3

G
P7

-v
-5

G
P7

-v
-7

38

38.5

39

39.5

(d) Comparison of the maximum tree depths for the Cmax criterion

Figure 6.4: Box plot representation of the results obtained by SEC, when using DRs evolved by varius
maximum tree depths to construct the ensembles

191

6. Designing ensembles of dispatching rules

6.4.1 Results obtained by the SEC approach

Table 6.5 represents the results obtained by the SEC approach for different ensemble sizes. For

the experiments, DRs generated by the standard GP procedure with the optimised parameters

were used. The random selection method which generates 20000 ensembles was applied for the

ensembles construction. In order to eliminate the need for another problem instance set which

would be used by ESS, the same validation set which was used by SEC to create the ensemble

is also used by ESS to construct the ensemble subsets.

The experiments show that by using both ensemble combination methods the SEC ap-

proach achieved significantly better results than individual DRs. The sum combination method

achieved significantly better results in all cases, whereas the vote combination method was un-

able to do so for the ensemble sizes of four and five DRs. With the sum combination method

the maximum improvement of 5.1% for the median value was achieved over individual DRs.

On the other hand, the vote combination method achieved a maximum improvement of only

2.5% for the median value. It is interesting to observe the results which are achieved by SEC

for the two smallest ensemble sizes, for which an exhaustive search on the validation set was

performed. The ensemble which was generated for the size two, by using the vote combination

method, is shown to perform equally well as the best DR evolved by GP, while for the sum

combination method the obtained ensemble performed even better than the best evolved DR.

However, when the ensemble size increases to three DRs, the results deteriorate for both com-

bination methods, although the obtained results are still better than the median value achieved

by all evolved individual DRs. Therefore, the ensemble of size three seems to overfit more eas-

ily on the validation set than the ensemble of size two, due it its larger expressiveness. Based on

these results it can be concluded that the SEC approach can easily construct ensembles which

achieve superior performance over the individual DRs.

Figure 6.5 shows the box plot representation of the results. The figure shows that the sum

method consistently achieved better median values for all the tested ensemble sizes. Both meth-

ods achieve much better solution distributions than the individual DRs. This is not only evident

from the fact that the ensembles achieve much smaller maximum values than the individual

DRs, but also from the fact that for many experiments the maximum values achieved by the

ensembles was smaller or equal to the median value of the individual DRs. Furthermore, when

creating ensembles of four and five DRs by using the sum combination method, the median

values achieved by the SEC approach were smaller than the minimum value of the solutions

achieved by GP. This means that for these parameters at least 50% of the solutions obtained by

SEC will outperform the best individual DR. This demonstrates that the SEC approach has a

high probability of obtaining better solutions than GP. Between the two combination methods,

the sum method achieves less dispersed results than the vote combination method in most of the

experiments. The sum combination method achieves better results when using medium sized

192

6.4. Results obtained by different ensemble learning methods

Table 6.5: Results obtained by the SEC approach

Sum Vote

Ensemble size Min Med Max Min Med Max

2 15.17 - - 15.23 - -

3 15.59 - - 15.86 - -

4 14.92 15.18 15.93 15.20 15.87 16.23

5 14.84 15.12 15.76 14.91 15.81 16.32

6 14.89 15.55 15.89 15.17 15.70 16.04

7 14.94 15.30 15.84 15.14 15.55 15.92

8 14.88 15.37 15.86 15.02 15.81 16.43

9 15.18 15.32 15.70 15.20 15.54 16.06

10 15.10 15.29 16.07 15.15 15.65 16.35

GP 15.23 15.96 17.59 15.23 15.96 17.59

ensembles, while on the other hand the vote combination method usually performs better for

ensembles consisting out of a large number of DRs. Since in the sum combination method each

DR has an influence on the priorities of all job-machine pairs, it is harder to find a larger ensem-

ble of DRs which perform well under all situations. On the other hand, in the vote combination

method, each DR casts only a vote for the best element, therefore it is more beneficial to have a

larger ensemble of DRs for the approach to be more stable and reduce the number of ties. When

comparing ensembles of sizes five and ten for the sum combination method, statistically better

results were achieved when using ensembles of size five.

The ensembles created by the SEC approach will be used by ESS to determine if it is pos-

sible to create ensemble subsets which have perform better than the entire ensemble. For that

G
P

SE
C

-s
-2

SE
C

-s
-3

SE
C

-s
-4

SE
C

-s
-5

SE
C

-s
-6

SE
C

-s
-7

SE
C

-s
-8

SE
C

-s
-9

SE
C

-s
-1

0

SE
C

-v
-2

SE
C

-v
-3

SE
C

-v
-4

SE
C

-v
-5

SE
C

-v
-6

SE
C

-v
-7

SE
C

-v
-8

SE
C

-v
-9

SE
C

-v
-1

0

15

16

17

18

Figure 6.5: Box plot representation of the results obtained by the SEC approach

193

6. Designing ensembles of dispatching rules

Table 6.6: Results obtained by ESS when applied on ensembles of size five generated by SEC

Sum Vote

Ensemble subset size Min Med Max Min Med Max

2 15.00 15.25 16.57 15.42 16.20 17.31

3 14.88 15.21 15.99 15.33 15.69 16.10

4 14.49 15.24 15.76 15.17 15.65 16.25

GP 15.23 15.96 17.59 15.23 15.96 17.59

purpose the ensembles of size five and ten will be used. Ensembles of size five are used since

they achieved the best median value, while on the other hand the ensembles of size ten are used

since by using that ensemble size the most ensemble subsets can be constructed by ESS.

Table 6.6 represents the results which were achieved by ESS when using ensembles of size

five generated by SEC. The results show that ESS achieved significantly better results for all

experiments, except when the vote combination method is used with the ensemble subset size

of two DRs. Unfortunately, the results show that ESS was unable to obtain significantly better

results than ensembles of the same size which were obtained by SEC. Nevertheless, ESS still

performs quite well when compared to individual DRs, since it achieved better median values

by at most 4.5% for the sum combination method, and 1.9% for the vote combination method.

ESS also obtained a single solution which performs better than any of the solutions obtained by

the SEC method, and which outperforms the best DR generated by GP by 4.9%. Although this

solution represents an outlier, it nevertheless illustrates the extent to which the ensembles can

improve the performance of DRs.

Figure 6.6 shows the box plot representation of the results for ESS. The results for the

ensembles of size five created by SEC are also included in the figure to enable an easier com-

parison between the results obtained by ESS and SEC. For the sum combination method ESS

achieves similar results as ensembles generated by SEC for the ensemble size of five DRs, with

the exception of the ensemble subset consisting of two DRs. For the vote combination method

ESS achieved better median values for ensemble sizes of three and four DRs. The median val-

ues for those two experiments were even better than that achieved by ensembles of size five

created by SEC, although their minimum values were worse.

Table 6.7 represents the results of ESS when applied on ensembles of size ten created by

SEC. For the sum combination method, all results are significantly better than those of the in-

dividual DRs. On the other hand, for the vote combination method all results are significantly

better except for ensemble sizes of two and seven. The maximum improvements for the median

values amount to around 4.2% for the sum combination method, and 2.3% for the vote combi-

194

6.4. Results obtained by different ensemble learning methods

G
P

SE
C

-s
-5

SE
C

-E
SS

-s
-2

SE
C

-E
SS

-s
-3

SE
C

-E
SS

-s
-4

SE
C

-v
-5

SE
C

-E
SS

-v
-2

SE
C

-E
SS

-v
-3

SE
C

-E
SS

-v
-4

14

15

16

17

18

Figure 6.6: Box plot representation of the results obtained by ESS when applied on ensembles of size
five generated by SEC

G
P

SE
C

-s
-1

0

SE
C

-E
SS

-s
-2

SE
C

-E
SS

-s
-3

SE
C

-E
SS

-s
-4

SE
C

-E
SS

-s
-5

SE
C

-E
SS

-s
-6

SE
C

-E
SS

-s
-7

SE
C

-E
SS

-s
-8

SE
C

-E
SS

-s
-9

SE
C

-v
-1

0

SE
C

-E
SS

-v
-2

SE
C

-E
SS

-v
-3

SE
C

-E
SS

-v
-4

SE
C

-E
SS

-v
-5

SE
C

-E
SS

-v
-6

SE
C

-E
SS

-v
-7

SE
C

-E
SS

-v
-8

SE
C

-E
SS

-v
-9

15

16

17

18

Figure 6.7: Box plot representation of the results obtained by ESS when applied on ensembles of size
ten generated by SEC

nation method. However, ESS did not achieve significantly better results than SEC of the same

ensemble sizes, except for one occasion (underlined in the table). For the sum combination

method there is no statistical difference of the results obtained by ensembles of sizes two, five

and nine. On the other hand, for the vote combination method, ensembles consisting of five and

nine DRs achieve significantly better results than ensembles of size two.

Figure 6.7 shows the box plot representation of the results when ESS is applied on ensem-

bles of size ten. The figure denotes that the sum combination method consistently achieves

better results than the vote combination method. However, the difference in results between the

ensemble subsets generated by ESS and ensembles generated by SEC is not large, but rather

marginal for most ensemble sizes.

195

6. Designing ensembles of dispatching rules

Table 6.7: Results obtained by ESS when applied on ensembles of size ten generated by SEC

Sum Vote

Ensemble subset size Min Med Max Min Med Max

2 15.17 15.46 15.83 15.23 16.22 16.95

3 14.86 15.51 15.80 15.03 15.69 15.90

4 14.89 15.36 15.80 15.27 15.59 16.15

5 15.06 15.35 16.00 15.07 15.71 16.17

6 15.08 15.31 16.01 15.03 15.74 16.34

7 15.14 15.29 15.98 15.14 15.80 16.24

8 15.10 15.30 15.93 15.12 15.74 16.16

9 15.13 15.31 16.07 15.21 15.71 16.28

GP 15.23 15.96 17.59 15.23 15.96 17.59

6.4.2 Results obtained by the BagGP approach

In this section the results for the BagGP approach will be presented. In addition to testing the

influence of the size of the ensemble and ensemble combination method, the influence of the

sampled data set size will also be analysed. For that purpose, six bag sizes will be used: 30, 40,

50, 60, 70, and 80.

Table 6.8 represents the results achieved by BagGP for various bag sizes. The first thing

which can be noticed is that for the sum combination method the ensembles generated by

BagGP did not achieve significantly better results than the individual DRs evolved by GP. On the

other hand, for the vote combination method, BagGP achieved significantly better results, usu-

ally when ensembles of larger sizes were used. The sum combination method rarely achieved a

better median value than the DRs generated by GP, while on the other hand the vote combina-

tion method usually achieved better median values. The maximum improvement achieved by

BagGP over the individual DRs is 3.6% for the median value.

Regarding the influence of the applied bag sizes, the results show that this parameter also

has an influence on the performance of the generated ensembles. The quality of the ensembles

generally improves as the bag size increases. Both ensemble combination methods achieved

the best results when the largest bag size is used to generate the training set. This behaviour is

expected since each DR which forms the ensemble will be evolved by using a larger and proba-

bly more diverse set of problems instances, which should cause that the individual DRs perform

better even on their own. Since the DRs which form the ensemble are evolved independently

from each other, it is more probable that a good ensemble will be constructed if the individual

196

6.4. Results obtained by different ensemble learning methods

Ta
bl

e
6.

8:
R

es
ul

ts
ob

ta
in

ed
by

th
e

B
ag

G
P

ap
pr

oa
ch

B
ag

si
ze

30
40

50
60

70
80

Su
m

en
se

m
bl

e
co

ns
tr

uc
tio

n

E
ns

em
bl

e
si

ze
M

in
M

ed
M

ax
M

in
M

ed
M

ax
M

in
M

ed
M

ax
M

in
M

ed
M

ax
M

in
M

ed
M

ax
M

in
M

ed
M

ax

1
15

.4
2

16
.6

2
18

.9
1

15
.3

9
16

.6
4

20
.2

5
15

.1
2

16
.4

8
18

.0
5

15
.2

5
16

.4
2

22
.0

5
15

.1
6

16
.4

5
21

.8
9

15
.4

2
16

.3
3

18
.9

5

2
15

.1
8

16
.4

5
18

.7
1

15
.1

0
16

.1
5

18
.9

7
15

.2
9

16
.2

6
18

.0
5

15
.1

2
16

.0
7

17
.0

9
14

.9
6

16
.2

8
20

.8
2

15
.0

2
16

.1
5

18
.4

4

3
15

.1
8

16
.3

5
19

.4
3

14
.9

1
16

.3
8

21
.1

4
15

.1
9

16
.0

8
20

.3
1

15
.4

0
15

.9
9

17
.0

9
15

.0
4

16
.1

1
18

.8
5

15
.0

0
16

.0
4

18
.2

3

4
15

.5
9

16
.3

3
18

.1
2

15
.2

7
16

.2
0

21
.3

9
15

.0
3

16
.3

1
17

.9
0

15
.3

5
15

.8
9

16
.8

4
15

.1
3

16
.0

5
20

.1
5

15
.0

0
15

.9
9

17
.3

1

5
15

.1
8

16
.2

9
17

.8
8

15
.3

0
16

.3
2

19
.7

0
15

.0
3

16
.3

2
17

.9
0

15
.3

8
15

.9
0

18
.4

8
15

.2
1

16
.0

4
19

.0
9

14
.9

3
15

.9
9

17
.9

7

6
15

.2
6

16
.2

7
18

.9
0

15
.0

1
16

.1
6

22
.7

2
15

.2
3

16
.2

9
18

.6
6

15
.0

3
16

.1
5

18
.4

8
15

.3
4

16
.0

5
19

.3
3

14
.8

9
15

.8
6

17
.3

1

7
15

.2
3

16
.3

1
18

.5
6

15
.3

1
16

.1
0

21
.3

8
15

.2
4

16
.4

1
21

.1
7

15
.0

3
16

.1
2

18
.4

8
15

.1
6

16
.0

0
17

.9
6

14
.8

9
15

.9
3

17
.3

1

8
15

.0
1

16
.2

2
18

.1
6

15
.3

1
16

.1
0

17
.7

7
15

.2
4

16
.3

0
23

.7
0

15
.0

0
16

.0
6

19
.0

4
15

.1
7

16
.0

0
18

.0
2

14
.9

1
15

.8
5

17
.2

4

9
15

.1
7

16
.2

1
18

.2
0

14
.7

7
16

.2
0

17
.8

4
15

.2
0

16
.3

2
23

.7
0

15
.0

6
16

.1
0

19
.0

4
15

.3
6

16
.0

2
22

.9
5

14
.9

1
15

.7
7

17
.2

6

10
15

.1
6

16
.1

3
19

.9
5

14
.7

8
16

.1
4

17
.8

4
15

.1
2

16
.1

1
23

.7
0

15
.0

7
16

.1
3

19
.0

6
15

.1
1

16
.0

7
21

.4
1

15
.0

1
15

.8
8

17
.2

6

Vo
te

en
se

m
bl

e
co

ns
tr

uc
tio

n

E
ns

em
bl

e
si

ze
M

in
M

ed
M

ax
M

in
M

ed
M

ax
M

in
M

ed
M

ax
M

in
M

ed
M

ax
M

in
M

ed
M

ax
M

in
M

ed
M

ax

1
15

.4
2

16
.6

2
18

.9
1

15
.3

9
16

.6
4

20
.2

5
15

.1
2

16
.4

8
18

.1
5

15
.2

5
16

.4
2

22
.0

5
15

.1
6

16
.4

5
21

.8
9

15
.4

2
16

.3
3

18
.9

5

2
15

.3
1

16
.4

2
19

.1
7

15
.1

3
16

.7
9

21
.1

5
15

.5
6

16
.2

2
17

.7
0

15
.2

8
16

.1
9

24
.9

6
15

.1
3

16
.3

8
21

.5
5

15
.3

4
16

.3
1

20
.4

1

3
15

.1
7

15
.8

5
17

.5
8

14
.9

7
15

.8
2

17
.3

0
15

.0
6

15
.7

0
16

.9
4

15
.0

5
15

.5
5

16
.6

2
15

.3
1

15
.8

1
16

.8
6

15
.0

9
15

.6
0

16
.5

2

4
15

.1
8

16
.0

4
17

.1
5

15
.1

2
16

.0
1

16
.7

1
15

.1
6

15
.9

0
16

.9
3

15
.1

6
15

.8
3

16
.3

9
15

.0
7

15
.8

2
16

.7
3

15
.2

6
15

.7
4

17
.0

3

5
15

.3
3

15
.8

3
16

.9
4

15
.2

7
15

.8
1

16
.6

2
15

.1
8

15
.7

5
16

.5
4

15
.2

2
15

.7
9

16
.6

1
14

.9
5

15
.7

0
16

.3
8

15
.2

3
15

.7
2

16
.5

0

6
15

.0
2

15
.8

1
16

.8
9

15
.1

9
15

.8
2

17
.1

8
15

.0
8

15
.7

2
16

.6
9

15
.2

4
15

.7
4

17
.0

0
15

.0
5

15
.6

8
16

.3
8

15
.1

8
15

.5
7

16
.4

3

7
15

.0
9

15
.6

3
16

.6
7

15
.0

8
15

.7
4

16
.5

4
15

.2
6

15
.5

9
16

.3
1

15
.1

3
15

.6
3

16
.5

4
15

.1
0

15
.5

8
16

.0
5

15
.0

8
15

.4
9

16
.3

6

8
15

.0
8

15
.8

5
16

.1
7

15
.0

4
15

.6
9

16
.3

1
15

.0
1

15
.6

3
16

.4
7

15
.2

4
15

.7
0

16
.4

7
15

.1
5

15
.6

5
16

.1
4

15
.1

3
15

.4
6

16
.4

5

9
15

.2
0

15
.6

4
16

.7
3

15
.2

7
15

.7
9

16
.5

1
15

.1
2

15
.5

6
16

.5
8

15
.0

9
15

.6
2

16
.4

6
14

.8
8

15
.5

8
16

.2
4

15
.1

4
15

.5
1

16
.1

6

10
15

.0
1

15
.6

6
16

.5
6

14
.9

5
15

.6
9

16
.4

2
15

.0
4

15
.4

7
16

.1
5

15
.1

5
15

.6
6

16
.4

7
14

.9
3

15
.5

7
16

.2
1

15
.1

1
15

.3
9

16
.3

2

197

6. Designing ensembles of dispatching rules

DRs perform well on most of the problem instances. However, increasing the bag size also has

a serious drawback, which is that the time needed for evolving the ensembles by BagGP also

increases drastically.

Figure 6.8 shows the box plot representation of the results. From the figure it can be ob-

served that the vote combination method consistently achieves better results than the sum com-

bination method. The vote combination method usually does not perform well when an en-

semble of size two is used, but this is expected since in this case ties in the vote method will

occur very often. In addition, the vote combination method also achieved results which are less

dispersed than the results obtained by the sum combination method, which means that the vote

combination method is more stable in this case. Regarding the ensemble size for which BagGP

achieves the best results, this very much depends on the ensemble combination method which is

applied. When the sum combination method is applied, then the best overall median value was

achieved for the ensemble of size three. However, for different bag sizes the sum combination

method achieved the best results for various sizes. The results which are achieved by the sum

method for the different ensemble sizes are usually quite similar. This is also backed up by the

fact that for the sum method there was no statistical difference between ensembles of sizes two,

five and ten for any of the bag sizes which were used.

On the other hand, the vote method performs more consistently for different bag sizes, since

it always achieved the best results when creating ensembles of larger sizes. The best median

value achieved by the vote combination method is obtained for an ensemble of size ten. For

the vote combination method ensembles of sizes five and ten always achieve significantly better

results than ensembles of size two. When comparing ensembles of sizes five and ten, ensembles

of size ten achieved significantly better results for bag sizes of 30, 50, and 80.

The standard BagGP approach will additionally be enhanced with ESS, which will be ap-

plied only to ensembles of size 10. Since the number of subsets of ten DRs is not large, an

exhaustive search was performed to find the optimal ensemble subset for each ensemble ob-

tained from the 30 runs of the BagGP approach. The results obtained for ESS are shown in

Table 6.9. The sum combination method achieves significantly better results for larger bag

sizes and smaller to medium ensemble sizes, when compared to the results achieved by the

standard GP. In addition to achieving significantly better results for larger ensemble sizes, the

vote combination method now also achieves significantly better results even for smaller and

medium sized ensembles when using larger bag sizes. The improvements in the median val-

ues over the standard GP for the vote method are mostly the same as without using ESS. On

the other hand the sum method achieved improvements up to 2.3% for the median value. The

best median values for both combination methods were achieved when using the bag size of 80

instances.

Figure 6.9 shows the box plot representation of the results achieved by ESS. For the sum

198

6.4. Results obtained by different ensemble learning methods

G
P

B
ag

G
P-

s-
1

B
ag

G
P-

s-
2

B
ag

G
P-

s-
3

B
ag

G
P-

s-
4

B
ag

G
P-

s-
5

B
ag

G
P-

s-
6

B
ag

G
P-

s-
7

B
ag

G
P-

s-
8

B
ag

G
P-

s-
9

B
ag

G
P-

s-
10

B
ag

G
P-

v-
1

B
ag

G
P-

v-
2

B
ag

G
P-

v-
3

B
ag

G
P-

v-
4

B
ag

G
P-

v-
5

B
ag

G
P-

v-
6

B
ag

G
P-

v-
7

B
ag

G
P-

v-
8

B
ag

G
P-

v-
9

B
ag

G
P-

v-
10

16

18

20

(a) Box plot representation of the results obtained when using the bag size of 30 problem instances

G
P

B
ag

G
P-

s-
1

B
ag

G
P-

s-
2

B
ag

G
P-

s-
3

B
ag

G
P-

s-
4

B
ag

G
P-

s-
5

B
ag

G
P-

s-
6

B
ag

G
P-

s-
7

B
ag

G
P-

s-
8

B
ag

G
P-

s-
9

B
ag

G
P-

s-
10

B
ag

G
P-

v-
1

B
ag

G
P-

v-
2

B
ag

G
P-

v-
3

B
ag

G
P-

v-
4

B
ag

G
P-

v-
5

B
ag

G
P-

v-
6

B
ag

G
P-

v-
7

B
ag

G
P-

v-
8

B
ag

G
P-

v-
9

B
ag

G
P-

v-
10

15

20

(b) Box plot representation of the results obtained when using the bag size of 40 problem instances

G
P

B
ag

G
P-

s-
1

B
ag

G
P-

s-
2

B
ag

G
P-

s-
3

B
ag

G
P-

s-
4

B
ag

G
P-

s-
5

B
ag

G
P-

s-
6

B
ag

G
P-

s-
7

B
ag

G
P-

s-
8

B
ag

G
P-

s-
9

B
ag

G
P-

s-
10

B
ag

G
P-

v-
1

B
ag

G
P-

v-
2

B
ag

G
P-

v-
3

B
ag

G
P-

v-
4

B
ag

G
P-

v-
5

B
ag

G
P-

v-
6

B
ag

G
P-

v-
7

B
ag

G
P-

v-
8

B
ag

G
P-

v-
9

B
ag

G
P-

v-
10

15

20

25

(c) Box plot representation of the results obtained when using the bag size of 50 problem instances

199

6. Designing ensembles of dispatching rules

G
P

B
ag

G
P-

s-
1

B
ag

G
P-

s-
2

B
ag

G
P-

s-
3

B
ag

G
P-

s-
4

B
ag

G
P-

s-
5

B
ag

G
P-

s-
6

B
ag

G
P-

s-
7

B
ag

G
P-

s-
8

B
ag

G
P-

s-
9

B
ag

G
P-

s-
10

B
ag

G
P-

v-
1

B
ag

G
P-

v-
2

B
ag

G
P-

v-
3

B
ag

G
P-

v-
4

B
ag

G
P-

v-
5

B
ag

G
P-

v-
6

B
ag

G
P-

v-
7

B
ag

G
P-

v-
8

B
ag

G
P-

v-
9

B
ag

G
P-

v-
10

15

20

25

(d) Box plot representation of the results obtained when using the bag size of 60 problem instances

G
P

B
ag

G
P-

s-
1

B
ag

G
P-

s-
2

B
ag

G
P-

s-
3

B
ag

G
P-

s-
4

B
ag

G
P-

s-
5

B
ag

G
P-

s-
6

B
ag

G
P-

s-
7

B
ag

G
P-

s-
8

B
ag

G
P-

s-
9

B
ag

G
P-

s-
10

B
ag

G
P-

v-
1

B
ag

G
P-

v-
2

B
ag

G
P-

v-
3

B
ag

G
P-

v-
4

B
ag

G
P-

v-
5

B
ag

G
P-

v-
6

B
ag

G
P-

v-
7

B
ag

G
P-

v-
8

B
ag

G
P-

v-
1+

9

B
ag

G
P-

v-
10

15

20

(e) Box plot representation of the results obtained when using the bag size of 70 problem instances

G
P

B
ag

G
P-

s-
1

B
ag

G
P-

s-
2

B
ag

G
P-

s-
3

B
ag

G
P-

s-
4

B
ag

G
P-

s-
5

B
ag

G
P-

s-
6

B
ag

G
P-

s-
7

B
ag

G
P-

s-
8

B
ag

G
P-

s-
9

B
ag

G
P-

s-
10

B
ag

G
P-

v-
1

B
ag

G
P-

v-
2

B
ag

G
P-

v-
3

B
ag

G
P-

v-
4

B
ag

G
P-

v-
5

B
ag

G
P-

v-
6

B
ag

G
P-

v-
7

B
ag

G
P-

v-
8

B
ag

G
P-

v-
1+

9

B
ag

G
P-

v-
10

14

16

18

20

(f) Box plot representation of the results obtained when using the bag size of 80 problem instances

Figure 6.8: Box plot representation of the results obtained by the BagGP approach

200

6.4. Results obtained by different ensemble learning methods

Ta
bl

e
6.

9:
R

es
ul

ts
ob

ta
in

ed
by

E
SS

w
he

n
ap

pl
ie

d
on

en
se

m
bl

es
of

si
ze

te
n

ge
ne

ra
te

d
by

th
e

B
ag

G
P

ap
pr

oa
ch

B
ag

si
ze

30
40

50
60

70
80

Su
m

en
se

m
bl

e
co

ns
tr

uc
tio

n

E
ns

em
bl

e
su

bs
et

si
ze

M
in

M
ed

M
ax

M
in

M
ed

M
ax

M
in

M
ed

M
ax

M
in

M
ed

M
ax

M
in

M
ed

M
ax

M
in

M
ed

M
ax

2
15

.2
0

15
.9

0
17

.3
5

15
.1

0
15

.9
1

18
.5

8
15

.3
3

16
.0

3
17

.2
3

15
.3

0
15

.7
5

17
.0

1
15

.1
2

15
.8

3
16

.6
4

15
.0

9
15

.8
4

17
.1

9

3
14

.8
6

15
.9

0
17

.0
2

14
.9

4
15

.7
4

16
.9

0
15

.4
1

16
.2

2
17

.1
0

15
.0

2
15

.6
4

16
.7

3
15

.3
5

15
.8

0
16

.7
4

15
.0

3
15

.6
7

16
.2

7

4
14

.4
1

16
.0

3
17

.5
4

15
.4

1
15

.9
2

17
.7

9
14

.6
6

15
.9

7
16

.8
8

15
.0

6
15

.7
0

16
.6

4
15

.1
5

15
.6

5
16

.6
7

14
.8

1
15

.5
9

17
.0

7

5
14

.5
3

15
.9

0
17

.6
1

15
.3

1
15

.8
9

17
.8

1
14

.8
7

15
.7

5
16

.8
8

15
.0

6
15

.6
3

16
.4

8
14

.9
8

15
.7

0
16

.9
7

15
.0

5
15

.7
6

17
.1

5

6
15

.1
9

16
.9

9
17

.4
1

14
.9

6
15

.9
7

17
.8

9
15

.0
9

15
.9

5
17

.6
9

15
.0

6
15

.6
1

16
.5

2
15

.0
3

15
.6

4
18

.1
1

14
.8

9
15

.8
0

17
.1

5

7
14

.9
7

16
.1

0
17

.1
8

15
.0

7
16

.0
1

17
.8

7
14

.8
4

15
.9

3
17

.5
3

15
.0

6
15

.7
0

17
.1

8
15

.2
5

15
.6

6
18

.3
4

14
.9

2
15

.7
5

17
.1

9

8
15

.0
9

16
.0

8
17

.5
4

15
.1

9
16

.1
2

17
.6

5
15

.0
9

16
.0

6
17

.0
1

15
.1

6
15

.8
1

16
.8

2
15

.2
5

15
.8

3
17

.5
9

15
.0

2
15

.7
7

17
.3

0

9
15

.0
4

16
.0

9
19

.6
6

15
.1

7
16

.1
2

17
.7

3
15

.1
2

15
.9

0
17

.0
4

15
.0

5
16

.0
0

17
.2

5
15

.3
3

15
.8

8
18

.2
2

15
.1

6
15

.7
9

17
.2

6

Vo
te

en
se

m
bl

e
co

ns
tr

uc
tio

n

E
ns

em
bl

e
su

bs
et

si
ze

M
in

M
ed

M
ax

M
in

M
ed

M
ax

M
in

M
ed

M
ax

M
in

M
ed

M
ax

M
in

M
ed

M
ax

M
in

M
ed

M
ax

2
15

.3
3

16
.1

0
17

.8
3

14
.9

9
16

.1
6

17
.6

0
15

.1
2

16
.1

4
17

.8
6

15
.0

2
15

.9
4

16
.9

8
15

.1
2

15
.9

2
17

.2
9

15
.0

4
15

.8
8

17
.7

3

3
15

.1
0

15
.8

1
16

.9
8

15
.1

0
15

.8
8

16
.6

1
15

.0
4

15
.6

6
16

.8
7

14
.9

6
15

.7
7

16
.7

1
15

.0
1

15
.8

0
16

.4
0

15
.1

4
15

.5
9

16
.5

6

4
15

.2
6

15
.9

3
16

.6
9

14
.8

5
15

.8
4

16
.7

3
15

.0
1

15
.7

3
16

.7
8

15
.1

2
15

.8
0

16
.6

5
15

.0
4

15
.5

2
16

.4
2

15
.0

7
15

.6
4

16
.3

1

5
15

.0
8

15
.6

6
16

.8
1

15
.0

3
15

.7
1

16
.7

2
14

.9
0

15
.5

4
16

.5
7

15
.0

9
15

.6
9

16
.3

7
15

.0
1

15
.6

4
16

.2
9

15
.0

5
15

.4
1

16
.3

6

6
15

.1
1

15
.8

3
16

.5
6

15
.0

5
15

.7
2

16
.7

6
15

.0
0

15
.6

4
16

.5
9

15
.1

0
15

.6
8

16
.4

2
15

.0
2

15
.5

8
16

.1
4

14
.9

4
15

.5
2

16
.5

0

7
14

.9
9

15
.7

3
16

.6
4

15
.0

5
15

.6
1

16
.7

2
14

.8
6

15
.5

9
16

.3
8

15
.0

9
15

.5
7

16
.4

9
14

.9
3

15
.6

1
16

.0
3

14
.9

9
15

.5
1

16
.1

0

8
15

.1
9

15
.7

0
16

.4
7

15
.1

7
15

.7
3

16
.6

8
15

.0
7

15
.6

1
16

.4
5

15
.0

7
15

.5
8

16
.4

7
15

.0
3

15
.6

4
16

.1
4

15
.0

3
15

.4
6

16
.2

1

9
15

.2
1

15
.6

7
16

.7
3

15
.0

0
15

.6
7

16
.6

5
15

.0
0

15
.5

3
16

.5
1

15
.0

6
15

.6
1

16
.3

1
14

.8
5

15
.5

6
16

.1
0

15
.1

5
15

.4
4

16
.1

6

201

6. Designing ensembles of dispatching rules

combination method, ESS usually obtained better results for ensembles of smaller sizes. This

means that ESS removed the unnecessary DRs from the ensemble, and consequentially im-

proved its performance. For the vote combination method, the best median values were again

achieved for larger and medium sized ensembles. The vote combination method achieved better

results in most of the cases, although not as dominantly as when BagGP was used, since now

the sum combination method achieves much better results.

By comparing the results of ESS and the results achieved only by BagGP, it was shown that

when using the sum combination method, in 70% of experiments ESS achieved significantly

better results than the original ensembles which were generated by BagGP. On the other hand,

for the vote combination method, the number of significantly better results achieved by ESS

was only 24%. Therefore, ESS should be used with the sum combination method since it can

lead to significantly better results, but it can also be used with the vote method since it also leads

to certain improvements in the results for this combination method.

6.4.3 Results obtained by the BoostGP approach

This section will present the results which were achieved by the BoostGP approach. The en-

sembles will be constructed in two ways, without using the confidences obtained for each DR

as weights, and by using those values to additionally denote the weight of each DR. Ensembles

evolved by both variants will also be used by ESS to determine the best ensemble subsets.

Table 6.10 represents the results achieved by the unweighted BoostGP approach. The results

show that when the sum combination method is used, the BoostGP method is unable to achieve

results which are significantly better than those of DRs generated by GP. Nevertheless, BoostGP

still achieves better median values. On the other hand, when the vote combination method

is used, BoostGP can achieve significantly better results than DRs generated by GP for all

ensemble sizes larger than two. The maximum improvements for the median values which

can be achieved amount to around 1.3% for the sum combination method, and 2.9% for the

vote combination method. In addition, BoostGP achieves less dispersed results when the vote

combination method is used.

Figure 6.10 shows the box plot representation of the results for the unweighted BoostGP

approach. The figure clearly shows that BoostGP consistently performs better when the vote

combination method is used. Furthermore, with the vote combination method the achieved

results are even less dispersed than when using the sum combination method. Although the best

median value for the sum combination method is achieved by evolving ensembles of three DRs,

the size of the ensemble has not shown to have a significant impact on the results, since there

was no significant difference for the results achieved between ensembles of sizes two, five and

ten. On the other hand, for the vote combination method ensembles of sizes five and ten achieve

significantly better results than the ensembles of size two.

202

6.4. Results obtained by different ensemble learning methods

G
P

B
ag

G
P-

s-
10

B
ag

G
P-

E
SS

-s
-2

B
ag

G
P-

E
SS

-s
-3

B
ag

G
P-

E
SS

-s
-4

B
ag

G
P-

E
SS

-s
-5

B
ag

G
P-

E
SS

-s
-6

B
ag

G
P-

E
SS

-s
-7

B
ag

G
P-

E
SS

-s
-8

B
ag

G
P-

E
SS

-s
-9

B
ag

G
P-

v-
10

B
ag

G
P-

E
SS

-v
-2

B
ag

G
P-

E
SS

-v
-3

B
ag

G
P-

E
SS

-v
-4

B
ag

G
P-

E
SS

-v
-5

B
ag

G
P-

E
SS

-v
-6

B
ag

G
P-

E
SS

-v
-7

B
ag

G
P-

E
SS

-v
-8

B
ag

G
P-

E
SS

-v
-9

14

16

18

20

(a) Box plot representation of the results obtained when using the bag size of 30 problem instances

G
P

B
ag

G
P-

s-
10

B
ag

G
P-

E
SS

-s
-2

B
ag

G
P-

E
SS

-s
-3

B
ag

G
P-

E
SS

-s
-4

B
ag

G
P-

E
SS

-s
-5

B
ag

G
P-

E
SS

-s
-6

B
ag

G
P-

E
SS

-s
-7

B
ag

G
P-

E
SS

-s
-8

B
ag

G
P-

E
SS

-s
-9

B
ag

G
P-

v-
10

B
ag

G
P-

E
SS

-v
-2

B
ag

G
P-

E
SS

-v
-3

B
ag

G
P-

E
SS

-v
-4

B
ag

G
P-

E
SS

-v
-5

B
ag

G
P-

E
SS

-v
-6

B
ag

G
P-

E
SS

-v
-7

B
ag

G
P-

E
SS

-v
-8

B
ag

G
P-

E
SS

-v
-9

16

18

(b) Box plot representation of the results obtained when using the bag size of 40 problem instances

G
P

B
ag

G
P-

s-
10

B
ag

G
P-

E
SS

-s
-2

B
ag

G
P-

E
SS

-s
-3

B
ag

G
P-

E
SS

-s
-4

B
ag

G
P-

E
SS

-s
-5

B
ag

G
P-

E
SS

-s
-6

B
ag

G
P-

E
SS

-s
-7

B
ag

G
P-

E
SS

-s
-8

B
ag

G
P-

E
SS

-s
-9

B
ag

G
P-

v-
10

B
ag

G
P-

E
SS

-v
-2

B
ag

G
P-

E
SS

-v
-3

B
ag

G
P-

E
SS

-v
-4

B
ag

G
P-

E
SS

-v
-5

B
ag

G
P-

E
SS

-v
-6

B
ag

G
P-

E
SS

-v
-7

B
ag

G
P-

E
SS

-v
-8

B
ag

G
P-

E
SS

-v
-9

15

20

25

(c) Box plot representation of the results obtained when using the bag size of 50 problem instances

203

6. Designing ensembles of dispatching rules

G
P

B
ag

G
P-

s-
10

B
ag

G
P-

E
SS

-s
-2

B
ag

G
P-

E
SS

-s
-3

B
ag

G
P-

E
SS

-s
-4

B
ag

G
P-

E
SS

-s
-5

B
ag

G
P-

E
SS

-s
-6

B
ag

G
P-

E
SS

-s
-7

B
ag

G
P-

E
SS

-s
-8

B
ag

G
P-

E
SS

-s
-9

B
ag

G
P-

v-
10

B
ag

G
P-

E
SS

-v
-2

B
ag

G
P-

E
SS

-v
-3

B
ag

G
P-

E
SS

-v
-4

B
ag

G
P-

E
SS

-v
-5

B
ag

G
P-

E
SS

-v
-6

B
ag

G
P-

E
SS

-v
-7

B
ag

G
P-

E
SS

-v
-8

B
ag

G
P-

E
SS

-v
-9

16

18

(d) Box plot representation of the results obtained when using the bag size of 60 problem instances

G
P

B
ag

G
P-

s-
10

B
ag

G
P-

E
SS

-s
-2

B
ag

G
P-

E
SS

-s
-3

B
ag

G
P-

E
SS

-s
-4

B
ag

G
P-

E
SS

-s
-5

B
ag

G
P-

E
SS

-s
-6

B
ag

G
P-

E
SS

-s
-7

B
ag

G
P-

E
SS

-s
-8

B
ag

G
P-

E
SS

-s
-9

B
ag

G
P-

v-
10

B
ag

G
P-

E
SS

-v
-2

B
ag

G
P-

E
SS

-v
-3

B
ag

G
P-

E
SS

-v
-4

B
ag

G
P-

E
SS

-v
-5

B
ag

G
P-

E
SS

-v
-6

B
ag

G
P-

E
SS

-v
-7

B
ag

G
P-

E
SS

-v
-8

B
ag

G
P-

E
SS

-v
-9

14

16

18

20

22

(e) Box plot representation of the results obtained when using the bag size of 70 problem instances

G
P

B
ag

G
P-

s-
10

B
ag

G
P-

E
SS

-s
-2

B
ag

G
P-

E
SS

-s
-3

B
ag

G
P-

E
SS

-s
-4

B
ag

G
P-

E
SS

-s
-5

B
ag

G
P-

E
SS

-s
-6

B
ag

G
P-

E
SS

-s
-7

B
ag

G
P-

E
SS

-s
-8

B
ag

G
P-

E
SS

-s
-9

B
ag

G
P-

v-
10

B
ag

G
P-

E
SS

-v
-2

B
ag

G
P-

E
SS

-v
-3

B
ag

G
P-

E
SS

-v
-4

B
ag

G
P-

E
SS

-v
-5

B
ag

G
P-

E
SS

-v
-6

B
ag

G
P-

E
SS

-v
-7

B
ag

G
P-

E
SS

-v
-8

B
ag

G
P-

E
SS

-v
-9

15

16

17

18

(f) Box plot representation of the results obtained when using the bag size of 80 problem instances

Figure 6.9: Box plot representation of the results obtained by ESS when using ensembles of size ten
generated by the BagGP approach

204

6.4. Results obtained by different ensemble learning methods

Table 6.10: Results obtained by the unweighted BoostGP approach

Sum Vote

Ensemble size Min Med Max Min Med Max

1 15.12 15.97 18.13 15.12 15.97 18.13

2 15.26 15.82 17.33 15.27 16.02 18.01

3 15.28 15.76 17.45 15.02 15.72 16.42

4 15.22 15.87 17.45 15.09 15.67 16.52

5 15.37 15.89 17.52 15.08 15.50 16.11

6 15.16 15.89 17.81 15.08 15.64 16.14

7 15.14 15.85 16.42 14.99 15.56 16.00

8 15.14 15.86 16.42 15.15 15.68 16.05

9 15.09 15.86 16.76 15.10 15.53 16.49

10 15.14 15.82 16.78 15.08 15.55 16.24

GP 15.23 15.96 17.59 15.23 15.96 17.59

G
P

B
oo

st
G

P-
s-

1

B
oo

st
G

P-
s-

2

B
oo

st
G

P-
s-

3

B
oo

st
G

P-
s-

4

B
oo

st
G

P-
s-

5

B
oo

st
G

P-
s-

6

B
oo

st
G

P-
s-

7

B
oo

st
G

P-
s-

8

B
oo

st
G

P-
s-

9

B
oo

st
G

P-
s-

10

B
oo

st
G

P-
v-

1

B
oo

st
G

P-
v-

2

B
oo

st
G

P-
v-

3

B
oo

st
G

P-
v-

4

B
oo

st
G

P-
v-

5

B
oo

st
G

P-
v-

6

B
oo

st
G

P-
v-

7

B
oo

st
G

P-
v-

8

B
oo

st
G

P-
v-

9

B
oo

st
G

P-
v-

10

15

16

17

18

Figure 6.10: Box plot representation of the results obtained by the unweighted BoostGP approach

205

6. Designing ensembles of dispatching rules

Table 6.11: Results obtained by ESS when using ensembles of size ten generated by the unweighted
BoostGP approach

Sum Vote

Ensemble subset size Min Med Max Min Med Max

2 14.77 15.71 16.59 15.10 16.04 16.82

3 14.77 15.70 16.94 15.02 15.64 16.63

4 14.85 15.66 16.86 15.15 15.63 16.19

5 14.85 15.61 16.47 14.78 15.60 16.13

6 14.89 15.67 16.39 14.93 15.65 16.25

7 14.79 15.80 16.31 14.98 15.59 16.34

8 14.95 15.79 16.38 15.03 15.62 16.49

9 15.25 15.80 16.42 14.99 15.54 16.11

GP 15.23 15.96 17.59 15.23 15.96 17.59

Table 6.11 represents the results achieved by ESS when using ensembles of size ten evolved

by the BoostGP approach. The results show that the vote combination method can achieve

significantly better results than DRs evolved by GP, for all ensemble sizes larger than two.

In addition, BoostGP now also achieves significantly better results than DRs generated by GP

when using the sum combination method, but only for medium sized ensembles. The maximum

improvements in the median values over those achieved by GP are 2.2% for the sum combina-

tion method, and 2.6% for the vote combination method. Therefore, ESS was unable to achieve

a greater improvement over GP for the median value, when compared to the best improvement

achieved by BagGP.

Figure 6.11 shows the box plot representation of the results for ESS when using ensembles

generated by the unweighted BoostGP approach. For most of the ensemble sizes the vote com-

bination method once again achieves better median values than the sum combination method.

In addition, the results achieved by using the vote combination method are also usually less

dispersed. The results show that there is mostly no significant difference between the results

achieved for the various ensemble sizes. Between ensemble sizes of two, five and nine DRs

there was no significant difference for the sum combination method. However, when the vote

combination method is applied, ensembles of sizes five and nine achieved significantly better

results than ensembles of size two.

If the results obtained by the ensembles generated by ESS are compared to the ones achieved

by BoostGP, it can be observed that although the results for the sum combination method have

206

6.4. Results obtained by different ensemble learning methods

G
P

B
oo

st
G

P-
s-

10

B
oo

st
G

P-
E

SS
-s

-2

B
oo

st
G

P-
E

SS
-s

-3

B
oo

st
G

P-
E

SS
-s

-4

B
oo

st
G

P-
E

SS
-s

-5

B
oo

st
G

P-
E

SS
-s

-6

B
oo

st
G

P-
E

SS
-s

-7

B
oo

st
G

P-
E

SS
-s

-8

B
oo

st
G

P-
E

SS
-s

-9

B
oo

st
G

P-
v-

10

B
oo

st
G

P-
E

SS
-v

-2

B
oo

st
G

P-
E

SS
-v

-3

B
oo

st
G

P-
E

SS
-v

-4

B
oo

st
G

P-
E

SS
-v

-5

B
oo

st
G

P-
E

SS
-v

-6

B
oo

st
G

P-
E

SS
-v

-7

B
oo

st
G

P-
E

SS
-v

-8

B
oo

st
G

P-
E

SS
-v

-9

15

16

17

18

Figure 6.11: Box plot representation of the results obtained by ESS when using ensembles of size ten
generated by the unweighted BoostGP approach

slightly improved, for the vote combination method there was no significant improvement in the

results when additionally applying ESS. Moreover, a better overall median value for the vote

combination method was achieved when using only BoostGP, without the additional application

of ESS. Therefore, applying ESS makes sense for ensembles which use the sum combination

method to improve their performance and reduce the size of the ensemble. However for the

vote combination method applying ESS is useless since it does not lead to improvements in the

results.

Table 6.12 represents the results achieved by the weighted BoostGP approach. When the

sum combination method was used, BoostGP did not achieve significantly better results than

GP, similarly as when the unweighted BoostGP approach was used. On the other hand, when

using the vote combination method, significantly better results were achieved for all ensemble

sizes larger than three. The maximum improvements which were achieved over the median

values of the DRs evolved by GP amount to 1% for the sum combination method, and 2.7%

for the vote combination method. By comparing the weighted BoostGP approach with the

unweighted variant, it is evident that there is no great difference in the performance of the two

variants. Therefore it is better to simply use the unweighted approach since it does not incur

any additional complexity by using weights.

Figure 6.12 denotes the box plot representation of the results achieved by the weighted

BoostGP approach. The plot shows that BoostGP achieves better median values of the re-

sults when the vote combination method is used. In addition, except for the smaller ensemble

sizes, the vote combination method achieved less dispersed results than the sum combination

method. For the sum combination method there was no significant difference between the

results achieved by ensembles of sizes two, five, and ten. On the other hand, for the vote com-

bination method, ensembles of size ten achieved significantly better results than ensembles of

207

6. Designing ensembles of dispatching rules

Table 6.12: Results obtained by the weighted BoostGP approach

Sum Vote

Ensemble size Min Med Max Min Med Max

1 15.12 15.97 18.13 15.12 15.97 18.13

2 15.39 15.81 17.01 15.16 15.93 18.28

3 15.30 15.79 17.91 15.10 15.91 17.93

4 15.16 15.90 17.45 15.11 15.64 16.47

5 15.05 15.87 17.61 15.06 15.66 16.48

6 15.05 15.93 17.63 15.17 15.71 16.30

7 14.95 15.78 16.42 14.96 15.56 16.35

8 15.19 15.81 16.54 15.09 15.57 16.66

9 15.05 15.84 16.54 15.02 15.53 16.50

10 15.15 15.82 16.54 14.96 15.54 16.45

GP 15.23 15.96 17.59 15.23 15.96 17.59

size two.

Table 6.13 represents the results achieved by ESS when using ensembles evolved by the

weighted BoostGP approach. The table shown that in this occasion ESS achieved significantly

better results than GP for both ensemble combination methods. The maximum improvements

for the median value which can be achieved by ESS over DRs generated by GP amount to

around 1.9% for the sum combination method, and 3.3% for the vote combination method. The

table also shows that for certain smaller ensemble sizes ESS achieves significantly better results

than the weighted BoostGP approach for the same ensemble sizes.

Figure 6.13 denotes the box plot representation of the results achieved by ESS when applied

on ensembles generated by the weighted BoostGP approach. Better results are again achieved

when the vote combination method is applied. For the sum combination method there was no

significant difference between the results achieved by ensembles of sizes two, five and nine.

On the other hand, for the vote method, ensembles of size five, and nine achieved significantly

better results than ensembles of size two.

By comparing the results obtained by ESS when using ensembles generated by the weighted

BoostGP approach, and those obtained without using ESS, it can be concluded that by using

ESS it was again possible to achieve significantly better results for the sum combination method.

Although for the vote combination method ESS could not obtain significantly better results, it

still resulted in a slightly better maximum improvement over the median value of GP. The results

208

6.4. Results obtained by different ensemble learning methods

G
P

B
oo

st
G

Pc
-s

-1

B
oo

st
G

Pc
-s

-2

B
oo

st
G

Pc
-s

-3

B
oo

st
G

Pc
-s

-4

B
oo

st
G

Pc
-s

-5

B
oo

st
G

Pc
-s

-6

B
oo

st
G

Pc
-s

-7

B
oo

st
G

Pc
-s

-8

B
oo

st
G

Pc
-s

-9

B
oo

st
G

Pc
-s

-1
0

B
oo

st
G

Pc
-v

-1

B
oo

st
G

Pc
-v

-2

B
oo

st
G

Pc
-v

-3

B
oo

st
G

Pc
-v

-4

B
oo

st
G

Pc
-v

-5

B
oo

st
G

Pc
-v

-6

B
oo

st
G

Pc
-v

-7

B
oo

st
G

Pc
-v

-8

B
oo

st
G

Pc
-v

-9

B
oo

st
G

Pc
-v

-1
0

16

18

Figure 6.12: Box plot representation of the results obtained by the weighted BoostGP approach

Table 6.13: Results obtained by ESS when using ensembles generated by the weighted BoostGP
approach

Sum Vote

Ensemble subset size Min Med Max Min Med Max

2 14.77 15.75 16.66 15.10 16.03 16.63

3 15.13 15.71 17.00 15.11 15.72 16.14

4 14.92 15.64 16.43 15.09 15.77 16.71

5 14.94 15.72 16.80 14.99 15.62 16.01

6 15.05 15.70 16.59 14.97 15.51 16.38

7 15.02 15.70 16.59 15.10 15.58 16.61

8 15.02 15.72 17.31 15.02 15.42 16.29

9 14.97 15.74 16.42 14.94 15.59 16.50

GP 15.23 15.96 17.59 15.23 15.96 17.59

209

6. Designing ensembles of dispatching rules

G
P

B
oo

st
G

Pc
-s

-1
0

B
oo

st
G

Pc
-E

SS
-s

-2

B
oo

st
G

Pc
-E

SS
-s

-3

B
oo

st
G

Pc
-E

SS
-s

-4

B
oo

st
G

Pc
-E

SS
-s

-5

B
oo

st
G

Pc
-E

SS
-s

-6

B
oo

st
G

Pc
-E

SS
-s

-7

B
oo

st
G

Pc
-E

SS
-s

-8

B
oo

st
G

Pc
-E

SS
-s

-9

B
oo

st
G

Pc
-v

-1
0

B
oo

st
G

Pc
-E

SS
-v

-2

B
oo

st
G

Pc
-E

SS
-v

-3

B
oo

st
G

Pc
-E

SS
-v

-4

B
oo

st
G

Pc
-E

SS
-v

-5

B
oo

st
G

Pc
-E

SS
-v

-6

B
oo

st
G

Pc
-E

SS
-v

-7

B
oo

st
G

Pc
-E

SS
-v

-8

B
oo

st
G

Pc
-E

SS
-v

-9

15

16

17

18

Figure 6.13: Box plot representation of the results obtained by ESS when using ensembles generated
by the weighted BoostGP approach

also demonstrate that ESS achieves slightly better results when applied on ensembles generated

by the weighted BoostGP approach rather than on the unweighted BoostGP approach. This is

evident from the fact that ESS achieves a better overall median value, and also outperforms the

results of GP for almost all ensemble sizes.

6.4.4 Results obtained by the cooperative coevolution approach

This section will present the results which were achieved by using the cooperative coevolu-

tion approach. The results obtained for this approach are presented in Table 6.14. The results

show that the cooperative coevolution approach is unable to significantly outperform the results

achieved by GP, not even in one occasion. For smaller ensemble sizes the method achieves

results which are close to those achieved by GP, but as the size of the ensemble increases, the

results achieved by cooperative coevolution deteriorate, and become even significantly worse

than the results achieved by GP.

Figure 6.14 shows the box plot representation of the results for the cooperative coevolution

approach. The figure clearly demonstrates that the cooperative coevolution approach achieves

more dispersed solutions than GP. In many cases the approach achieved outlier solutions with

quite bad performance. Although the approach is more stable when the vote combination

method is applied, neither of the two combination methods has shown to consistently out-

perform the other. The cooperative coevolution approach performs better for both ensemble

combination methods when smaller ensemble sizes are used. For both ensemble combination

methods, the cooperative coevolution approach achieves significantly better results when using

ensembles of size two, than when using ensembles of sizes five and ten.

Table 6.15 represents the results for ESS when applied on ensembles evolved by the coop-

erative coevolution approach. The results which were obtained by ESS using the ensembles

210

6.4. Results obtained by different ensemble learning methods

Table 6.14: Results obtained by the cooperative coevolution approach

Sum Vote

Ensemble size Min Med Max Min Med Max

2 15.21 16.15 23.39 15.33 16.33 17.53

3 15.18 16.47 18.80 15.14 16.01 16.96

4 15.49 16.77 22.57 15.23 16.34 18.50

5 15.83 17.45 23.39 15.76 16.51 18.79

6 15.67 16.79 23.68 15.30 16.90 19.26

7 15.37 17.20 22.55 15.70 16.64 19.79

8 15.83 17.15 25.74 15.62 17.39 18.93

9 15.50 17.48 26.23 16.24 17.90 20.18

10 16.13 17.45 19.66 15.81 16.86 17.86

GP 15.23 15.96 17.59 15.23 15.96 17.59

G
P

C
oe

v-
s-

2

C
oe

v-
s-

3

C
oe

v-
s-

4

C
oe

v-
s-

5

C
oe

v-
s-

6

C
oe

v-
s-

7

C
oe

v-
s-

8

C
oe

v-
s-

9

C
oe

v-
s-

10

C
oe

v-
v-

2

C
oe

v-
v-

3

C
oe

v-
v-

4

C
oe

v-
v-

5

C
oe

v-
v-

6

C
oe

v-
v-

7

C
oe

v-
v-

8

C
oe

v-
v-

9

C
oe

v-
v-

10

15

20

25

Figure 6.14: Box plot representation of the results obtained by the cooperative coevolution approach

211

6. Designing ensembles of dispatching rules

Table 6.15: Results obtained by ESS when using ensembles of size ten generated by the cooperative
coevolution approach

Sum Vote

Ensemble subset size Min Med Max Min Med Max

2 15.80 19.74 34.80 15.60 18.15 22.80

3 15.86 18.15 28.44 16.28 17.22 19.62

4 15.86 17.76 21.31 15.76 17.32 20.34

5 15.86 17.30 20.54 15.50 16.89 19.64

6 15.81 17.57 20.54 15.39 16.73 18.55

7 16.10 17.60 20.28 15.75 16.82 19.11

8 16.10 17.73 19.52 15.43 16.76 19.46

9 16.10 17.56 20.71 15.50 16.79 19.29

GP 15.23 15.96 17.59 15.23 15.96 17.59

generated by cooperative coevolution are consistently worse than the results achieved by DRs

evolved by GP. The obtained results were also quite dispersed when compared to the results

obtained by DRs evolved by GP.

Figure 6.15 represents the box plot representation of the results for ESS when using en-

sembles generated by cooperative coevolution. The figure shows that ESS mostly achieves

poor results, which tend to improve as the number of DRs in the ensemble increases. Such

a behaviour is expected, since the individual DRs that form the ensemble have been evolved

simultaneously, and therefore each DR was evolved so that it performs well when it is applied

together with the other DRs in the ensemble. Therefore, the removal of DRs from the ensemble

can disturb its balance, and lead to poor performance of the ensemble. In these experiments

ESS has shown to perform significantly better if ensembles of sizes of five and nine DRs are

used instead the ensemble size of two DRs.

Since the initial results achieved by the cooperative coevolution approach were extremely

bad, another configuration of the cooperative coevolution approach was tried out. In this con-

figuration the number of iterations that will be used to evolve the ensembles will depend on

the size of the ensemble which needs to be evolved. Therefore, when an ensemble of size two

is evolved, the cooperative coevolution approach will use a number of iterations which is two

times larger than normal, therefore it will use 160000 iterations. When ensembles of three DRs

are evolved, then the number of iterations will be three times larger, and so on. The motivation

behind this configuration is to give the approach more time to evolve ensembles, since it is pos-

212

6.4. Results obtained by different ensemble learning methods

G
P

C
oe

v-
E

SS
-E

SS
-s

-1
0

C
oe

v-
E

SS
-E

SS
-s

-2

C
oe

v-
E

SS
-s

-3

C
oe

v-
E

SS
-s

-4

C
oe

v-
E

SS
-s

-5

C
oe

v-
E

SS
-s

-6

C
oe

v-
E

SS
-s

-7

C
oe

v-
E

SS
-s

-8

C
oe

v-
E

SS
-s

-9

C
oe

v-
v-

10

C
oe

v-
E

SS
-v

-2

C
oe

v-
E

SS
-v

-3

C
oe

v-
E

SS
-v

-4

C
oe

v-
E

SS
-v

-5

C
oe

v-
E

SS
-v

-6

C
oe

v-
E

SS
-v

-7

C
oe

v-
E

SS
-v

-8

C
oe

v-
E

SS
-v

-9

20

30

Figure 6.15: Box plot representation of the results obtained by ESS when using ensembles of size ten
evolved by the cooperative coevolution approach

G
P

C
oe

v-
s-

2

C
oe

v-
s-

3

C
oe

v-
s-

4

C
oe

v-
s-

5

C
oe

v-
s-

6

C
oe

v-
s-

7

C
oe

v-
s-

8

C
oe

v-
s-

9

C
oe

v-
s-

10

C
oe

v-
v-

2

C
oe

v-
v-

3

C
oe

v-
v-

4

C
oe

v-
v-

5

C
oe

v-
v-

6

C
oe

v-
v-

7

C
oe

v-
v-

8

C
oe

v-
v-

9

C
oe

v-
v-

10

15

20

25

Figure 6.16: Box plot representation of the results obtained by the cooperative coevolution approach
with a larger number of iterations

sible that in the first round of experiments the approach was interrupted before it could obtain

good solutions.

Table 6.16 represents the results achieved by cooperative coevolution with the larger number

of iterations. Once again was the cooperative coevolution approach unable to achieve signifi-

cantly better results than GP for any of the experiments. The statistical tests show that when

using the sum combination method with ensembles of sizes two and three, there was no signif-

icant difference between the standard GP and the cooperative coevolution approach. However,

in all other experiments the cooperative coevolution achieved significantly worse results than

the standard GP.

Figure 6.16 represents the box plot representation of results achieved by the cooperative

coevolution approach when the larger number of iterations is used. The figure shows that the

best results are achieved when smaller ensemble sizes are used, however as the size of the

ensembles increases the results quickly deteriorate. For both ensemble combination methods,

ensembles of size two achieved significantly better results than ensemble sizes of five and ten.

213

6. Designing ensembles of dispatching rules

Table 6.16: Results obtained by the cooperative coevolution approach with a larger number of iterations

Sum Vote

Ensemble Size Min Med Max Min Med Max

2 15.11 15.92 16.43 15.45 16.33 16.95

3 15.35 16.00 16.95 15.44 16.25 18.37

4 15.64 16.52 18.16 15.59 16.84 20.57

5 15.61 16.61 18.53 15.47 16.70 18.48

6 15.72 17.04 18.31 15.39 17.12 25.49

7 15.52 16.66 17.86 15.52 17.49 20.01

8 16.38 17.47 20.92 16.00 16.87 20.62

9 15.77 18.26 23.26 15.50 17.01 18.77

10 16.51 17.58 21.27 15.56 17.22 19.49

GP 15.23 15.96 17.59 15.23 15.96 17.59

Table 6.17 represents the results achieved by ESS when using ensembles generated by the

cooperative coevolution approach with the larger number of iterations. However, neither for this

case did ESS achieve significantly better results than GP, not even for one of the experiments.

The obtained results were quite dispersed and the achieved median values were much worse

than those obtained by GP.

Figure 6.17 shows the box plot representation of the results for ESS when using the en-

sembles evolved by the second configuration of the cooperative coevolution approach. ESS

achieved better results when it was used to create ensembles of sizes five and nine than when

creating ensembles of size two. Unfortunately, for all ensemble sizes ESS achieved significantly

worse results than GP.

By comparing the two configurations with each other, it is possible to conclude that by

increasing the number of iterations of the cooperative coevolution approach does not lead to

improvements in the results. Therefore, there is no benefit in using the second configuration

with the larger number of iterations, since it substantially increases the execution time, but does

not have any major effect on the performance of the approach.

6.4.5 Performance comparison of ensemble learning approaches

This section will compare the performances between the different ensemble learning approaches

on four selected scheduling criteria. For the Twt criterion the results which achieved the best

214

6.4. Results obtained by different ensemble learning methods

Table 6.17: Results obtained by ESS when using ensembles of size ten generated by the cooperative
coevolution approach with a larger number of iterations

Sum Vote

Ensemble subset size Min Med Max Min Med Max

2 16.52 20.31 33.34 16.62 18.79 24.15

3 15.77 18.11 22.66 16.24 17.79 23.39

4 15.75 17.57 19.91 15.23 17.66 22.18

5 15.78 17.52 21.04 16.14 17.23 21.20

6 15.74 17.58 19.90 15.51 17.14 22.46

7 15.75 16.79 20.69 15.80 16.94 19.23

8 15.75 17.49 20.68 15.57 17.02 19.60

9 14.98 17.32 21.74 15.58 17.13 21.49

GP 15.23 15.96 17.59 15.23 15.96 17.59

G
P

C
oe

v-
s-

10

C
oe

v-
E

SS
-s

-2

C
oe

v-
E

SS
-s

-3

C
oe

v-
E

SS
-s

-4

C
oe

v-
E

SS
-s

-5

C
oe

v-
E

SS
-s

-6

C
oe

v-
E

SS
-s

-7

C
oe

v-
E

SS
-s

-8

C
oe

v-
E

SS
-s

-9

C
oe

v-
v-

10

C
oe

v-
E

SS
-v

-2

C
oe

v-
E

SS
-v

-3

C
oe

v-
E

SS
-v

-4

C
oe

v-
E

SS
-v

-5

C
oe

v-
E

SS
-v

-6

C
oe

v-
E

SS
-v

-7

C
oe

v-
E

SS
-v

-8

C
oe

v-
E

SS
-v

-9

20

30

Figure 6.17: Box plot representation of the results obtained by ESS when using ensembles of size ten
generated by the cooperative coevolution approach with a larger number of iterations

215

6. Designing ensembles of dispatching rules

median values in the last four subsections will be aggregated. On the other hand, the parameters

for the other three criteria were not as fine tuned as for the Twt criterion, but were rather chosen

as a rule of thumb. Therefore better results could very likely be achieved if the parameters were

further optimised for each given criterion individually.

Before analysing the results, the nomenclature of the approaches must first be described.

Alongside the name of each approach, the s flag will denote that the sum combination method

is used, whereas the v flag denotes that the vote combination method is used. The number

alongside each approach will denote the size of the ensemble which was used. The ESS flag

denotes that ESS was used to find a subset of ensembles and the size of the subset is denoted

alongside the flag. The B flag in the BagGP approach denotes the bag size of problem instances

which was used for evolving the ensembles. The C flag denotes that the confidences are used

as weights in the BoostGP approach. Finally, the con1 and con2 flags denote that the first

or the second configuration is used with the cooperative coevolution approach. In addition,

all experiments which achieve significantly better results than DRs generated by GP will be

denoted in grey. Each table will also include three standard DRs which achieved the very best

performance for the given criterion.

Table 6.18 represents the results achieved by the different ensemble learning approaches for

the Twt criterion. The first thing which can be noticed from the results is that all ensemble

learning approaches achieved much better results than any of the standard DRs. For example,

the best median value achieved by the SEC approach is by 9.1% better than the value achieved

by the ATC rule. The overall best ensemble, which achieved the value of 14.41, outperforms the

value of the ATC rule by 13.3%. Therefore the ensemble learning methods clearly outperform

any of the standard DRs for this criterion.

By comparing the results of ensemble learning methods with GP, several interesting things

can be observed. In most cases the ensemble learning approaches evolved ensembles with better

performance than that of DRs evolved by GP. The BagGP, weighted BoostGP, and unweighted

BoostGP approaches did not achieve achieve significantly better results than GP when they used

the sum combination method, but were able to outperform GP if they used the vote combination

method. By additionally using ESS it is possible to achieve significantly better results for

all three aforementioned approaches. The reason for this is because the sum method is more

sensitive to the composition of the ensemble, and since the DRs that form the ensembles are

evolved independently in those approaches, it can easily happen that a DRs which has a negative

influence on the entire ensemble is evolved and included in the ensemble. However, with ESS

it is possible to filter out such DRs and thus improve the performance of the ensemble. The

vote combination method is implicitly more robust since if the majority of rules in the ensemble

perform good decisions, the addition of an extremely bad DR will not have an influence on the

performance of the ensemble. Figure 6.18 shows the box plot representation of the results. The

216

6.4. Results obtained by different ensemble learning methods

Table 6.18: Performance comparison of the ensemble learning approaches when optimising the Twt
criterion

Approach Min Med Max

ATC 16.63 - -

COVERT 16.86 - -

EDD 17.31 - -

GP 15.23 15.94 17.59

Sum ensemble combination

SEC-5 14.84 15.12 15.76

SEC-5 ESS-3 14.88 15.21 15.99

BagGP-9 B80 14.91 15.77 17.26

BagGP-10 ESS-4 B80 14.81 15.59 17.07

BoostGP-3 15.28 15.76 17.45

BoostGP-10 ESS-5 14.85 15.61 16.47

BoostGP-7 C 14.95 15.78 16.42

BoostGP-10 C ESS-4 14.92 15.64 16.43

Coevolution-2 con2 15.11 15.92 16.43

Vote ensemble combination

SEC-9 15.20 15.54 16.06

SEC-10 ESS-4 15.17 15.65 16.25

BagGP-9 B80 15.11 15.39 16.32

BagGP-10 ESS-5 B80 15.05 15.41 16.36

BoostGP-5 15.08 15.50 16.11

BoostGP-10 ESS-9 14.99 15.54 16.11

BoostGP-9 C 15.02 15.52 16.50

BoostGP-10 C ESS-8 15.02 15.42 16.29

Coevolution-3 con1 15.14 16.01 16.96

217

6. Designing ensembles of dispatching rules

G
P

SE
C

-s
-5

SE
C

-s
-5

E
SS

-3

B
ag

G
P-

s-
9

B
80

B
ag

G
P-

s-
10

E
SS

-4
B

80

B
oo

st
G

P-
s-

3

B
oo

st
G

P-
s-

10
E

SS
-5

B
oo

st
G

P-
s-

7
C

B
oo

st
G

P-
s-

10
C

E
SS

-4

C
oe

vo
lu

tio
n-

s-
2

co
n2

SE
C

-v
-9

SE
C

-v
-1

0
E

SS
-4

B
ag

G
P-

v-
9

B
80

B
ag

G
P-

v-
10

E
SS

-5
B

80

B
oo

st
G

P-
v-

5

B
oo

st
G

P-
v-

10
E

SS
-9

B
oo

st
G

P-
v-

9
C

B
oo

st
G

P-
v-

10
C

E
SS

-8

C
oe

vo
lu

tio
n-

v-
3

co
n1

15

16

17

18

Figure 6.18: Box plot representation of the results obtained by the ensemble learning approaches when
optimising the Twt criterion

figure shows that most ensemble learning methods achieve a much better solution distribution

than DRs evolved by GP. This is especially true for the ensembles achieved by SEC with the

sum combination method, since more than 75% of the obtained ensembles achieved a better

performance than the best DR evolved by GP. By comparing the two ensemble combination

methods, it can be concluded that the sum combination method achieved better results with

the SEC and cooperative coevolution approaches, while the other approaches achieved better

median values when the vote combination method was used.

Out of the tested ensemble learning approaches the worst results for both ensemble combi-

nation methods were achieved by the cooperative coevolution approach. When the sum com-

bination method is used, the best results are achieved by the SEC approach, both with and

without ESS. This method clearly outperforms any of the other tested ensemble learning ap-

proaches. The results achieved by BoostGP and BagGP are mostly the same. If ESS is used,

their performances increase, but are still more or less equal. On the other hand, for the vote

combination method, SEC, BoostGP and BagGP approaches achieve similar results, even with

the application of ESS. The overall best median value was achieved by the BagGP approach. It

is interesting to note that for the vote combination method ESS was in most cases unable to find

an ensemble subset which achieves better performance than the original ensemble.

Table 6.19 represents the results achieved by the ensemble learning approaches for the Nwt

criterion. The ensemble learning approaches once again perform much better than any of the

three tested standard DRs. The best median value, which is achieved by the SEC approach with

ESS, outperforms the Sufferage rule by 3.9%. On the other hand the best DR achieved by any of

the ensemble learning approaches outperforms the Sufferage rule by 8.2%. Therefore, even for

this criterion the ensemble learning methods prove to be better than any of the tested standard

218

6.4. Results obtained by different ensemble learning methods

G
P

SE
C

-s
-5

SE
C

-s
-5

E
SS

-4

B
ag

G
P-

s-
8

B
40

B
ag

G
P-

s-
10

E
SS

-6
B

40

B
oo

st
G

P-
s-

10

B
oo

st
G

P-
s-

10
E

SS
-8

B
oo

st
G

P-
s-

10
C

B
oo

st
G

P-
s-

10
C

E
SS

-4

C
oe

vo
lu

tio
n-

s-
2

co
n2

SE
C

-v
-5

SE
C

-v
-1

0
E

SS
-3

B
ag

G
P-

v-
9

B
40

B
ag

G
P-

v-
10

E
SS

-5
B

40

B
oo

st
G

P-
v-

10

B
oo

st
G

P-
v-

10
E

SS
-6

B
oo

st
G

P-
v-

10
C

B
oo

st
G

P-
v-

10
C

E
SS

-6

C
oe

vo
lu

tio
n-

v-
3

co
n1

7.5

8

8.5

9

Figure 6.19: Box plot representation of the results obtained by the ensemble learning approaches when
optimising the Nwt criterion

DRs.

For this criterion almost all ensemble learning approaches achieved significantly better re-

sults than DRs generated by GP. Only the BagGP method was unable to achieve significantly

better results when using the sum combination method. Even the cooperative coevolution ap-

proach, which achieved the worst results when the Twt criterion was optimised, now easily out-

performs results achieved by GP. The largest improvement that an ensemble learning method

can achieve for the median value when compared to GP, amounts to around 3.4%. Figure

6.19 additionally shows the box plot representation of the results. The figure illustrates that

the evolved ensembles achieve much better distributions of solutions, especially when the vote

combination method is applied. Therefore, based on all previous observations, it can be con-

cluded that the generated ensembles easily outperform the results obtained by the individual

DRs.

For the sum combination method the best results for the Nwt criterion are achieved when

using ESS on the ensembles evolved by the weighted BoostGP approach. However, by applying

ESS on the unweighted BoostGP approach similar results can also be achieved. Therefore the

BoostGP approach seems to be best suited out of all the tested ensemble learning approaches.

The cooperative coevolution approach also achieved good results, obtaining the best minimum

and maximum values, although for the median value it was unable to achieve the best perfor-

mance. Nevertheless, the cooperative coevolution approach achieved similar median values as

BoostGP without ESS. The SEC method achieved worse results than any of the aforementioned

approaches, which is surprising since for the Twt criterion it was unrivalled in its performance.

BagGP achieved the worst performance, but the results can significantly be improved by us-

ing ESS. On the other hand, for the vote combination method the worst results are achieved

219

6. Designing ensembles of dispatching rules

Table 6.19: Performance comparison of the ensemble learning approaches when optimising the Nwt
criterion

Approach Min Med Max

Sufferage 8.148 - -

ATC 8.190 - -

COVERT 8.190 - -

GP 7.674 8.107 8.669

Sum ensemble combination

SEC-5 7.556 8.064 8.276

SEC-5 ESS-4 7.556 8.064 8.276

BagGP-8 B40 7.784 8.224 8.617

BagGP-10 ESS-6 B40 7.601 7.975 8.789

BoostGP-10 7.616 7.949 8.487

BoostGP-10 ESS-8 7.591 7.888 8.487

BoostGP-10 C 7.516 7.995 8.473

BoostGP-10 C ESS-4 7.536 7.886 8.536

Coevolution-2 con2 7.505 7.980 8.196

Vote ensemble combination

SEC-5 7.699 7.946 8.212

SEC-10 ESS-3 7.476 7.834 8.287

BagGP-9 B40 7.634 7.901 8.438

BagGP-10 ESS-5 B40 7.520 7.865 8.190

BoostGP-10 7.663 7.873 8.192

BoostGP-10 ESS-6 7.565 7.848 8.224

BoostGP-10 C 7.677 7.920 8.212

BoostGP-10 C ESS-6 7.640 7.868 8.200

Coevolution-3 con1 7.671 8.062 8.272

220

6.4. Results obtained by different ensemble learning methods

G
P

SE
C

-s
-5

SE
C

-s
-5

E
SS

-4

B
ag

G
P-

s-
2

B
40

B
ag

G
P-

s-
10

E
SS

-6
B

40

B
oo

st
G

P-
s-

7

B
oo

st
G

P-
s-

10
E

SS
-3

B
oo

st
G

P-
s-

2
C

B
oo

st
G

P-
s-

10
C

E
SS

-2

C
oe

vo
lu

tio
n-

s-
2

co
n2

SE
C

-v
-5

SE
C

-v
-1

0
E

SS
-3

B
ag

G
P-

v-
7

B
40

B
ag

G
P-

v-
10

E
SS

-7
B

40

B
oo

st
G

P-
v-

10

B
oo

st
G

P-
v-

10
E

SS
-7

B
oo

st
G

P-
v-

10
C

B
oo

st
G

P-
v-

10
C

E
SS

-8

C
oe

vo
lu

tio
n-

v-
3

co
n1

158

160

162

Figure 6.20: Box plot representation of the results obtained by the ensemble learning methods when
optimising the Ft criterion

by the cooperative coevolution approach. The other three approaches all achieve very similar

results, which are usually improved to a certain extent by additionally applying ESS. The best

minimum and median values were achieved by ESS when using ensembles evolved by SEC.

All approaches, except for the cooperative coevolution approach, achieved better performance

if they are used with the vote combination method. In addition, the vote combination method

has achieved solutions which are less dispersed.

Table 6.20 represents the results achieved by the ensemble learning methods for the Ft cri-

terion. Even for this criterion the ensembles generated by the ensemble learning approaches

can in most cases achieve better performance than the standard DRs. However, the improve-

ments which can be achieved are this time not as extensive. The best achieved median value

outperforms the KPB rule by 0.7%, while the best minimum value outperforms the KPB rule

by 1.6%.

Unfortunately, for this criterion the ensemble learning approaches have shown to struggle

to achieve significantly better results than DRs evolved by GP. When the sum combination

method is used, only the SEC approach and ESS with SEC were able to achieve significantly

better results than the DRs generated by GP. On the other hand, the vote combination method

can achieve significantly better results than GP for the SEC and BoostGP approaches. Although

the ensemble learning approaches achieve significantly better results than GP in several occa-

sion, unfortunately they outperform the GP method by only 0.4% for the median value. Figure

6.20 shows the box plot representation of the results when the Ft criterion is optimised. The

figure shows that most of the evolved ensembles achieve similar solution distributions as GP,

however, those few ensemble learning methods which manage to achieve significantly better

results achieve good solution distributions, and less dispersed results than GP.

221

6. Designing ensembles of dispatching rules

Table 6.20: Performance comparison of the ensemble learning approaches when optimising the Ft
criterion

Approach Min Med Max

KPB 159.6 - -

RC 159.8 - -

Min-min 159.9 - -

GP 158.1 159.3 161.6

Sum ensemble combination

SEC-5 157.6 158.7 160.3

SEC-5 ESS-4 157.1 158.6 159.8

BagGP-2 B40 158.7 159.9 162.3

BagGP-10 ESS-6 B40 157.5 158.9 161.9

BoostGP-7 158.2 159.3 161.5

BoostGP-10 ESS-3 158.2 158.9 160.3

BoostGP-2 C 158.5 159.3 161.4

BoostGP-10 C ESS-2 157.8 158.9 160.8

Coevolution-2 con2 158.1 159.4 160.3

Vote ensemble combination

SEC-5 157.6 158.5 159.4

SEC-10 ESS-3 157.8 158.8 159.7

BagGP-7 B40 158.1 159.3 161.2

BagGP-10 ESS-7 B40 157.9 159.1 161.2

BoostGP-10 158.1 158.7 160.2

BoostGP-10 ESS-7 157.9 158.7 160.0

BoostGP-10 C 157.6 158.6 159.7

BoostGP-10 C ESS-8 157.7 158.6 160.2

Coevolution-3 con1 158.4 160.0 161.6

222

6.4. Results obtained by different ensemble learning methods

For the sum combination method the best results were achieved by the SEC approach.

BagGP, BoostGP, and cooperative coevolution all achieved similar results. The results of

BagGP and BoostGP can be further increased by applying ESS. On the other hand, for the

vote combination method the best results are again achieved by the SEC approach, followed

closely by BoostGP. For this combination method the worst results were achieved by cooper-

ative coevolution. The SEC approach achieved similar results for both combination methods.

BoostGP and BagGP performed better when the vote combination method is used, while co-

operative coevolution performs better when the sum combination method is used. The vote

combination method again seems to achieve somewhat better solution distributions for most

experiments.

Table 6.21 represents the results achieved by the ensemble learning approaches for the Cmax

criterion. Although all ensemble learning approaches are able to evolve an ensemble which

outperforms the Sufferage2 rule, in most cases the approaches can not achieve a better median

value. The best median value outperforms the Sufferage2 rule by only 0.2%, while the best

overall ensemble outperforms the Sufferage2 rule by 0.6%. Although for this criterion the

ensemble learning approaches achieved the smallest improvements, they nevertheless present a

viable alternative to the standard DRs.

The ensemble learning approaches have in most cases outperformed the results achieved by

GP. Only the cooperative coevolution approach, for both combination methods, and BagGP, for

the sum combination method, were unable to achieve significantly better results than GP. For

both combination methods the best median values were achieved by the SEC approach. The

BagGP and BoostGP approaches obtained similar results when the vote combination method

was used, while for the sum combination method the BoostGP approach achieved better results.

Although most of the ensembles achieve significantly better results than GP, unfortunately they

can outperform the results achieved by GP by at most 0.9% for the median value. Figure

6.21 shows the box plot representation of the results. The figure shows that in most cases the

ensemble learning approaches achieve less dispersed results than GP. This is especially true

for SEC and ESS with the vote combination method, where most of the obtained solutions

outperform the solutions obtained by GP. For the sum combination method, ESS with SEC

achieved the best solution distribution.

For this criterion, all ensemble learning approaches achieve better median values when used

with the vote combination method. The SEC approach performs well with ensemble combi-

nations methods, but for the vote combination method it achieves a better median value. On

the other hand, the cooperative coevolution approach achieves the worst performance by us-

ing the sum combination method, but the results for the approach improve only slightly if the

vote combination method is used. BoostGP and BagGP achieve good results for the vote com-

bination method, while for the sum combination method they achieve slightly worse results.

223

6. Designing ensembles of dispatching rules

Table 6.21: Performance comparison of the ensemble learning methods when optimising the Cmax

criterion

Approach Min Med Max

Sufferage2 38.44 - -

Sufferage 38.48 - -

RC 38.56 - -

GP 38.29 38.70 39.45

Sum ensemble combination

SEC-5 38.34 38.51 38.73

SEC-5 ESS-2 38.31 38.45 38.77

BagGP-10 B40 38.42 38.77 39.44

BagGP-10 ESS-2 B40 38.35 38.61 39.08

BoostGP-9 38.38 38.62 39.11

BoostGP-10 ESS-2 38.38 38.58 38.95

BoostGP-5 C 38.33 38.62 38.99

BoostGP-10 C ESS-5 38.34 38.57 39.01

Coevolution-2 con2 38.34 38.76 38.99

Vote ensemble combination

SEC-5 38.28 38.37 38.71

SEC-10 ESS-3 38.32 38.40 38.83

BagGP-5 B40 38.37 38.56 38.98

BagGP-10 ESS-9 B40 38.36 38.52 38.90

BoostGP-7 38.23 38.59 39.04

BoostGP-10 ESS-5 38.31 38.55 38.83

BoostGP-7 C 38.20 38.61 39.02

BoostGP-10 C ESS-5 38.36 38.52 38.89

Coevolution-3 con1 38.33 38.71 39.10

224

6.5. Discussion

G
P

SE
C

-s
-5

SE
C

-s
-5

E
SS

-2

B
ag

G
P-

s-
10

B
40

B
ag

G
P-

s-
10

E
SS

-2
B

40

B
oo

st
G

P-
s-

9

B
oo

st
G

P-
s-

10
E

SS
-2

B
oo

st
G

P-
s-

5
C

B
oo

st
G

P-
s-

10
C

E
SS

-5

C
oe

vo
lu

tio
n-

s-
2

co
n1

SE
C

-v
-5

SE
C

-v
-1

0
E

SS
-3

B
ag

G
P-

v-
5

B
40

B
ag

G
P-

v-
10

E
SS

-6
B

40

B
oo

st
G

P-
v-

7

B
oo

st
G

P-
v-

10
E

SS
-5

B
oo

st
G

P-
v-

7
C

B
oo

st
G

P-
v-

10
C

E
SS

-5

C
oe

vo
lu

tio
n-

v-
3

co
n2

38

38.5

39

39.5

Figure 6.21: Box plot representation of the results obtained by the ensemble learning approaches when
optimising the Cmax criterion

The ESS method improves the performance of most ensemble learning methods. Based on the

previous results it can clearly be concluded that the vote combination method is much more

suitable when evolving ensembles for optimising the Cmax criterion, since all ensemble learning

methods achieve a better performance for the vote combination method.

6.5 Discussion

In this section a short discussion about the ensemble learning methods, which is based on the

results and observations obtained in the previous section, will be provided.

6.5.1 SEC

Although being a quite simple approach, SEC achieved good results on all four tested schedul-

ing criteria. While for the Twt criterion the approach achieved the best results by using the sum

combination method, for the other three criteria better results were achieved by the vote com-

bination method. For the sum combination method better results were achieved when medium

sized ensembles were used. On the other hand, when the vote combination method was used,

better results were achieved by using medium sized and larger ensembles. In certain occasions it

was possible to further increase the performance by applying ESS on the generated ensembles.

The most obvious benefit of this approach is that it can be used with already existing DRs,

thus eliminating the need of evolving new rules. But even if new rules need to be evolved,

the time needed for their generation is significantly smaller than for the other methods, since

they can be evolved completely independently from reach other. In addition, this approach

offers much freedom in the choice of how the ensembles should be constructed. Thus, the time

225

6. Designing ensembles of dispatching rules

needed to obtain the ensembles can be adjusted by using methods of different complexities. An

additional benefit of this approach, which became evident after analysing the results, is that it is

usually more stable and achieves less dispersed results than the other tested ensemble learning

approaches. The main drawback of this approach is that it needs an additional problem instance

set on which the ensemble will be constructed. Nevertheless, based on all the aforementioned

points, it is evident that this approach is not only competitive with other ensemble learning

approaches from the literature, but rather that it is even superior n certain cases.

6.5.2 BagGP

The performance of the BagGP approach largely depends on the combination method which

is used. The approach usually achieved better results when the vote combination method was

used. The reason for this is the fact that the ensembles are evolved independently from each

other, and therefore there can be a lot variability between the evolved DRs, which can have a

negative effect on the sum combination method. However, with the use of ESS these results

can generally be improved, but the vote combination method still achieved results with better

median values for most cases. For the Nwt criterion the BagGP approach achieved the overall

best median values, when using the vote combination method.

In addition to the ensemble size and the ensemble combination method, BagGP introduces

an additional parameter, which represents the bag size. The experiments have shown that usu-

ally better results are achieved for larger bag sizes. However, with the bag size the computation

cost of the approach also increases. Therefore, the value for this parameter needs to be care-

fully chosen so that good solutions can still be achieved, but that also the execution time of the

algorithm is not too extensive.

The advantage of this approach is that DRs which form the ensemble are evolved indepen-

dently and can therefore be evolved in parallel, which can improve its execution time. However,

since the DRs that form the ensemble are evolved completely independently from each other,

this causes approach to achieve results which can be quite dispersed. In addition to that, the

bag size also needs to be optimised to select the one which leads to the best results. If the sum

combination method is used, then ESS should also be applied on the final ensemble to achieve

improved results. Regardless of all problems BagGP achieved a good performance, especially

when used with ESS. However, in most cases it did not outperform the results from the SEC

approach.

6.5.3 BoostGP

For each evolved DR in the ensemble, BoostGP additionally provides the confidence value for

it. Therefore, one of the main objectives in the tests was also to determine whether using the

226

6.5. Discussion

confidence values as weights for individual DRs can lead to improved performance. The ex-

periments have shown that additionally using the confidences as weights does not significantly

increase the performance of the method. In certain occasions better median values can be

achieved by using confidences as weights, however, there is no significant difference between

the results obtain with and without using confidences as weights. Since the DRs that form the

ensemble are mostly evolved independently, the vote combination method performs better when

used with this approach. With the use of ESS it is possible to again improve the results achieved

by BoostGP, especially when the sum combination method is used.

This approach achieves mostly similar results as the BagGP approach, but unlike the BagGP

approach it does not introduce any extra parameters. The only situation where BoostGP is

more preferable than BagGP is when optimising the Ft criterion, where BoostGP managed to

outperform GP, while BagGP was unable to do so. On the other hand, the DRs in BoostGP

can not be evolved independently as in BagGP, since for each DR in the ensemble the weights

of the training samples need to be calculated based on the previous DRs. Therefore BoostGP

represents an alternative to BagGP, and depending on the requirements either one of those two

can be chosen and will perform similarly.

6.5.4 Cooperative coevolution

Since the cooperative coevolution approach simultaneously evolves DRs that form the ensem-

ble, it was expected that this approach would achieve the most competitive results out of all

the approaches. Unfortunately this approach has in most cases achieved results which were

the worst out of all the tested approaches. The most evident reason why this happens is that

the method overfits on the training set. This assumption is backed up by the fact that the co-

operative coevolution approach achieves better results on the training set than GP. Even trying

out different termination criteria did lead to significant improvements of the results. Thus in

future work some other methods of preventing overfitting should be tried out to determine if

this could improve the performance of the approach. Since the few good results obtained by

this approach were achieved mostly when using smaller ensemble sizes, it is likely that the

procedure struggles in evolving good DRs which complement the other DRs in the ensemble.

This was especially evident for the vote combination method, where in certain situations the

ensemble consisted of several rules which together made suboptimal choices. However, when

one of those rules would be replaced, the effectiveness of the ensemble would deteriorate even

further, therefore the algorithm would be stuck in a local optimum. Because of that reason, the

procedure should be extended with mechanisms that could prevent such occurrences or correct

them (for example by reinitialising the ensemble with random DRs).

The cooperative coevolution approach copes with another important problem, and that is its

execution time. Namely, the execution time of this procedure heavily depends on the number of

227

6. Designing ensembles of dispatching rules

ensembles it evolves, but to a much greater extent than any of the aforementioned procedures.

This is a consequence of the fact that in each iteration the cooperative coevolution approach

has to evaluate an ensemble of DRs, thus prolonging the evaluation process, whereas the other

procedures only evaluate individuals by themselves. This results in slower execution times,

especially for larger ensemble sizes.

Since the cooperative coevolution approach was not able to evolve bigger ensembles of

good quality, the best subsets found by ESS were usually not better than the best solution found

by the cooperative coevolution approach. However, applying ESS on ensembles generated by

cooperative coevolution might not even work well since the DRs which form the ensemble are

evolved simultaneously and the ensemble is therefore much more sensitive to the changes of

the DRs which constitute it.

Although the cooperative coevolution approach did achieve good results for the Nwt crite-

rion, on all other criteria it did not perform well. In many cases this approach even achieved

results which were significantly worse than those of GP. Therefore this approach has shown to

be the least useful out of the tested ensemble learning approaches.

6.5.5 ESS

ESS has demonstrated to be very promising in improving the results of the ensemble learning

approaches. Naturally, ESS did not obtain subsets of a better quality than the original ensemble

in every single occasion, but in many cases it obtained ensemble subsets which significantly

improved the results when compared to the original ensemble. ESS has especially proven use-

ful when being used with ensemble learning approaches which independently evolve the DRs

which form the ensemble, like BagGP and BoostGP. In most occasions ESS did not significantly

improve the results for SEC, since that approach already functions similarly as ESS. For cooper-

ative coevolution ESS also did not achieve any improvements. The reason for this could be due

to the fact that in this approach DRs are much more interdependent than in other approaches,

since the DRs are all evolved simultaneously. The best minimum values for all criteria, except

for the Cmax criterion, have been achieved by using ESS.

There are several benefits of using ESS. First of all it tries not only to find a better en-

semble, but also to find an ensemble of a smaller size. As the experiments have shown, ESS

was in many occasions able to find a better subset which significantly reduced the size of the

original ensemble. Secondly, this approach is applicable to any of the tested ensemble learning

approaches, and for some approaches (BagGP and BoostGP) it will additionally improve their

performances. Lastly, the execution time of this approach is fast even when performing an ex-

haustive search for ensembles of size ten. Naturally, with bigger ensembles the execution time

of ESS would grow drastically. However, the execution time of ESS can be improved by not

using an extensive search for the subsets of ensembles, but rather a random search or a search

228

6.5. Discussion

guided by some heuristic method.

On the other hand, ESS also has certain disadvantages. In order to perform ESS, another

problem instance set is required. In addition, ESS provides no guarantee that it will obtain

ensembles which will perform better than the original ensemble on which ESS was applied.

Therefore, in rare occasions it is possible that for certain ensembles all ensemble subsets con-

structed by ESS do not perform at least equally well as the original ensemble. Finally, using

ESS also increases the time needed to obtain an ensemble. Although for smaller ensembles this

time is almost negligible, it increases with the number of DRs in the ensemble.

Based on all the previous outlined characteristics, it is safe to conclude that ESS represents

a good addition to ensemble learning approaches, to improve their performance and decrease

the ensemble size.

6.5.6 Influence of the ensemble combination methods

From the previously obtained results, many conclusions can also be drawn about the two en-

semble combination methods which were used. The first thing which was observed is that the

vote combination method was more suitable for ensemble learning approaches which indepen-

dently evolved the DRs that form the ensemble, like BoostGP and BagGP. In these situations

the vote method is more robust, since even if one DR performs poorly, it will not have a large

influence on the decision of the ensemble if all other rules perform well. On the other hand, the

sum combination method leads to better results with the cooperative coevolution approach, in

which the DRs in the ensemble are evolved simultaneously. The situation for the SEC approach

is much more interesting, since that approach achieved better results for the Twt criterion when

using the sum combination method, while on the other hand for the Nwt and Cmax criterion

it achieved better results when using the vote combination method. For the Ft criterion both

combination methods achieved similar results.

ESS has proven to be more effective on ensembles which use the sum combination method,

since that method is more sensitive to the composition of the ensemble. Nevertheless, ESS

also achieved improvements for ensembles which use the vote combination method as well.

Therefore, ESS achieved improvements regardless of the ensemble combination method, which

is used by the ensemble to perform the decision.

6.5.7 Influence of the ensemble size

The size of the ensembles has also a significant influence on the results achieved by the en-

semble learning approaches. For example, the sum combination method usually achieved better

results when ensembles of smaller or medium sizes were used. This is especially true when ESS

is applied on ensembles which use the sum combination method, since ESS quite often gener-

229

6. Designing ensembles of dispatching rules

ated ensembles consisting only out of two or three DRs. This is not surprising since the sum

combination method is more sensitive to the composition of the ensemble, since it is easier to

find a smaller number of DRs which will work well together if their priority values are summed

up.

On the other hand, the vote combination method preferred ensembles of medium and larger

sizes. The reason for this is that in smaller ensembles ties in the decisions will usually occur

more often. In addition, the vote combination method is more resilient if bad DRs appear in the

ensemble, since if the other DRs perform good decisions the ensemble will also perform good

decisions based on the majority of DRs. With ESS the ensemble sizes are usually reduced by a

small number of ensembles, but they still consist of at least four DRs in most of the cases.

6.6 Analysis of the generated ensembles

In this section the best ensembles which were constructed by the different approaches will

be analysed, to gain further insights into the structure of the generated ensembles. For each

approach, the individual which achieved the best results on the test set will be selected and

analysed. In order to make the analysis more concise, it will be performed only on a selected

number of problem instances, which illustrate some interesting behaviours of the ensemble.

For the SEC approach, the analysis will be performed on ensembles constructed by the random

selection method with 20000 generated ensembles, since this construction method achieved the

best median value out of all the tested construction methods, and is thus more likely to obtain

good ensembles. It must be stressed out that the problem instances on which the analysis will be

performed are selected from the problem set which was used to create the ensemble. This means

that for SEC and ESS the analysis will be performed on problem instances from the validation

set, while for BagGP, BoostGP, and cooperative coevolution the analysis will be performed

on the training set. In addition, the analysis will be performed only on the rules which were

evolved for optimising the Twt criterion. An additional analysis will also be performed for

the SEC approach, to examine which DRs most often constitute the ensembles with the best

performance. This analysis should provide a deeper insight if there is any regularity in the DRs

which are chosen to form the ensembles, and if this information could somehow be used in the

ensemble construction process.

6.6.1 Analysis of the frequency of DRs in the ensembles generated by SEC

Table 6.22 gives an overview of thirteen DRs which most commonly appeared in the best en-

semble constructed in each algorithm run. For the analysis, only ensembles consisting out of

five DRS combined with the sum method were used. For the random and probabilistic selec-

230

6.6. Analysis of the generated ensembles

Table 6.22: Most commonly contained DRs in the best ensembles constructed by SEC and combined
by the sum combination method

Method DR indices

0 1 4 6 9 11 13 15 19 30 39 41 46

Random 5 1 10 7 0 17 3 4 15 19 0 9 14

Probabilistic 6 0 9 11 2 19 1 4 13 25 0 4 9

Grow 27 7 12 5 4 17 18 19 6 11 14 13 10

Grow-destroy 13 7 4 6 3 14 18 14 8 10 14 15 13

Instance based 1 20 1 23 19 25 1 43 8 22 1 27 1

Fitness 14.28 13.31 13.93 13.17 13.15 13.11 13.49 12.96 13.17 13.12 14.36 13.07 14.31

tion methods 30 runs were performed, while 50 runs were performed for the remaining three

methods. Each cell in the table represents the number of times that, for a concrete construc-

tion method, the DR with the given index appeared in the best constructed ensemble. For each

ensemble construction method, the values of five DRs which most often appeared in the best en-

sembles are denoted with a grey background. The table shows that the random and probabilistic

selection methods mostly use the same DRs to create ensembles. These two methods construct

ensembles which in around 60% of cases contain DRs 11 and 30, while approximately 50% of

the ensembles contain DR 19. From the fitness values of the three aforementioned DRs it is evi-

dent that all of them achieve good individual performance. The other DRs which are most often

used by these ensemble construction methods (rules 4 and 46), do not achieve an equally good

performance. The results show that the grow and grow-destroy methods mostly use the same

DRs to construct the ensembles. However, these DRs are in most cases different than those

used by the random and probabilistic selection methods. The grow and grow-destroy methods

also have a preference towards the inclusion of certain DRs in the ensemble, like DRs 11, 13,

15, 39 and 41, which were usually contained in around 25% to 40% of ensembles with the best

performance. Most of these DRs also achieve a good individual performance. The instance

based method uses DRs which are partially the same as those used by the random and proba-

bilistic selection methods, and partially the same as those used by the grow and grow-destroy

methods. In addition to those DRs, the instance based method also uses some DRs which are

rarely used by any of the other ensemble construction methods, like DRs 1 and 9. This method

is very biased towards using DR 15, since it is used in over 80% of the constructed ensembles.

Furthermore, it is also biased towards DRs 6, 11, and 41, which also achieve good individual

performance, and are used in around 50% of the best constructed ensembles.

By analysing the use of DRs over several construction methods, only DR 11 has constantly

been among the five most commonly used DRs by all of the tested ensemble construction meth-

ods. The instance based method has created ensembles which almost always consisted out of

231

6. Designing ensembles of dispatching rules

DRs which individually achieve a good performance. The other construction methods also cre-

ate ensembles which consist of DRs which individually achieve good performance, however,

in many occasions the ensembles also contain DRs which do not perform well on their own.

Another interesting fact is that DR 15, which achieves the best individual performance, is most

commonly used by the instance based method. However, it is less commonly used by the grow

and grow-destroy methods, and rarely by the random and probabilistic selection methods. This

demonstrates that the best individual DR will not necessarily be contained in the best ensem-

bles. Based on the results, it is evident that the instance based method is mostly biased towards

using DRs which individually perform well, whereas the other four methods usually use a mix-

ture of DRs, where most achieve good individual performance, but still several DRs, which

individually do not perform well, are also included in the ensembles. All the previous observa-

tions demonstrate that the applied construction mechanism has a large influence on the choice

of DRs which form the ensemble.

Table 6.23 represents the prevalence of DRs in the best ensembles constructed with all the

construction methods, and by using the vote combination method. The random and probabilistic

selection methods once again construct ensembles which consist of similar DRs. These methods

most commonly create ensembles which consist of DRs 32 (used in all ensembles constructed

by the random selection method), 39 (used in more than 80% of the ensembles), and 19 (used in

around 50% of the ensembles). The grow and grow-destroy methods construct ensembles which

most often consist of DRs 28, 32, 33, and 39. Unlike for the sum combination method, several

DRs are quite often contained in the best DRs constructed by the previous four construction

methods, such as DRs 32 and 39. The instance based method constructs the ensembles by

using DRs which most often differ from those used by the other construction methods. This

construction method uses DR 15 in almost all ensembles, and rule 30 in more than 80% of the

ensembles. The instance based method is again biased towards using the best individual DR,

however the grow and grow-destroy methods are now less biased towards using this DR than

they were when the sum combination method was used.

By analysing the occurrence of DRs over several construction methods, it is evident that

no single DR is used predominantly by all ensemble construction methods. Rules 32 and 39

were used in many occasions by all construction methods, except for the instance based method.

The random and probabilistic selection methods mostly create ensembles which consist out of

DRs that individually achieve a good performance. However, these methods also often include

rule 39 in the ensembles, which does not achieve a good performance on its own. The grow

and grow-destroy methods use a wide range of DRs to construct the ensembles, however, they

mostly use DRs which do not achieve the overall best performance, but rather rules whose

performance is closer to the median performance of all DRs. Finally, the instance based method

uses almost exclusively DRs which achieve a good individual performance.

232

6.6. Analysis of the generated ensembles

Table 6.23: Most commonly contained DRs in the best ensembles constructed by SEC and combined
by the vote combination method

Method DR indices

6 11 15 19 27 28 30 32 33 34 39 41 45

Random 3 2 2 15 4 6 2 30 4 10 26 0 1

Probabilistic 0 6 5 17 6 4 1 27 3 5 25 1 3

Grow 10 11 6 8 5 16 7 27 11 7 13 4 9

Grow-destroy 10 8 9 11 5 13 10 29 18 11 12 3 9

Instance based 20 36 49 5 1 1 42 1 1 1 1 28 20

Fitness 13.17 13.11 12.96 13.17 13.61 13.69 13.12 13.20 13.72 13.49 14.36 13.07 13.14

The previous results show that, although there are several DRs, most notably rules 11, 19,

and 39, which are commonly used by ensembles combined by both ensemble combination

methods, most of the rules which are used by those two combination methods will be different.

The only exception occurs for the instance based method, which mostly uses the same DRs

to construct the ensembles, regardless of the applied combination method. It should also be

noted that the vote combination method uses DRs with better individual performance in more

occasions than the sum combination method.

It is also interesting to observe whether the information about the frequency of DR usage

can be used to create good DRs. In order to try this out, the five DRs which appeared most often

in the best ensembles were combined into an ensemble, and evaluated on the test set. This was

done for all combination and creation methods. If there are more DRs with the same number

of occurrences which can be selected as the final DR in the ensemble, the one for which the

ensemble provides a better result will be selected. The results achieved when using the sum

combination method were 14.94 for the random selection method, 15.18 for the probabilistic

selection method, 15.21 for the grow method, 15.71 for the grow-destroy method, and 15.16

for the instance based method. All ensembles, except the one constructed for the grow-destroy

method, obtain a better value than the best individual DR generated by GP. On the other hand,

the vote method achieved a value of of 16.03 for the random selection method, 15.73 for the

probabilistic selection method, 15.83 for the grow method, 15.76 for the grow-destroy method,

and 15.18 for the instance based method. For the vote combination method, only the the en-

semble constructed for the instance base method performed better than the best individual DR

constructed by GP. All other ensembles, except for the one constructed by the random selection

method, still achieved a better value than the median value of all the DRs generated by GP. The

instance based construction method was the only one for which the ensemble constructed by us-

ing the most frequently occurring DRs performs well by using both construction methods. The

obtained results prove that for the sum combination method the information about the frequency

233

6. Designing ensembles of dispatching rules

of DR occurrences in better ensembles could be used for constructing ensembles, whereas for

the vote method this information has not proven to be too beneficial.

6.6.2 Analysis of ensembles generated by SEC

Table 6.24 represents the performance of the best constructed ensemble by SEC, with the sum

combination method. The table also denotes the performance of individual DRs which form the

ensemble. For the analysis, the best ensemble of size five, constructed by the random selection

method, was used. The analysis will be performed on the validation set, since this set is used for

constructing the ensembles, and therefore has the most influence on the choice of which DRs

will form the ensemble. The best results of the individual DRs for each problem instance are

denoted with a grey cell, while the results for which the ensemble performs at least as well as

the best individual DR are denoted in bold. The results show that the ensemble is able to pick up

the good behaviour of the individual DRs and to achieve the same performance as the best DR,

like for problem instances 1, 22, and 28. If more DRs perform the same, it is more likely that the

entire ensemble will also perform well. This behaviour can be observed on problem instances

22 and 28. In several occasions the ensemble also outperforms all of the DRs which it consists

of, like for problem instances 17, 39, and 40. This is an important observation, which shows

that the ensemble is not only able to perform equally well as the best DR it consists of, but rather

with a good combination of DRs the ensemble can even outperform the best rule contained in it.

However, it is also possible that the ensemble is unable to perform better or equal as the best DR

it consists of. In most of these cases, the ensemble will achieve a fitness value which is between

the best and the worst values obtained by the DRs contained in the ensemble. Such a behaviour

can be observed for problem instances 13, 26, and 29. In rare occasions it can also happen

that the ensemble performs worse than any of the DRs it contains, as it happens for problem

instance 41. Figure 6.22 shows the performance of the ensemble on the entire validation set.

The numbers in the figure denote how many instances in the problem set belong to each of the

categories. From the figure it is evident that the ensemble performs well on most of the problem

instances, and is thus able to achieve better performance than individual DRs on their own.

6 41 8 3 2

Better than all DRs Equally well as the best DR Worse than the best DR and better than the worst DR

Equally well as the worst DR Worse than all DRs

Figure 6.22: Performance of the best ensemble constructed by SEC and combined by using the sum
combination method compared to the performance of individual DRs out of which it was constructed

By comparing the performance of the ensemble with that of the individual DRs out of which

it is constructed, it is evident that the ensemble achieves better performance than any of the DRs

234

6.6. Analysis of the generated ensembles

Table 6.24: Performance analysis of the best ensemble generated by SEC and combined with the sum
combination method

Problem instance index Individual DR Ensemble

0 11 28 30 46

1 0.620 0.494 0.295 0.264 0.301 0.264

13 1.131 0.737 0.767 0.870 1.126 0.836

17 0.116 0.489 0.170 0.204 0.259 0.102

22 1.894 1.860 2.137 1.889 1.860 1.860

26 0.936 1.010 1.123 0.978 1.142 0.978

28 0.032 0.091 0.091 0.032 0.032 0.032

29 0.506 0.524 0.506 0.506 0.430 0.506

39 0.996 0.960 1.034 0.955 0.999 0.917

40 1.399 1.233 1.399 1.233 1.386 1.177

41 0.053 0.091 0.091 0.116 0.058 0.163

Total fitness on all instances 14.28 13.11 13.69 13.12 14.31 12.45

Fitness on the test set 16.39 15.72 16.20 15.67 16.02 14.84

on their own. On the validation set, the ensemble can outperform the best DR in the ensemble by

5%, while on the test set the improvement over the best DR is approximately 5.3%. Therefore,

on both problem sets the ensemble achieves a similar improvement over the individual DRs.

Moreover, the individual DRs that form the ensemble do not all perform well on both problem

instance sets. While two DRs achieve good results on both problem sets, the other three DRs

perform worse to a certain extent. This proves that for the ensemble to perform well, it does not

need to be constructed out of DRs which all individually perform well.

Table 6.25 represents the performance of a selected ensemble when the vote combination

method is used. The performance of the selected ensemble is compared to the performance of

individual DRs out of which it is constructed. The comparison will be performed on several

selected problem instances that were also used for analysing the sum combination method. On

seven problem instances denoted in the table, the ensemble achieved better or equal results

as the best individual DR of the ensemble. Out of these seven instances, a better value by

the ensemble was achieved in two occasions, namely for problem instances 13 and 39. It is

interesting to note how even though on some problem instances only one DR achieved the

best value, the entire ensemble nevertheless achieved the same performance as the best DR.

On the other three instances from the table, the ensemble was unable to achieve equally good

235

6. Designing ensembles of dispatching rules

Table 6.25: Performance analysis of the best ensemble generated by SEC and combined with the vote
combination method

Problem instance index Individual DR Ensemble

1 13 19 32 39

1 0.295 0.264 0.356 0.264 0.351 0.264

13 0.869 1.086 0.812 0.859 0.982 0.768

17 0.119 0.172 0.194 0.264 0.129 0.154

22 1.685 1.685 1.644 1.855 1.965 1.644

26 0.978 0.978 0.858 1.128 0.842 0.842

28 0.032 0.032 0.032 0.032 0.032 0.032

29 0.506 0.506 0.506 0.602 0.506 0.506

39 1.081 0.986 1.080 1.007 1.058 0.985

40 1.399 1.386 1.386 1.233 1.532 1.386

41 0.212 0.180 0.163 0.075 0.053 0.137

Total fitness on all instances 13.31 13.49 13.17 13.20 14.36 12.41

Fitness on the test set 15.92 15.48 16.08 16.44 15.68 14.91

results as the best DR. However, on neither of the selected problem instances it did not achieve

inferior results when compared to the worst DR in the ensemble. Figure 6.23 represents the

performance of the ensemble on the entire validation set, with regards to the individual DRs

which are contained in the ensemble.

4 44 11 1

Better than all DRs Equally well as the best DR Worse than the best DR and better than the worst DR

Equally well as the worst DR Worse than all DRs

Figure 6.23: Performance of the best ensemble constructed by SEC and combined by using the vote
combination method compared to the performance of individual DRs out of which it was constructed

The ensemble constructed by the vote combination method achieved an improvement of

5.8% over the best DR in the ensemble on the validation set, and an improvement of 3.7%

on the test set. Although most DRs which are contained in the ensemble achieve good results

on the validation set, their performance is significantly worse when they are applied on the

test set. However, this deterioration in their individual performance did not have an influence

on the performance of the entire ensemble. This again proves that the individual performance

236

6.6. Analysis of the generated ensembles

of DRs that form the ensemble is not an indicator of the quality of the entire ensemble. The

ensembles which were analysed for the two ensemble construction methods both achieve a

similar performance on the two problem instance sets used for testing. However, the results

demonstrate that the vote combination method creates ensembles which produce results that

will be more in the range of the results achieved by the DRs that form the ensemble, whereas

the sum combination method creates ensembles which have a greater possibility of achieving

better results than the individual DRs, but can also achieve inferior results in certain occasions.

An additional analysis will also be performed for ESS when it is applied on the ensembles

generated by SEC. Table 6.26 represents the analysis of the best ensemble obtained by ESS,

for the sum combination method. The table shows that for five problem instances the obtained

ensemble achieved results which are at least as good as those obtained by the best individual

result of all DRs contained in the ensemble, while for three of those instances the ensemble

outperformed the best results achieved by individual DRs. In several occasions, the ensemble

can perform well even if only one of the DRs in the ensemble achieves good performance. On

four out of five other problem instances, the ensemble did not achieve equally good results as

the best DR, but still managed to perform better than the worst rule in the ensemble. On the

problem instance 41 the ensemble achieved worse performance than that achieved by the worst

DR in the ensemble, even though two DRs in the ensemble individually performed well on

that problem instance. Figure 6.24 shows the performance of the ensemble when compared to

the individual DRs that form the ensemble. The results show that the ensemble constructed by

ESS did not perform well on as many problem instances as the ensemble constructed by SEC.

Although the ensemble created by ESS achieved an inferior performance on the validation set,

it obtained a much better performance on the test set than the ensemble constructed by SEC.

5 42 9 4

Better than all DRs Equally well as the best DR Worse than the best DR and better than the worst DR

Equally well as the worst DR Worse than all DRs

Figure 6.24: Performance of the best ensemble constructed by SEC with ESS and combined by using
the sum combination method compared to the performance of individual DRs out of which it was

constructed

The DRs out of which the ensemble is constructed usually do not achieve a good individual

performance. On the validation set, only DR 30 achieved a good performance, while rules

46 and 47 achieve an extremely bad performance. Nevertheless, the ensemble can achieve an

improvement of 2.7% over the best individual. The situation is similar for the test set as well,

since most rules again achieve a quite bad performance. However, the ensemble constructed

from these DRs achieve an improvement of 7.5% over the best DR in the ensemble. Therefore,

the poor performance of individual DRs did not have an influence on the performance of the

237

6. Designing ensembles of dispatching rules

Table 6.26: Performance analysis of the best ensemble generated by SEC with ESS and combined by
using the sum combination method

Problem instance index Individual DRs Ensemble

25 30 46 47

1 0.494 0.264 0.301 0.376 0.264

13 0.838 0.870 1.126 1.025 0.755

17 0.168 0.204 0.259 0.326 0.136

22 2.046 1.889 1.860 1.855 1.860

26 0.978 0.978 1.142 1.131 0.857

28 0.091 0.032 0.032 0.032 0.032

29 0.506 0.506 0.430 0.554 0.506

39 1.009 0.955 0.999 0.985 1.009

40 1.399 1.233 1.386 1.386 1.386

41 0.091 0.116 0.058 0.058 0.163

Total fitness on all instances 13.87 13.12 14.31 14.45 12.77

Fitness on the test set 16.75 15.67 16.02 16.51 14.49

238

6.6. Analysis of the generated ensembles

4 41 10 4 1

Better than all DRs Equally well as the best DR Worse than the best DR and better than the worst DR

Equally well as the worst DR Worse than all DRs

Figure 6.25: Performance of the best ensemble constructed by SEC with ESS and combined by using
the vote combination method compared to the performance of individual DRs out of which it was

constructed

ensemble, on neither of the problem instance sets.

Table 6.27 represents the results achieved by the best ensemble created by ESS when using

the vote combination method. For five problem instances in the table, the ensemble performs

equally well or better than all of the DRs in the ensemble. On the other problem instances,

the ensemble also shows to perform very similar to the best DR, like for problem instances

1, 13, and 17. Although some DRs perform poorly on certain problem instances, the better

DRs are still able to guide the ensemble towards better solutions. On the entire validation

set, the ensemble achieved better values than any of the DRs in the ensemble for four problem

instances, while for 41 instances it achieved equal results as the best DR. On the other instances,

the ensemble achieved results worse than the best DR, but only in one occasion it achieved a

worse result than all DRs in the ensemble. Therefore, the ensemble obtained by ESS does not

achieve a good performance on as many instances as the ensemble created by SEC, which also

leads the ensemble generated by ESS to achieve worse results on both problem sets.

The generated ensemble outperforms the best DR it consists of by 2.4% on the validation

set, and by 4.4% on the test set. The improvements on the validation set were not large since

two DRs in the ensemble achieve a good individual performance. However, the improvement

is much more evident on the test set where neither of the DRs in the ensemble achieved a good

result. Nevertheless, the results are still inferior than that of the ensemble generated by SEC,

therefore demonstrating that in this case ESS was unable to improve the performance of the

ensembles. Furthermore, the results achieved by the vote combination method, when using

ESS, were inferior to those when the sum combination method was applied. Therefore, ESS

seems to be more useful for improving the results of ensembles using the sum combination

method.

6.6.3 Analysis of ensembles generated by BagGP

Table 6.28 represents the best ensemble obtained by the BagGP method. This result was

achieved for the bag size of 40 problem instances, and an ensemble of size nine. The results

show that the entire ensemble performs worse than most of the DRs out of which it is con-

structed. However, this is not surprising since the DRs are evolved completely independently

239

6. Designing ensembles of dispatching rules

Table 6.27: Performance analysis of the best ensemble generated by SEC with ESS and combined by
using the vote combination method

Problem instance index Individual DRs Ensemble

6 11 46

1 0.297 0.494 0.301 0.301

13 0.842 0.737 1.126 0.871

17 0.114 0.489 0.259 0.170

22 1.865 1.860 1.860 1.860

26 0.857 1.010 1.142 0.857

28 0.032 0.091 0.032 0.032

29 0.506 0.524 0.430 0.566

39 0.962 0.960 0.999 0.938

40 1.233 1.233 1.386 1.233

41 0.109 0.091 0.058 0.109

Total fitness on all instances 13.17 13.11 14.31 12.79

Fitness on the test set 15.98 15.72 16.02 15.03

240

6.6. Analysis of the generated ensembles

from each other, and therefore it can occur that the entire ensemble does not perform well. Al-

though the ensemble consists of nine DRs, it rarely happens that several DRs in the ensemble

achieve the same performance. This is due to the bagging procedure, in which DRs are evolved

on subsets of problem instances. Therefore the DRs specialise only on solving the problem

instances which were used for its training. Because of this, the performance of individual DRs

for certain problem instances can be vastly different, like for problem instances 4, 6, 7, 13, 24,

and 47, on which the worst DR in the ensemble mostly achieved a fitness value two times larger

than the one obtained by the best DR. The ensemble can match the performance of the best in-

dividual DR in several cases (for problem instances 4 and 32), however, on the other instances it

usually achieved results which are between those of the best and worst results achieved by DRs

in the ensemble. Figure 6.26 shows the performance of the ensemble on the entire training set

when compared to the individual DRs that form the ensemble. Because the ensemble achieves

a poor performance on many of the problem instances, it did not achieve good results for the

training set set.

1 35 20 3 1

Better than all DRs Equally well as the best DR Worse than the best DR and better than the worst DR

Equally well as the worst DR Worse than all DRs

Figure 6.26: Performance of the best ensemble constructed by BagGP and combined by using the sum
combination method compared to the performance of individual DRs out of which it was constructed

As previously mentioned, the ensemble did not achieve a better performance than the best

DR contained in it, but rather achieved a result worse by even 9.1% on the training set. Most

of the DRs which form the ensemble achieved a better individual performance than the ensem-

ble. On the test set, the constructed ensemble performs quite well, achieving an improvement

of 3.2% over the best DR in the ensemble. For the test set, many of the DRs in the ensemble

achieve a quite poor performance. Although the selected ensemble achieves a good perfor-

mance on the test set, the fact that it achieved a bad performance on the training set makes it

questionable if this ensemble would perform well on other problem instances.

Table 6.29 represents the analysis of the best ensemble which was evolved by BagGP when

the vote combination method and the bag size of 70 instances were used. The first thing which

is evident from the selected problem instances is that the ensemble outperforms the best result

achieved by any of the DRs on only one problem instance, while on another problem instance

it performs equally well. Figure 6.27 denotes the performance of the ensemble when compared

to the individual DRs in the ensemble. Although the obtained numbers are similar to those

achieved by BagGP with the sum combination method, in this case the individual DRs perform

better, which also has a positive effect on the ensemble. This is important for problem instances

241

6. Designing ensembles of dispatching rules

Table 6.28: Performance analysis of the best ensemble generated by BagGP and combined by using the
sum combination method

Problem instance index Individual DRs Ensemble

0 1 2 3 4 5 6 7 8

4 0.476 0.826 0.462 0.462 0.674 0.632 0.376 0.698 0.476 0.376

6 0.461 0.169 0.325 0.141 0.411 0.191 0.167 0.165 0.474 0.503

7 0.975 1.140 1.150 1.563 1.328 1.314 1.099 0.989 1.251 1.298

13 0.203 0.185 0.201 0.433 0.291 0.359 0.181 0.166 0.186 0.201

22 1.589 1.589 1.606 1.589 1.438 1.438 1.645 1.589 1.589 1.515

24 1.474 1.381 1.381 1.381 2.147 1.493 1.563 1.467 1.474 2.147

32 0.684 0.661 0.727 0.646 0.664 0.662 0.801 0.653 0.719 0.644

39 0.784 0.657 0.752 0.828 0.842 0.965 0.692 0.898 0.660 0.744

47 0.492 0.572 0.548 0.503 0.619 0.453 0.585 0.627 0.740 0.607

59 0.256 0.285 0.234 0.235 0.246 0.236 0.243 0.243 0.243 0.247

Total fitness on all instances 15.43 15.70 15.16 15.65 17.13 15.69 15.85 15.62 15.81 16.54

Fitness on the test set 15.39 17.44 15.26 17.50 16.88 17.84 17.20 15.68 15.54 14.77

for which the ensemble does not perform equally well or better than the best individual DR,

since in those cases the ensemble has mostly achieved a value similar to the median of the

values achieved by the DRs which form the ensemble. Such a behaviour can be observed for

problem instances 4, 22, 32, 39, and 49. Therefore, if individual DRs perform better, it should

also lead to better performance of the entire ensemble for that problem instance. The results

also demonstrate that as more rules in the ensemble perform equally well for a certain problem

instance, the higher is the probability that the entire ensemble will also perform in the same way.

This can be seen for problem instance 22, where four DRs achieve the same performance, and

consequentially the entire ensemble also performs the same. The DRs evolved by the approach

specialise for solving different problems, which is evident from the fact that two DRs rarely

achieve an equal performance on a given problem instance.

1 38 20 1

Better than all DRs Equally well as the best DR Worse than the best DR and better than the worst DR

Equally well as the worst DR Worse than all DRs

Figure 6.27: Performance of the best ensemble constructed by BagGP and combined by using the vote
combination method compared to the performance of individual DRs out of which it was constructed

Although this ensemble is also unable to outperform the best individual on the training set,

it performs worse only by 0.7%, meaning that it achieves an almost equal result as the best DR

242

6.6. Analysis of the generated ensembles

Table 6.29: Performance analysis of the best ensemble generated by BagGP and combined by using the
vote combination method

Problem instance index Individual DRs Ensemble

0 1 2 3 4 5 6 7 8

4 0.675 0.675 0.476 0.675 0.476 0.376 0.476 0.476 0.632 0.476

6 0.184 0.275 0.391 0.165 0.224 0.301 0.100 0.363 0.100 0.301

7 1.083 1.070 1.126 2.054 0.914 1.320 0.926 0.994 1.413 0.914

13 0.240 0.187 0.194 0.223 0.185 0.213 0.277 0.198 0.185 0.239

22 1.600 1.600 1.526 1.589 1.589 1.589 1.589 1.602 1.515 1.589

24 1.580 1.359 1.381 1.580 1.326 1.474 1.472 1.472 1.474 1.474

32 0.685 0.535 0.701 0.640 0.685 0.670 0.691 0.685 0.606 0.685

39 0.781 0.745 0.732 0.730 0.659 0.779 0.827 0.795 0.770 0.795

47 0.476 0.492 0.498 0.492 0.492 0.643 0.492 0.579 0.572 0.492

59 0.273 0.227 0.243 0.238 0.242 0.256 0.288 0.243 0.232 0.112

Total fitness on all instances 15.01 15.12 15.29 16.03 14.73 15.55 15.12 15.78 15.33 14.83

Fitness on the test set 16.14 16.69 16.95 16.94 16.03 16.00 15.86 15.50 17.12 14.88

in the ensemble. The ensemble achieves a much better performance on the training set than

the previous ensemble which used the sum combination method. On the test set, the ensemble

outperforms the best DR of the ensemble by 4%. Therefore, the ensemble achieved a good

performance on both problem sets. In the end, the ensemble with the vote combination method

achieved a better performance on the training set, and a similar performance on the test set,

when compared to the ensemble with the sum combination method.

Table 6.30 represents the results achieved by the best ensemble created by ESS, when using

the sum combination method. This ensemble was evolved with the bag size of 30 problem

instances. The results in the table demonstrate that ESS was able to select those DRs which

lead to good results of the ensemble on both the validation set and the test set. For six problem

instances in the table, the ensemble achieved equally good or better results than any of the

DRs contained the ensemble. However, the other four problem instances show much more

interesting things about the behaviour of the ensemble. On those problem instances, usually two

or three DRs perform rather well, while the other DRs perform poorly for the problem instance.

However, when the performance of the ensemble is observed on these problem instances, it

tends to achieve performance which leans more towards the values achieved by better DRs in

the ensemble. Therefore, the ensemble as a whole also achieved good results on most of the

problem instances. Figure 6.28 represents the performance of the ensemble on all problem

instances in the validation set, when compared to the individual DRs.

243

6. Designing ensembles of dispatching rules

Table 6.30: Performance analysis of the best ensemble generated by BagGP with ESS and combined by
using the sum combination method

Problem instance index Individual DRs Ensemble

1 6 7 8

1 0.301 0.376 0.711 0.711 0.294

2 0.798 0.771 0.914 0.788 0.596

13 0.839 0.996 0.981 1.015 0.839

17 0.335 0.172 0.105 0.109 0.110

22 2.149 1.705 1.840 1.698 1.741

26 0.857 0.978 1.142 1.238 0.978

29 0.506 0.506 0.506 0.806 0.506

40 1.386 1.223 1.348 1.751 1.329

41 0.170 0.109 0.075 0.075 0.075

57 0.067 0.080 0.070 0.067 0.066

Total fitness on all instances 14.06 13.18 14.26 15.36 12.55

Fitness on the test set 15.75 15.48 15.67 17.27 14.41

244

6.6. Analysis of the generated ensembles

4 43 11 2

Better than all DRs Equally well as the best DR Worse than the best DR and better than the worst DR

Equally well as the worst DR Worse than all DRs

Figure 6.28: Performance of the best ensemble constructed by BagGP with ESS and combined by
using the sum combination method compared to the performance of individual DRs out of which it was

constructed

5 41 10 2 2

Better than all DRs Equally well as the best DR Worse than the best DR and better than the worst DR

Equally well as the worst DR Worse than all DRs

Figure 6.29: Performance of the best ensemble constructed by BagGP with ESS and combined by
using the vote combination method compared to the performance of individual DRs out of which it was

constructed

The obtained ensemble achieved a good performance on both problem sets. For the val-

idation set, the ensemble outperformed the best individual DR in the ensemble by 4.8%. On

the other hand, on the test set the ensemble outperformed the best DR by 6.9%. Out of all the

ensembles and DRs tested in this chapter, this ensemble achieved the overall best performance

on the test set. Therefore, ESS obtained an ensemble which not only improved the performance

of BagGP, but also reduced the size of the best ensemble to only four DRs.

The results for ESS with the vote combination method are presented in table 6.31. The

ensemble was evolved by using the bag size of 40 problem instances. The results demonstrate

that even for the vote combination method ESS creates an ensemble which achieves good per-

formance for both the validation and test set. For five of the presented problem instances the

ensemble performs at least equally well as the DR which achieves the best result for the problem

instance. For most other problem instances the ensemble usually achieved values which lean

towards the values obtained by better DRs, like for problem instances 13, 17, and 57. This is

especially important for problem instances in which certain DRs achieve quite bad values, but

the entire ensemble performs well since most of the other DRs in the ensemble obtain a good

performance. Instance 17 is an example of such a situation, where rule 1 achieves a quite bad

performance, but in the end it does not have a large effect on the performance of the entire en-

semble for this problem instance. However, in cases where the majority of DRs in the ensemble

perform poorly, it is more likely that the entire ensemble will not achieve a good performance

(like for problem instance 37). Figure 6.29 shows the performance of the ensemble on the entire

validation set, when compared to the individual DRs in the ensemble.

The considered ensemble achieved a quite good performance on both problem sets. For

the validation problem set, the ensemble achieved an improvement of 8.9% over the best DR

245

6. Designing ensembles of dispatching rules

Table 6.31: Performance analysis of the best ensemble generated by BagGP with ESS and combined by
using the vote combination method

Problem instance index Individual DRs Ensemble

1 6 7 8

1 0.356 0.351 0.462 0.599 0.264

2 0.596 0.596 1.331 0.775 0.596

13 0.924 0.763 0.907 0.759 0.763

17 0.684 0.240 0.093 0.151 0.121

22 1.860 1.860 1.685 1.860 1.860

26 1.215 0.858 0.936 0.842 0.834

37 0.120 0.117 0.151 0.126 0.185

40 1.192 1.386 1.141 1.233 1.141

41 0.109 0.163 0.091 0.163 0.091

57 0.065 0.079 0.097 0.079 0.076

Total fitness on all instances 13.81 13.68 13.55 14.10 12.35

Fitness on the test set 16.31 15.71 16.05 15.62 14.85

246

6.6. Analysis of the generated ensembles

in the ensemble. On the other hand, for the test set the ensemble achieved an improvement of

approximately 4.9%. The ensemble also achieved a better performance on the validation set

when compared to the ensemble obtained by using the sum combination method. However, on

the test set the ensemble achieved inferior results to those obtained by the ensemble with the sum

combination method. This demonstrates that it is hard to obtain an ensemble which achieves the

best results for both of the problem sets. When compared to the ensemble obtained by BagGP,

the ensemble constructed by ESS achieved a similar performance on the test set. However, the

ensemble constructed by ESS consisted of only four DRs, whereas the ensemble constructed by

BagGP consisted out of nine DRs. This demonstrates that ESS obtains ensembles with a much

smaller sizes, but equal or better performance.

6.6.4 Analysis of ensembles generated by BoostGP

Table 6.32 represents the best ensemble obtained by BoostGP for the sum combination method,

without the use of weights. The table shows that DRs which are evolved in later iterations

usually perform better on those instances which were not solved well by DRs evolved in pre-

vious iterations. This behaviour is expected since the problem instances which are not solved

optimally will gain more importance in each further iteration. On four problem instances in

the table, the ensemble achieved better or equal values as all individual DRs. Out of these four

problem instances, only for instance 5 did the ensemble achieved a better performance than the

best DR in the ensemble. In cases where the ensemble was not able to achieve an equally good

result as the best DR, the ensemble still performed better than the worst DR for that problem

instance. The results achieved by the ensemble for those problem instances converge more to

the values achieved by worse DRs. This behaviour can be observed for problem instances 22,

24, and 38. Figure 6.30 represents the performance of the ensemble on the entire test set, when

compared to the individual DRs in the ensemble.

1 38 8 11 2

Better than all DRs Equally well as the best DR Worse than the best DR and better than the worst DR

Equally well as the worst DR Worse than all DRs

Figure 6.30: Performance of the best ensemble constructed by unweighted BoostGP and combined by
using the sum combination method compared to the performance of individual DRs out of which it was

constructed

Because the ensemble did not achieve a good performance for several problem instances,

it was unable to outperform the result on the training set achieved by the best individual DR

in the ensemble, but rather the ensemble achieves an inferior result by 3.1%. On the test set,

the ensemble achieved an improvement of approximately 1.9%. The ensemble obtained by

247

6. Designing ensembles of dispatching rules

Table 6.32: Performance analysis of the best ensemble generated by unweighted BoostGP and
combined by using the sum combination method

Problem instance index Individual DRs Ensemble

0 1 2 3 4 5 6 7 8

4 0.476 0.476 0.476 0.485 0.476 0.462 0.476 0.476 0.632 0.462

5 0.753 0.753 0.802 0.786 0.731 0.786 0.731 0.731 0.731 0.692

19 0.368 0.366 0.374 0.324 0.309 0.261 0.344 0.347 0.403 0.364

21 0.326 0.262 0.231 0.231 0.231 0.262 0.231 0.262 0.293 0.293

22 1.589 1.589 1.589 1.613 1.589 1.589 1.589 1.589 1.438 1.600

24 1.326 1.381 1.474 1.474 1.402 1.474 1.381 1.381 1.431 1.472

33 0.112 0.131 0.112 0.123 0.123 0.112 0.123 0.112 0.112 0.112

38 0.484 0.555 0.573 0.547 0.581 0.545 0.545 0.562 0.582 0.557

53 0.322 0.312 0.308 0.312 0.318 0.308 0.317 0.308 0.308 0.326

59 0.265 0.256 0.256 0.243 0.256 0.243 0.260 0.256 0.260 0.243

Total fitness on all instances 14.49 14.63 14.89 15.00 14.46 14.75 14.52 14.48 14.69 14.91

Fitness on the test set 15.47 15.72 15.46 15.50 16.06 15.40 15.83 16.20 16.16 15.10

BoostGP did not achieve an equally good performance on the test set as the previously described

approaches.

Table 6.33 shows the analysis of the best ensemble evolved by the unweighted BoostGP

approach, with the vote combination method. The evolved DRs which form the ensemble again

perform well on the training set. However, the entire ensemble performs worse than most of the

DRs contained in it, which is expected since the DRs are again evolved almost independently

from each other. On only one problem instance denoted in the table, the ensemble achieved an

equally good result as the best DR in the ensemble. This happened for the problem instance

24, where five DRs achieved the best result, and therefore the entire ensemble also obtained the

same performance. On the remaining nine problem instances, the ensemble always achieved

a value which is not inferior to the result obtained by the worst DR in the ensemble. Figure

6.31 represents the performance of the ensemble on the entire test set, when compared to the

individual DRs in the ensemble. On the problem instances on which the ensemble performed

better than the worst DR and worse than the best DR, the ensemble achieved a result which

often represents the median value of the performance of DRs contained in the ensemble, thus

allowing the ensemble to achieve a good performance over a large number of instances. The

results obtained by this ensemble once again demonstrate that the ensembles which use the vote

combination method are more inclined to achieve results which are in the range of the best and

worst value obtained by the individual DRs.

248

6.6. Analysis of the generated ensembles

37 11 10 2

Better than all DRs Equally well as the best DR Worse than the best DR and better than the worst DR

Equally well as the worst DR Worse than all DRs

Figure 6.31: Performance of the best ensemble constructed by unweighted BoostGP and combined by
using the vote combination method compared to the performance of individual DRs out of which it was

constructed

Table 6.33: Performance analysis of the best ensemble generated by unweighted BoostGP and
combined by using the vote combination method

Problem instance index Individual DRs Ensemble

0 1 2 3 4 5 6

4 0.476 0.476 0.462 0.476 0.476 0.476 0.503 0.476

5 0.753 0.731 0.798 0.688 0.731 0.741 0.688 0.731

19 0.371 0.357 0.263 0.387 0.353 0.256 0.296 0.377

21 0.293 0.231 0.231 0.231 0.262 0.326 0.293 0.262

22 1.589 1.600 1.515 1.589 1.589 1.589 1.589 1.589

24 1.381 1.381 1.474 1.474 1.381 1.381 1.381 1.381

33 0.112 0.112 0.112 0.123 0.123 0.090 0.128 0.123

38 0.582 0.571 0.465 0.546 0.558 0.483 0.533 0.544

53 0.308 0.308 0.308 0.308 0.312 0.307 0.308 0.308

59 0.259 0.256 0.238 0.243 0.256 0.226 0.271 0.256

Total fitness on all instances 14.80 14.71 14.44 14.73 14.51 14.38 14.49 14.77

Fitness on the test set 16.00 15.76 15.97 16.19 16.05 15.77 15.13 14.99

249

6. Designing ensembles of dispatching rules

The constructed ensemble is again unable to outperform the best DR out of which it is

constructed. In this case, the constructed ensemble achieves an inferior performance of 2.7%

when compared to the best DR in the ensemble. The improvement on the test set which the

ensemble achieves over the best DR contained in it is approximately 1%. The improvement is

relatively small because a DR in ensemble achieves a good individual performance on the test

set. Nevertheless, this ensemble achieved better results for both problem sets than the previously

created ensemble which used the sum combination method. Therefore, the vote combination

method seems to be slightly more appropriate for the BoostGP approach.

Table 6.34 represents the results achieved by ESS for the sum combination method. The

best ensemble achieved by ESS consists of only two DRs. Both DRs which form the ensemble

achieve a good performance by themselves, but combined into an ensemble their performance

is increased even further. For six problem instances, the ensemble achieves equally good or

better results than the individual DRs. For instances 18 and 22, both DRs achieve a similar

value, however, the ensemble performs better than both of these rules. In certain cases it can

happen that the ensemble performs worse than any of the DRs in the ensemble, like for problem

instance 10. Figure 6.32 demonstrates the performance of the ensemble on the validation set,

when compared to the individual DRs in the ensemble.

6 40 8 2 4

Better than all DRs Equally well as the best DR Worse than the best DR and better than the worst DR

Equally well as the worst DR Worse than all DRs

Figure 6.32: Performance of the best ensemble constructed by unweighted BoostGP with ESS and
combined by using the sum combination method compared to the performance of individual DRs out of

which it was constructed

On the validation set, the ensemble achieved an improvement of 4.9% over the best individ-

ual in the ensemble. On the other hand, on the test set, the ensemble achieved an improvement

of 5.0%. Therefore, on both problem sets, the ensemble achieved a similar performance im-

provement over the best DR in the ensemble. The ensemble obtained by ESS also achieved a

better result on the test set than the best ensemble achieved solely by BagGP with the sum com-

bination method, since by using ESS an improvement of 2.2% was achieved. In addition, the

ensemble constructed by ESS consists of only two DRs, while the best DR obtained by BagGP

consisted of nine DRs. Therefore, ESS also constructed an ensemble with a significantly smaller

size.

Table 6.35 represents the best ensemble created by ESS when using the vote combination

method. The table shows that ESS generated an ensemble which consists of DRs that specialise

on solving different problem instances. Similarly as in previous examples, the entire ensemble

has a larger probability of achieving a good performance if more DRs in the ensemble obtain the

250

6.6. Analysis of the generated ensembles

Table 6.34: Performance analysis of the best ensemble generated by unweghted BoostGP with ESS and
combined by using the sum combination method

Problem instance index Individual DRs Ensemble

1 6

0 0.285 0 0.018

2 0.596 0.596 0.596

10 0.440 0.338 0.499

12 0.019 0.014 0.014

15 0.001 0.001 0

16 0.001 0.044 0

18 0.850 0.852 0.621

22 1.865 1.813 1.705

25 0.113 0.005 0.076

37 0.127 0.177 0.152

Total fitness on all instances 13.74 14.06 13.06

Fitness on the test set 15.59 15.54 14.77

251

6. Designing ensembles of dispatching rules

1 43 13 2 1

Better than all DRs Equally well as the best DR Worse than the best DR and better than the worst DR

Equally well as the worst DR Worse than all DRs

Figure 6.33: Performance of the best ensemble constructed by unweighted BoostGP with ESS and
combined by using the vote combination method compared to the performance of individual DRs out of

which it was constructed

best performance for a problem instance. This behaviour can be observed on problem instances

22, 23, and 27. In cases where the individual DRs in the ensemble achieve various performances

for a single problem instance, the entire ensemble achieves values similar to the best value

obtained by any DR, like for problem instances 18, 26, and 33. Even if the ensemble can not

match the very best value, it will still perform quite well, since it often achieved a performance

which is better than that of most of the DRs which form the ensemble. Figure 6.33 represents

the performance of the ensemble on the entire validation set, when compared to the individual

DRs in the ensemble.

On the validation set the ensemble obtained by ESS for the vote combination method

achieved an improvement of 3.9% over the best DR in the ensemble. On the other hand, on

the test set the ensemble achieved an improvement of 3%. Therefore, the constructed ensemble

outperforms the best individual DR in the ensemble on both of the problem sets. When com-

pared to the ensemble generated by ESS with the sum combination method, the ensemble with

the vote combination method achieves a similar performance on the test set, while on the vali-

dation set it achieves a much better performance. The ensemble generated by ESS also achieved

a better result than the ensemble generated without using ESS, thus demonstrating the ability of

ESS to improve the performance of ensembles generated by other approaches.

Table 6.36 represents the best ensemble constructed by the weighted BoostGP approach.

Most of the DRs perform well by themselves, and this also seems to reflect on the performance

the entire ensemble. The ensemble achieved an equal performance as the best DR in the ensem-

ble on only two instances denoted in the table. On the other problem instances, the ensemble

either performs almost as good as the best DR, like for instances 5, 53, and 59, or it achieves

a performance similar to the worst DR in the ensemble, like for problem instances 24 and 38.

Figure 6.34 represents the performance of the ensemble on the entire test set, when compared

to the individual DRs in the ensemble.

Even though the ensemble did not perform equally good as the best DR on most of the

problem instances, it nevertheless achieved only a slightly worse performance than the best DR,

amounting to around 0.9%. On the test set the ensemble achieved a better result than the best

individual DR by 1.6%. Using the confidences as weights for the DRs is beneficial, since this

variant of the approach achieved better results on both problem sets than the ensemble which did

252

6.6. Analysis of the generated ensembles

Table 6.35: Performance analysis of the best ensemble generated by unweighted BoostGP with ESS
and combined by using the vote combination method

Problem instance index Individual DRs Ensemble

0 1 2 3 8

9 0.396 0.397 0.270 0.270 0.378 0.300

13 0.772 0.939 0.945 0.853 0.839 0.770

18 0.745 0.735 0.734 0.553 0.656 0.596

22 1.860 1.685 1.840 1.685 1.889 1.685

23 0.225 0.160 0.225 0.351 0.160 0.160

26 0.842 0.857 0.924 0.857 0.978 0.857

27 0.026 0.026 0.026 0.033 0.026 0.026

33 0.218 0.220 0.193 0.330 0.196 0.218

36 0.211 0.213 0.206 0.231 0.180 0.237

40 1.386 1.233 1.386 1.518 1.246 1.233

Total fitness on all instances 14.83 12.98 14.39 13.44 13.27 12.48

Fitness on the test set 15.44 15.23 16.06 15.91 15.55 14.78

1 35 20 3 1

Better than all DRs Equally well as the best DR Worse than the best DR and better than the worst DR

Equally well as the worst DR Worse than all DRs

Figure 6.34: Performance of the best ensemble constructed by weighted BoostGP and combined by
using the sum combination method compared to the performance of individual DRs out of which it was

constructed

253

6. Designing ensembles of dispatching rules

Table 6.36: Performance analysis of the best ensemble generated by weighted BoostGP and combined
by using the sum combination method

Problem instance index Individual DRs Ensemble

0 1 2 3 4 5 6

Confidences

0.185 0.424 0.646 0.813 0.866 1.027 0.949

4 0.476 0.476 0.476 0.476 0.476 0.476 0.476 0.476

5 0.753 0.731 0.876 0.802 0.741 0.775 0.753 0.753

19 0.396 0.348 0.275 0.360 0.219 0.341 0.348 0.341

21 0.293 0.183 0.231 0.262 0.326 0.231 0.326 0.293

22 1.438 1.515 1.589 1.589 1.589 1.589 1.589 1.438

24 1.552 1.381 1.381 1.474 1.381 1.474 1.381 1.552

33 0.128 0.112 0.112 0.112 0.101 0.123 0.128 0.128

38 0.549 0.590 0.460 0.576 0.477 0.604 0.586 0.581

53 0.308 0.302 0.331 0.308 0.323 0.308 0.308 0.308

59 0.256 0.260 0.246 0.243 0.232 0.243 0.243 0.246

Total fitness on all instances 14.52 14.42 14.82 14.76 14.36 15.10 14.89 14.49

Fitness on the test set 15.62 15.78 15.19 15.56 15.55 17.45 15.99 14.95

254

6.6. Analysis of the generated ensembles

1 39 11 5 4

Better than all DRs Equally well as the best DR Worse than the best DR and better than the worst DR

Equally well as the worst DR Worse than all DRs

Figure 6.35: Performance of the best ensemble constructed by weighted BoostGP and combined by
using the vote combination method compared to the performance of individual DRs out of which it was

constructed

not use the confidences as weights. Therefore, for the sum combination method, the confidences

represent information which can be used to improve the performance of the ensembles.

Table 6.37 represents the best individual obtained by the weighted BoostGP approach, with

the vote combination method. For only two problem instances in the table, the ensemble

achieved an equally good performance as the best DR in the ensemble. For both of these prob-

lem instances, several DRs in the ensemble achieved the overall best result, which seems to help

the ensemble to also achieve the best result. However, on most of the other problem instances

the ensemble did not perform equally good as the best DR, and usually achieved a quite bad

performance. For example, for problem instances 4, 5, 19, and 38, the ensemble achieved poor

results when compared to the DRs in the ensemble. In most of these problem instances, the

ensemble performed either equally bad as the worst DR in the ensemble, or even worse. Figure

6.35 shows the performance of the ensemble on the entire training set, when compared to the

individual DRs in the ensemble.

Based on the performance of the ensemble on individual problem instances, it is immedi-

ately clear that the ensemble will not achieve a good performance on the training set. The results

show that the ensemble performs worse than any of the DRs in the ensemble, while when com-

pared to the best DR in the ensemble, it achieved an inferior result by 7%. On the test set, the

ensemble achieved a better performance than all DRs in the ensemble, and outperforms the best

DR in the ensemble by around 1.6%. By comparing the results achieved by this approach with

the ensemble that did not use confidences as weights for the DRs, it is evident that the additional

use of weights did not lead to significantly better performance neither on the training set, nor

on the test set. When compared to the ensemble which used the sum combination method, the

ensemble with the vote combination method achieved a similar value for on the test. However,

on the training set the ensembles using the vote combination method achieved a significantly

worse result.

Table 6.38 represents the best ensemble achieved by ESS with the weighted BoostGP ap-

proach, for the sum combination method. ESS reduced the size of the ensemble to only two

DRs, thus demonstrating that for the sum combination method it is preferable to use DRs of

smaller sizes. Out of the ten problem instances denoted in the table, the ensemble achieved at

least an equal performance as the best DR in six of them. Although for problem instances 18

255

6. Designing ensembles of dispatching rules

Table 6.37: Performance analysis of the best ensemble generated by weighted BoostGP and combined
by using the vote combination method

Problem instance index Individual DRs Ensemble

0 1 2 3 4 5 6

Confidences

0.182 0.407 0.694 0.800 0.903 0.911 1.005

4 0.476 0.462 0.476 0.376 0.476 0.229 0.476 0.476

5 0.786 0.883 0.753 0.786 0.808 0.731 0.753 1.136

19 0.372 0.333 0.368 0.362 0.332 0.356 0.366 0.407

21 0.231 0.231 0.262 0.231 0.231 0.262 0.326 0.262

22 1.589 1.589 1.515 1.589 1.600 1.589 1.589 1.589

24 1.381 1.474 1.474 1.474 1.472 1.381 1.472 1.472

33 0.112 0.112 0.106 0.123 0.131 0.123 0.097 0.123

38 0.627 0.550 0.620 0.542 0.549 0.549 0.586 0.642

53 0.308 0.308 0.308 0.312 0.308 0.308 0.322 0.308

59 0.256 0.246 0.243 0.243 0.243 0.246 0.256 0.243

Total fitness on all instances 14.69 14.68 14.58 14.52 14.73 14.24 14.72 15.31

Fitness on the test set 16.17 16.48 15.20 15.75 15.76 16.03 16.79 14.96

256

6.6. Analysis of the generated ensembles

4 42 7 3 4

Better than all DRs Equally well as the best DR Worse than the best DR and better than the worst DR

Equally well as the worst DR Worse than all DRs

Figure 6.36: Performance of the best ensemble constructed by weighted BoostGP with ESS and
combined by using the sum combination method compared to the performance of individual DRs out of

which it was constructed

and 37, the ensemble did not achieve a performance which is equal to that of the best DR, it still

achieved results which were close to the value achieved by the best performing DRs. Therefore,

for the ten denoted problem instances, the ensemble achieves a good performance on most of

the problem instances. Figure 6.36 represents the performance of the ensemble on the entire

validation set, when compared to the individual DRs that form the ensemble.

Although DR 3 achieves a good individual performance, the ensemble nevertheless performs

better on both problem sets. On the validation set, the ensemble achieved an improvement of

4.1%, while on the test set the ensemble achieved an improvement of 1.3%. The ensemble

constructed by ESS obtained a better value on the test set, than the ensemble which was con-

structed only by BoostGP. In addition, the size of the ensemble obtained by BoostGP was 7,

which demonstrates that ESS was able to create an ensemble with not only a better perfor-

mance, but also a much smaller size. By comparing the results to the ensemble obtained by

ESS for the unweighted BoostGP approach, it is evident that the ensemble constructed by ESS

for the weighted BoostGP approach achieved a slightly better result on the validation set. How-

ever, the performance on the test set was the same. Therefore, using the confidences as weights

or not, does not have a significant influence on the performance of ESS.

Table 6.39 represents the best individual obtained by ESS when using the vote combination

method. Although most of the times until now ESS achieved the best performance for smaller

ensembles, this time the best performance was obtained by using an ensemble of size nine. For

four of the problem instances in the table, the ensemble achieved at least and equally good per-

formance as the best DR in the ensemble. Since the ensemble consists out of a large number of

DRs, it is difficult for the ensemble to achieve the best result for each problem instance. How-

ever, on problem instances 10, 18, and 57 the ensemble tends to achieve a performance similar

to the performance of the better DRs in the ensemble. An interesting result of the ensemble can

be observed for problem instance 23. In this case, all DRs achieve only two different values for

the optimisation criterion. Although more DRs achieved a better value for for this instance, in

the end the ensemble was unable to also obtain this performance. However, this is probably due

to the fact that the DRs which achieved an inferior performance on this problem instance had a

larger confidence value. Therefore, these DRs will have a larger influence when the ensemble is

used to perform the scheduling decisions. Figure 6.37 represents the performance on the entire

257

6. Designing ensembles of dispatching rules

Table 6.38: Performance analysis of the best ensemble generated by weighted BoostGP with ESS and
combined by using the sum combination method

Problem instance index Individual DRs Ensemble

3 5

Confidences

0.795 1.056

6 0.025 0.001 0.001

10 0.336 0.312 0.328

13 0.893 1.032 0.882

18 0.588 0.726 0.626

23 0.225 0.225 0.225

25 0.082 0.092 0.074

28 0.032 0.032 0.032

37 0.134 0.166 0.140

39 0.971 1.028 0.967

57 0.067 0.067 0.074

Fitness on the training set 13.48 14.21 12.93

Fitness on the test set 14.97 15.45 14.77

258

6.6. Analysis of the generated ensembles

3 37 17 3

Better than all DRs Equally well as the best DR Worse than the best DR and better than the worst DR

Equally well as the worst DR Worse than all DRs

Figure 6.37: Performance of the best ensemble constructed by weighted BoostGP with ESS and
combined by using the vote combination method compared to the performance of individual DRs out of

which it was constructed

validation set, when compared to the individual DRs contained in the ensemble.

Although the ensemble consisted out of DRs which achieve a good performance on both

problem sets, the ensemble achieved an improvement of only 0.8% on the validation set, and

1.3% for the test set. Although the improvements are not large, it must be stressed out that a

single DR is not able to achieve the best performance on both problem sets. By comparing the

achieved results to the ones achieved by ESS, but when using the sum combination method, it is

evident that the sum method achieved better results for both problem instance sets. However, the

ensemble constructed by ESS achieved a better performance than the ensemble obtained only

by using the weighted BoostGP approach, thus again outlining the ability of ESS to improve the

ensembles achieved by other ensemble learning approaches. Finally, by comparing the results

with the ensemble obtained by ESS with the unweighted BoostGP approach, it is evident that

ESS obtained a better ensemble when the confidences are not used as weight for the individual

DRs.

6.6.5 Analysis of ensembles generated by cooperative coevolution

Table 6.40 represents the analysis of the best ensemble created by the cooperative coevolution

approach, with the sum combination method. This result was achieved by using the second

configuration, which performs more iterations. The table illustrates some interesting behaviours

of an ensemble which is evolved by the cooperative coevolution approach. First of all, the

DRs which form the ensemble achieve bad results individually. This is especially true for

DR 1, which achieved terrible results if applied independently. On all problem instances DR

0 achieved better results than DR 1. However, the ensemble constructed from these two DRs

achieved good results, which demonstrates that the DRs in the ensembles created by cooperative

coevolution heavily depend on each other, and thus perform poorly by themselves. The table

shows that for most of the presented problem instances, the ensemble can achieve equal or

better values than either of the DRs that form the ensemble. It is quite interesting to note that

for many of those problem instances both DRs achieve bad performance, but the ensemble

performs nevertheless quite well (for example on problem instances 16, 21, 47, and 51). On

problem instances 17 and 23, on which the ensemble did not achieve the same performance as

259

6. Designing ensembles of dispatching rules

Table 6.39: Performance analysis of the best ensemble generated by weighted BoostGP with ESS and
combined by using the vote combination method

Problem instance index Individual DRs Ensemble

0 1 2 3 4 5 6 7 9

Confidences

0.184 0.399 0.676 0.817 0.871 0.934 0.972 1.024 1.065

6 0.002 0.008 0.129 0 0 0.024 0.002 0.001 0.144 0

10 0.356 0.395 0.256 0.294 0.391 0.196 0.269 0.362 0.365 0.242

13 0.921 0.879 1.081 0.954 0.842 0.874 1.154 0.908 0.813 0.768

18 0.855 0.746 0.795 0.761 0.739 0.776 0.669 0.661 0.725 0.684

23 0.160 0.160 0.160 0.225 0.160 0.160 0.255 0.255 0.255 0.255

25 0.113 0.113 0.005 0.034 0.103 0.005 0.135 0.092 0.005 0.117

28 0.091 0.091 0.032 0.032 0.091 0.032 0.032 0.032 0.145 0.032

37 0.179 0.164 0.143 0.121 0.136 0.182 0.140 0.160 0.152 0.115

39 1.181 0.982 1.002 1.044 1.062 1.050 0.989 1.066 1.031 1.030

57 0.074 0.068 0.068 0.067 0.074 0.068 0.070 0.070 0.067 0.068

Fitness on the training set 15.12 13.13 13.82 14.48 13.91 13.63 13.63 14.16 13.69 13.03

Fitness on the test set 16.00 15.76 15.97 16.19 16.05 15.77 15.13 15.25 16.25 14.94

260

6.6. Analysis of the generated ensembles

26 32 2

Better than all DRs Equally well as the best DR Worse than the best DR and better than the worst DR

Equally well as the worst DR Worse than all DRs

Figure 6.38: Performance of the best ensemble constructed by cooperative coevolution and combined
by using the sum combination method compared to the performance of individual DRs out of which it

was constructed

19 35 5 1

Better than all DRs Equally well as the best DR Worse than the best DR and better than the worst DR

Equally well as the worst DR Worse than all DRs

Figure 6.39: Performance of the best ensemble constructed by cooperative coevolution and combined
by using the vote combination method compared to the performance of individual DRs out of which it

was constructed

the best DR in the ensemble, it achieved results which are only slightly worse than those of

the best DR, therefore these problem instances do not have an effect on the performance of the

entire ensemble. Figure 6.38 represents the performance of the ensemble on the test set, when

compared to the individual DRs of the ensemble.

Because of the bad individual performance of the DRs, the ensemble achieved an improve-

ment over the best DR in the ensemble of 32% on the training set, and an improvement of 37%

on the test set. By comparing the result achieved on the training set to that of several previ-

ous ensembles, the ensemble created by cooperative coevolution approach achieved one of the

best results for the training set. However, for the test set the obtained performance is among

the worst performances of all ensembles. Therefore, it is highly probable that the cooperative

coevolution overfits on the training set and achieves a good performance on it. However, as a

consequence the ensemble looses the ability to perform well on unseen problem instances.

The analysis of the best ensemble evolved by cooperative coevolution with the vote com-

bination method is presented in Table 6.41. This ensemble was evolved by using the first con-

figuration, with the smaller number of iterations. Even when the vote combination method is

used, the DRs which form the ensemble perform poorly when they are applied individually on

the problem instances. The ensemble once again performs better than any of the individual DRs

on their own, which means that the DRs are once again heavily dependant on each other. The

table denotes that the ensemble achieved equal or better values than any of the DRs which form

the ensemble in nine out of ten examples in the table. For the remaining problem instance, it

achieved the same results as the second best DR in the ensemble. Figure 6.39 shows the perfor-

mance of the ensemble on the entire training set, when compared to the individual DRs in the

ensemble.

261

6. Designing ensembles of dispatching rules

Table 6.40: Performance analysis of the best ensemble generated by cooperative coevolution and
combined by using the sum combination method

Problem instance index Individual DRs Ensemble

0 1

1 0.949 3.085 0.924

7 1.500 5.286 0.965

16 1.181 14.17 0.564

17 0 3.176 0.002

21 1.161 3.714 0.326

23 0.797 4.757 0.802

38 0.827 13.63 0.490

42 0.222 3.710 0.222

47 0.736 10.61 0.577

51 0.403 20.30 0.360

Total fitness on all instances 20.88 234.0 14.20

Fitness on the test set 20.73 277.4 15.11

262

6.6. Analysis of the generated ensembles

Table 6.41: Performance analysis of the best ensemble generated by cooperative coevolution and
combined by using the vote combination method

Problem instance index Individual DRs Ensemble

0 1 2

1 0.945 1.112 1.256 0.924

7 1.283 1.127 1.525 0.914

16 1.022 2.781 8.095 0.630

17 0 0.338 6.421 0

21 0.293 0.904 0.231 0.293

23 0.802 0.856 0.823 0.802

38 0.733 1.431 1.194 0.606

42 0.222 0.222 0.222 0.222

47 0.588 0.939 0.643 0.455

51 0.243 0.642 0.372 0.243

Total fitness on all instances 18.10 32.98 57.15 14.20

Fitness on the test set 18.02 36.49 71.31 15.14

263

6. Designing ensembles of dispatching rules

Once again the ensemble achieved large improvements over the individual DRs in the en-

semble, because of their poor individual performance. The ensemble achieved an improvement

of 21.5% on the training set, and an improvement of 16% on the test set. Based on the results, it

is evident that the procedure achieved a good value for the training set, and therefore probably

overfitted on it as was the case when the sum method was used. For both ensemble combination

methods, the ensemble achieved a similar performance, therefore the cooperative coevolution

approach does not show preference for using either ensemble combination method.

6.7 Conclusion

Ensemble learning approaches represent a simple and powerful way of improving the perfor-

mance of different classifier systems and decision makers. These approaches have rarely been

used with GP, especially when GP is used for creation of new DRs. In the few occasions when

ensembles of DRs were used, it was possible to obtain improved results over the individual

DRs.

The aim of this chapter was to apply several different ensemble learning methods for solving

certain scheduling problems. Out of the five applied approaches, three of them were selected

from the literature (BagGP, BoostGP and cooperative coevolution), while the other two were

proposed in this thesis (SEC and ESS). Through experiments, the influence of different param-

eters like the ensemble combination method and the ensemble size, was analysed for each of

the approaches. The results obtained by all the tested approaches were compared to the results

obtained by different standard manually designed DRs, and automatically generated DRs. Fi-

nally, an analysis was performed to gain insights in the composition of ensembles generated by

different ensemble learning approaches.

The results obtained through the chapter show that the applied ensemble learning approaches

achieved superior performance over individual DRs, whether they were designed manually or

evolved by GP. Out of the tested methods, the best performance was achieved by the proposed

SEC method which, although being quite simple, outperforms the other ensemble learning

methods for most experiments. The main reason why BagGP and BoostGP usually achieved

worse performance than SEC is due to the fact that they independently evolve DRs that form the

ensemble, which can mean that the ensemble contains DRs which have a negative influence on

its performance. The results of these ensembles can be improved with the ESS method, which

filters out the unneeded DRs from the obtained ensembles. The analysis performed on the best

ensembles also gives a deeper insight on how the different ensemble learning methods work.

Based on the results achieved through this chapter, it can be concluded that ensembles of

DRs are able to achieve significantly better results than individual DRs. Therefore, these meth-

ods have shown great potential for solving different scheduling problems. Further research in

264

6.7. Conclusion

this topic can be directed into testing other ensemble learning approaches, or ensemble com-

bination methods. For the SEC approach it would be interesting to analyse more ensemble

construction methods, or even try to design new construction methods based on the knowledge

acquired through the analysis of the constructed ensembles. Finally, it would also prove inter-

esting to apply these methods to other machine environments to get a better insight into their

performance.

265

Chapter 7

Selection of DRs based on problem
instance characteristics

In Section 2.4.2 a list of 26 manually designed DRs for the unrelated machines environment was

given. The reason why such a substantial number of DRs was designed comes from the fact that

a single DR can not perform well for all possible problem instances. This is clearly illustrated

in the study by Branke and Pickardt [277], in which they use an evolutionary algorithm to de-

sign problem instances for which certain DRs from the literature perform suboptimal choices.

These problem instances can then be used to reveal and analyse the limitations of an existing

DR. Therefore, many DRs which perform well for problems with specific characteristics are

designed. However, designing DRs for various situations is not enough. If the characteristics

of the scheduling problem are unknown before the execution of the system, it is not possible

to select the appropriate DR which would achieve the best performance on the given problem.

Although GP does solve the problem of manual creation of DRs, the issue of selecting the ap-

propriate DR out of all the automatically designed DRs, for the given problem instance, still

remains. However, several studies have already dealt with the problem of choosing the appro-

priate DR for the currently considered problem instance. These studies used different machine

learning methods to determine which of the available DRs should be used to perform the next

scheduling decision. However, in all studies the selection was performed usually between a few

manually selected DRs, and in none of the studies was the selection process applied on auto-

matically generated DRs. In addition, most of the studies used neural networks to perform the

selection of the DRs, while other machine learning methods were applied in rare occasions.

This chapter will describe how machine learning methods can be used together with DRs

generated by GP, to define a procedure which can be applied for automatic selection of DRs

based on the characteristics of the current problem instance. In the first part of the chapter the

literature overview of automatic selection of DRs will be provided. After that, the procedure

which is used for automatic selection of automatically generated DRs will be presented. Two

267

7. Selection of DRs based on problem instance characteristics

variants of this procedure will be tested, one of which will assume that the characteristics of

the scheduling problem are available before the start of the system execution, thus making it

possible for the procedure to determine which DR should be applied for solving the problem

prior to the start of the system execution. The second variant will not have this information

available, therefore it will need to approximate the characteristics of the scheduling problem

during the execution of the system, and then use this approximation to select the appropriate

DR for solving this problem instance. Both of these variants will be tested on several problem

instances to analyse their performance. The chapter will be concluded with a short overview of

the achieved results and directions for further research.

7.1 Overview of DR selection literature

The selection of dispatching rules based on the system status and problem characteristics has

been studied to a certain extent in the literature. Pierreval [278] applied an expert system to

dynamically select dispatching rules in the flexible manufacturing systems. Sun and Yih [279]

have proposed a controller for a manufacturing cell which uses a neural network to select a

proper DR based on the current performance of the system. Pierreval [280] has also used neural

networks to select the appropriate DR for a simplified job shop environment consisting of two

work centres. In the aforementioned work the neural network performs its decision by using

information about the configuration of the shop floor, characteristics of the manufacturing pro-

gram, and the optimised performance criteria. Liu and Dong [281] have proposed an algorithm

for job shop scheduling problems which uses neural networks to determine the appropriate DRs.

Their procedure uses simulation to evaluate the efficiency of all the evolved DRs. The results

of the simulations are then used for training the neural network which is used in the real-time

scheduling process, to select the DRs that should be applied. Pierreval and Mebarki [282] have

analysed dynamic rule selection in a manufacturing system, where the rule selection is carried

out each time a machine becomes available, and the rules are selected based on certain system

parameters.

Instead of using a machine learning approach, Yu et al. [283] opted to use a fuzzy inference

based system to select appropriate DRs. The system uses two fuzzy rules and several environ-

ment variables for selecting the DR which should be used for scheduling. Subramaniam et al.

[284] have also used fuzzy logic for defining a scheduler which dynamically selects the most

appropriate DR from a set of candidate DRs. Their results have shown that the fuzzy scheduler

performs better than some other commonly used DRs, and requires the same computational

time as the simple DRs. In [285], Subranamian el al. have proposed a scheduling method based

on the analytic hierarchy process which dynamically selects the most appropriate DR from sev-

eral available rules. El-Bouri and Shah [39] have used neural networks for DR selection in the

268

7.2. DR selection procedure

job shop environment. Their approach does not only select a single DR, but rather it selects an

appropriate DRs for each machine in the shop. The experiments have shown that by using such

an approach, they achieve better results than by using the same DR for every machine. Shiue

and Guh [286] used a hybrid learning methodology which applies a neural network to select the

appropriate DR for the current system conditions, and a GA which is used to select the best set

of attributes for the input layer of the neural network.

Mouelhi-Chibani and Pierreval [40] used a neural network approach for selecting the most

suited DR after each machine becomes available. In this study the neural network is not trained

on prepared training instances, but rather by using a simulation approach. This means that

weights of the neural network, which acts as a decision maker, are optimised with an opti-

misation method to achieve the best performance on the simulation. The method is able to

automatically select efficient DRs for the given situation. Heger et al. [41] have used Gaus-

sian processes for the selection of an appropriate DR. In their approach they used two system

parameters, system utilisation and the due date factor, as well as three manually defined DRs.

Their research showed that it was possible to achieve better results by rule switching than by

applying a single DR for the entire problem instance. Zahmani et al. [287] also use a simulation

approach to extract data that can be used to infer which DR should be used in which situations.

An overview of other research concerned with the automatic selection of DRs can be found in

[239, 240, 288].

7.2 DR selection procedure

The aim of the DR selection procedure, which is used in this chapter, is to determine the ap-

propriate DR for solving the currently considered problem instance. However, to select the

appropriate DR the procedure needs to learn which DRs should be used in which situations,

and then apply this knowledge on unseen scheduling problems. The rest of this section will

describe all the individual parts of the DR selection procedure.

7.2.1 Problem instance features

The first, and probably most important step which needs to be performed, is to identify the most

informative features of the problem instances, which can be used to perform the decision on

which of the available DRs should be applied for the current problem instance. The goal here is

to find the smallest, but also the most informative set of features. In this chapter the influence

of the following five features will be analysed:

∙ Expected total duration of the schedule: p̂ =
∑

n
j=1 ∑

m
i=1 pi j

m2 ,

∙ Due date tightness: DDT = 1− ∑ j(d j−r j)

np̂ ,

269

7. Selection of DRs based on problem instance characteristics

∙ Due date range: DDR =
max

j
(d j−r j)−min

j
(d j−r j)

p̂ ,

∙ Machine job ratio: MJR = m
n ,

∙ Release time tightness: RT T = 1− r̄
p̂ ,

where n represents the total number of jobs in the problem instance, m represents the total

number of machines in the problem instance, while r̄ represents the average value of all job

release times in the problem instance.

Since the Twt criterion will be optimised in the experiments, the due date tightness and due

date range are the most important features, due to the fact that they provide the most information

about the due dates of the jobs. The expected total duration approximates the makespan of the

schedule, while the machine job ratio gives an information on the average number of jobs that

will be scheduled per machine. The release time tightness gives information of the distribution

of the release times.

7.2.2 The learning process

The next step in the automatic rule selection procedure is to define the learning process which

will be used to learn which problem instance should be solved by which DR. To achieve this, two

things need to be defined: the learning set on which the classifier will learn which DR should be

used on which problem instance, and a classifier which will be trained on the aforementioned

learning set, and will determine which DR to use for a new problem instance.

In order to learn which DR is appropriate for solving which problem instance, it is required

to define the learning set which will be used to train the classification method. The learning set

will consist of features which were calculated for each problem instance, and labels that denote

which of the available DRs are associated with which problem instances. In the last subsection

the feature calculation technique of the problem instances was defined, but still it is required

to determine which DR should be used for solving which problem instance. For the purpose

of associating DRs to problem instances a procedure called the grouping association scheme

(GAS) is defined.

Algorithm 7.1 represents the pseudo-code of GAS. This procedure uses a set of problem

instances and a set of DRs to construct the learning examples. In the first step, for each problem

instance the set of DRs which obtain the best solution for that problem instance is determined.

All problem instances which have only one DR in their set are marked as solved, since for them

there is no ambiguity regarding which DR should be associated with them. In addition, all DRs

which are associated with solved problem instances are collected in the rlist set. In the next

phase, it is determined for which problem instances the DRs contained in rlist can not obtain

the best solution, and those problem instances are collected in a set denoted as nonopt. The

idea is now to add the minimum number of DRs to rlist, so that for each problem instance

270

7.2. DR selection procedure

there is a DR which can find the best solution for it. In order to achieve this, for each DR

the number of problem instances in nonopt for which it finds the best solution is calculated.

The DR which finds the best solution for most of the problem instances in nonopt is added to

rlist, while the problem instances for which it finds the best solution, are removed from nonopt,

and marked as solved. This is repeated until nonopt becomes empty, since then rlist contains

DRs which can find the best solution for each problem instance. The entire procedure is done

in this way to minimise the number of DRs which will be used as labels. In the final step the

procedure determines the DRs which should be associated with problem instances which are not

yet marked as solved. For each unsolved problem instance and each DR in rlist which finds the

best solution for this problem instance, the average Euclidean distance is calculated between

the features of the current problem instance and all problem instances which are until now

associated with the considered DR. The DR with the smallest Euclidean distance is chosen and

associated with the considered problem instance. This part represents a very simple grouping

procedure, the goal of which is to group problem instances with similar characteristics to the

same DR, and also to balance the dataset so that the best DR is not used as the label for most

of the problem instances, since by using an unbalanced set would lead the procedure to mostly

use a single DR on new problem instances. Finally, the features of each problem instance are

calculated, and the DR associated to that problem instance is used as the label. An important

characteristic of the GAS procedure is that it does not necessarily generate a learning set which

contains all of the DRs which were supplied to the procedures, meaning that it automatically

eliminates DRs for which it determined that they do not provide useful information.

After its construction, the learning set can be used to learn a classifier, which will be able

to determine which DRs should be applied for unseen problem instances. Unfortunately, the

selection of a good classifier for a given classification problem is in itself a very difficult task,

especially since many different classification methods exist. For that reason several popular

classification methods will be used in this chapter, and their performances will be compared

with each other. The following machine learning methods will be used: k nearest neighbours

(knn) [289], naive Bayes [290], logistic regression (log) [291], support vector machine (SVM)

[292], artificial neural network (ANN) [293] and C4.5 [294]. Many of the aforementioned

classification methods have parameters which should also be fine-tuned to achieve better results.

However, fine-tuning parameters of all the methods would be too time consuming, therefore the

values of the parameters where chosen as a rule of thumb. The selected parameter values are

denoted in Table 7.1. Although the ANN method is stochastic because of randomness in the

initialisation of the weights, it will nevertheless be trained only once to reduce the computation

time. The classification process was performed by using the Accord machine learning library

[295].

271

7. Selection of DRs based on problem instance characteristics

Algorithm 7.1 Pseudo-code of the GAS procedure

1: Let P denote the set of all problem instances
2: Let R denote the set of all available DRs
3: Let rlist represent an empty set of DRs
4: Evaluate all DRs in R on P
5: for each problem instance i in P do
6: Let opt[i] denote the set of DRs which achieve the best result for this problem instance
7: Let rule[i] denote the DR chosen for this problem instance (empty in the beginning)
8: end for
9:

10: for each problem instance i with only one DR in opt[i] do
11: Set rule[i] to the DR in opt[i], and add the DR to rlist
12: Mark the problem instance as solved
13: end for
14:
15: Let nonopt denote the set of all unsolved problem instances i for which opt[i]∩ rlist = /0
16: while nonopt is not empty do
17: For each DR define count which denotes the number of problem instances in nonopt

for which the given DR achieves the best solution
18: Let BR denote the rule with the largest count value. If there are more DRs with the same

count value, choose the one which has the best total fitness on all problem instances
19: Add BR to rlist
20: for each problem instance i in nonopt that contains BR in opt[i] do
21: Remove i from nonopt
22: Mark i as solved
23: end for
24: end while
25:
26: for each unsolved problem instance i do
27: for each DR in rlist which is also contained in opt[i] do
28: Calculate the average Euclidean distance between the features of the current prob-

lem instance, and all problem instances which have the chosen DR in their rule field

29: end for
30: Set rule[i] to the DR with the smallest average Euclidean distance
31: end for
32:
33: for each problem instance i in P do
34: Create a learning example with features of the problem instance and with rule[i] repre-

senting the label associated with the features
35: end for

272

7.2. DR selection procedure

Table 7.1: Parameter values used by the machine learning methods

Algorithm Parameters

knn Neighbourhood size: 3, 5 and 7

Naive Bayes Regularisation: 1e-5

Log
Training procedure: lower bound Newton Raphson

Stopping criteria: maximum of 100 iterations or error less than 1e-6

SVM
Kernel: Gaussian

Optimisation: sequential minimal optimisation (SMO)

C4.5 -

ANN

Hidden layer count: 1

Hidden layer nodes: 3, 5 and 7

Weight initialisation: Nguyen-Widrow

Learning algorithm: backpropagation with Levenberg-Marquardt

Stopping criteria: maximum of 30 iterations or error less than 1e-6

7.2.3 The decision process

Now that the the process of learning the classifier has been defined, the only thing which still

needs to be specified is the way in which the procedure will select the DR that should be used

for solving the current problem instance. For that purpose, two different ways of selecting DRs

will be analysed in this chapter, the static and dynamic selection process.

The static DR selection process

The static DR selection process will be performed with an assumption that the features of the

problem instances are known in advance with sufficient precision, even though the scheduling

process is performed under dynamic conditions. This means that even though the exact infor-

mation about the properties of jobs are unknown before the execution of the system, the basic

features are known before the scheduling is performed. Because of this it is possible to apply

the selection procedure and determine which DRs should be applied for solving the scheduling

problem before the system starts with its execution. Therefore, the DR selection procedure,

which selects a concrete DR that should be used for solving the currently considered problem

instances, is performed prior to the execution of the system.

273

7. Selection of DRs based on problem instance characteristics

The dynamic DR selection process

Unfortunately, it is very unlikely that the features of the problem instances will be known in

advance, before the execution of the system. This is possible if there exists a similar problem

which was already solved previously, and from which it would be possible to approximate the

features, or if the system has already been executing for a longer period of time from which it

would be possible to calculate the features of the problem. However, for new problem instances

the features will not be known in advance, which renders the previously described approach

unusable. Therefore, the DR selection procedure needs to be extended so that it can be used

even in dynamic environments. The intuition behind the extension is to allow the system to

execute for a certain amount of time, during which the DR selection procedure will collect

information about the system and use that information to approximate the features which will

be used to select the appropriate DR that should be applied for scheduling. Naturally, this

adaptation introduces several new parameters into the DR selection procedure, since it now has

to deal with dynamic scheduling conditions.

The first thing which needs to be defined is at which points in time the DR selection pro-

cedure will be applied to determine the DR that should be used to create the schedule. In this

thesis, three mechanisms of determining the moment in time at which the DR selection proce-

dure should be applied, will be tested. The first mechanism uses the DR selection procedure

when a certain number of jobs is released into the system. The second mechanism is similar,

however, it performs the DR selection procedure when a certain number of jobs is scheduled.

The third mechanism uses a fixed time interval after which it will perform the DR selection

procedure, regardless of the number of jobs which were released or executed during that period.

The previous mechanism only defines at which point in time the DR selection procedure

should be applied. However, the mechanism does not specify how the features of the scheduling

problem should be calculated, or how often the procedure should be applied. The most simple

way is to perform the decision only once, and to calculate the features of the scheduling problem

based on all jobs released so far. On the other hand, it is also possible to perform the decisions

several times, each time after a certain period of time has elapsed, or a certain number of jobs

is scheduled or released. In this variant there are two ways in which the features of the problem

instance can be approximated. The first way is to use all jobs from the start of the system to

calculate the features of the problem instance. On the other hand, it is also possible that at each

decision period, the features of the problem instance are calculated based only on those jobs

which were released since the last decision point.

One thing still needs to be defined so that the entire procedure can be applied, and that is

which DR will be used in the beginning, until the DR selection procedure is executed for the

first time. Naturally, any DR can be selected as the initial rule, and the performance of the entire

procedure will depend on this selection. In the experiments performed in this chapter, the rule

274

7.3. Static DR selection procedure

which achieved the best results on the training set will be selected as the initial rule.

In addition to the previously described adaptations, an additional feature will be introduced

for the dynamic DR selection procedure. This feature will be denoted as load disbalance, and is

defined as LD =
max

i
(Li)−min

i
(Li)

max
i
(Li)

, where Li represent the sum of processing times for machine i,

but only of those jobs which achieve the shortest processing time on machine i. This additional

feature is introduced since through the experiments it was observed that this information could

also provide to be useful for the classification methods.

7.3 Static DR selection procedure

In this section the performance of the static DR selection procedure will be analysed. Since there

are several parameters upon which the effectiveness of this procedure depends, the first part of

the section will be concerned with the analysis of the influence of different parameter values on

the performance of the procedure. After good values for the parameters have been obtained, the

performance of the DR selection procedure will be compared to the results obtained by using

only a single DRs.

7.3.1 Parameter analysis of the DR selection procedure

This section will present the influence of different parameters on the DR selection procedure.

Through the section the influence of the applied feature set, classification method, learning set

size, and number of DRs will be analysed. For each parameter several values were selected,

and the DR selection procedure was executed for all value combinations of the considered pa-

rameters. Since it is hardly possible to analyse the influence of all parameters at the same time,

the influence of each parameter will be analysed independently from other parameters. This

means that when a concrete parameter is analysed, for each parameter value the results of all

experiments which were executed by using that parameter value will be aggregated. In that way

it is possible to analyse the influence of only one parameter at a time. The DR selection proce-

dure will be trained on learning sets of different sizes, while the performance of the procedure

will be denoted on an independent validation set. In all experiments the Twt criterion will be

optimised.

The influence of the feature set, which is used by the DR selection procedure, will be anal-

ysed first. Table 7.2 denotes the feature set combinations which will be tested. The DDR and

DDT features will always be included in the feature sets, since they represent the most infor-

mative features when the Twt criterion is optimised. The remaining feature sets include the rest

of the features in various combinations.

Figure 7.1 shows the influence of the different feature set combinations on the performance

275

7. Selection of DRs based on problem instance characteristics

Table 7.2: Feature set combinations used by the static DR selection procedure

Feature set index Features

1 DDR, DDT

2 DDR, DDT , p̂

3 DDR, DDT , RT T

4 DDR, DDT , MJR

5 DDR, DDT , p̂, RT T

6 DDR, DDT , p̂, MJR

7 DDR, DDT , RT T , MJR

8 DDR, DDT , p̂, MJR, RT T

of the DR selection procedure. As expected, not all feature combinations will lead to equally

good results. For example, it is interesting to note that by using only the due date related

features the DR selection procedure will not obtain good results. If the RT T feature is used in

addition to the due date related features, the procedure achieves even worse results. However, if

the p̂ or MJR features are included in the feature set, the procedure will achieve better results.

Therefore, it is evident that the due date related features do not contain enough information for

the DR selection procedure to perform well, but that in addition to those features it is necessary

to include features which contain information about the size of the problem which is solved.

The best median value of the experiments is achieved by using the feature set denoted with

the index 8, which consists all features, while the second best median value is achieved by the

feature set consisting of the two due date related features and the p̂ feature. Therefore, out

of the features which do not use due date related information, the p̂ feature provides the most

information to the DR selection procedure.

The influence of different classification methods on the DR selection procedure is illustrated

in Figure 7.2. Although the choice of the classification method is shown to have an influence

on the performance of the DR selection procedure, the influence is not as large as for the choice

of the feature set. Although all classification methods achieve quite similar results, it can nev-

ertheless be noticed that some methods perform better to a smaller extent. The best results for

the median values are achieved by the knn, ANN, and C4.5 classification methods. Among the

different values of the neighbourhood parameter which was used by the knn method, the best

median value was achieved when using a neighbourhood of 5 samples. Both the smaller and

larger parameter values achieve a larger median value, which should denote that a good param-

eter value was selected. On the other hand, the ANN method achieved the best median values

when either a hidden layer consisting of five or seven nodes was used. It is possible that the

276

7.3. Static DR selection procedure

1 2 3 4 5 6 7 8
12

12.5

13

13.5

14

14.5

15

15.5

Figure 7.1: Influence of the feature set combination on the results obtained by the DR selection
procedure

results could be improved with a further increase in the number of nodes in the hidden layer,

however this also largely increases the time needed to train the model.

The size of the learning set which is used to train the classification methods also has a

large influence on the performance of the DR selection procedure. If a too small learning set

is used, then there will not be enough samples from which classification methods will be able

to infer new knowledge. On the other hand, the use of a too large learning set size leads to

an increased time needed to perform the training of the classification methods. In addition,

increasing the size of the learning set does not necessarily lead to better performance, since it

could be possible to create smaller learning sets which contain all the necessary information

for the classification methods. Figure 7.3 represents the influence of the learning set size on

the performance of the DR selection procedure. The figure shows that the procedure does

not achieve good results when a learning set of 60 problem instances is used. However, as

the size of the learning set increases, so does the performance of the DR selection procedure

which is trained on that set. The procedure achieves the best median value when the learning

set of 600 problem instances is used, however it is also evident that for this learning set size

the procedure achieved more dispersed results. For smaller learning set sizes, similar median

values can be achieved as for the case when 600 problem instances are used, and the results

tend to be less dispersed. Surprisingly, it was noticed that the procedure does not perform well

when the size of 300 problem instances is used. The most likely reason why the procedure

did not perform well in this case, is due to the possibility that for this learning set size an

277

7. Selection of DRs based on problem instance characteristics

kn
n-

3

kn
n-

5

kn
n-

7

B
ay

es

SV
M

C
4.

5

lo
g

A
N

N
-3

A
N

N
-5

A
N

N
-7

12

12.5

13

13.5

14

14.5

15

15.5

Figure 7.2: Influence of the classification methods on the results obtained by the DR selection
procedure

unrepresentative learning set was generated, and therefore the classification method could not

extract the necessary knowledge from that set. Based on all the previous observations, it seems

that the size between 120 and 240 problem instances is the most appropriate for the learning set

size.

The final parameter, whose influence will be analysed, is the number of DRs that will be

used when generating the learning set by the GAS method. Although the GAS method will

in itself try to minimise the number of DRs which will be used as labels, it could nevertheless

prove beneficial to supply only a subset of available DRs to the GAS method. Therefore, the

performance of the DR selection method will be tested on different learning sets, which were

created by supplying a different number of DRs to the GAS method. In each experiment, a

number of DRs which achieve the best performance on the training set will be selected and

supplied to the GAS method. The number of DRs which will be used will range from two to

fifty DRs. However, since this leads to a large number of results, the experiments were grouped

into five groups by the number of DRs which were used, as shown in Figure 7.4. The figure

shows that the worst results of the DR selection procedure are achieved when up to 10 DRs are

supplied to the GAS method. This means that by largely limiting the number of DRs which

are provided to the GAS method, the entire procedure will not be expressive enough when

applied on unseen problem instances. The best median value was obtained when 11 to 20 DRs

were supplied to the GAS method. When the largest number of DRs is supplied to the GAS

278

7.3. Static DR selection procedure

60 120 180 240 300 600
12

12.5

13

13.5

14

14.5

15

15.5

Figure 7.3: Influence of the learning set size on the results obtained by the DR selection procedure

procedure, the results start to slowly deteriorate once again. The reason for this is probably due

to the fact that including too many DRs in the GAS procedure will result in learning sets which

will contain more distinct DRs as labels, which makes the training of classifiers more difficult.

Therefore, based on all the previous observations, the DR selection procedure achieves the best

performance if a moderate number of DRs is provided to the GAS procedure (between 10 and

40 DRs).

7.3.2 Performance comparison with a manually selected DR

Based on the parameter sensitivity analysis performed in the previous section, it is now possible

to select better parameter values for the DR selection procedure, and test the effectiveness of the

procedure for the selected parameter combinations. Table 7.3 represents the results achieved by

the static DR selection procedure for several selected parameter combinations. The performance

of the procedure is presented on two data sets. The first data set, denoted as the validation set,

was used to perform the analysis of the parameter sensitivity. Therefore, to provide a more ob-

jective performance measure, the DR selection procedure was also tested on an independent and

unseen problem instance set, which is denoted as the test set. In addition to the results obtained

by the DR selection procedure, the table will also include results obtained by a manually se-

lected DR generated by GP. Naturally, there are many ways in which the DR could be selected,

however, in this chapter it was decided to select the DR which achieved the overall best perfor-

mance on the training set. This means that after all DRs have been evolved, each of them will

279

7. Selection of DRs based on problem instance characteristics

2-10 11-20 21-30 31-40 41-50
12

12.5

13

13.5

14

14.5

15

15.5

Figure 7.4: Influence of the number of DRs on the results obtained by the DR selection procedure

be evaluated on the training set which was used to evolve them, and the one which achieves the

best performance on this set will be selected and applied on unseen problem instances, namely

the validation and test sets.

The results denoted in the table show that the DR selection procedure achieved better re-

sults than the selected DR generated by GP. The amount of improvement which was achieved

depends quite heavily on the selected parameter values. The DR selection procedure achieved

very good results when using the knn-5 classification method. When knn-5 is applied together

with feature set 2, the DR selection method achieved improvements of 9.4% for the validation

set, and 5.3% for the test set when compared to the manually selected DR. Similar improve-

ments can be achieved when knn-5 is used with feature set 6. The benefit of the knn-5 classifica-

tion method is that it achieved a good performance on both problem instance sets. In both cases,

17 DRs were used by the GAS method for creating the learning set. On the other hand, the per-

formance of C4.5 is shown to vary between the validation and test set more than that of knn-5.

For example, when C4.5 is applied with feature set 7, the DR selection procedure achieved a

quite good result on the validation set, with an improvement over the manually selected DR

of 10.3%. On the other hand, on the test set, the procedure achieved an improvement of only

2.7% over the manually selected DR. In the other two cases where C4.5 was used, the improve-

ments on the validation set were much smaller, around 6%, whereas better improvements were

achieved on the validation set, ranging up to 5%. It seems that for the C4.5 classification method

it is more difficult to perform extremely well on both problem sets. Regarding the number of

DRs which were used by with the C4.5 classification method, in two occasions 16 DRs were

280

7.3. Static DR selection procedure

Table 7.3: Results of the DR selection procedure for several selected parameter values

DR selection procedure parameters
Twt value on
the validation

set

Improvement
on the

validation set

Twt value on
the test set

Improvement
on the test set

Feature set: 2

Classification method: knn-5

Learning set size: 600

Number of DRs used: 17

12.48 9.37% 14.82 5.30%

Feature set: 5

Classification method: C4.5

Learning set size: 600

Number of DRs used: 16

12.86 6.60% 15.20 2.88%

Feature set: 5

Classification method: C4.5

Learning set size: 120

Number of DRs used: 28

12.97 5.81% 14.86 5.05%

Feature set: 6

Classification method: knn-5

Learning set size: 600

Number of DRs used: 17

12.59 8.57% 14.70 6.07%

Feature set: 7

Classification method: C4.5

Learning set size: 240

Number of DRs used: 16

12.35 10.31% 15.39 1.66%

Feature set: 8

Classification method: ANN-5

Learning set size: 120

Number of DRs used: 40

12.63 8.28% 15.22 2.75%

Feature set: 8

Classification method: ANN-7

Learning set size: 600

Number of DRs used: 32

13.12 4.72% 15.01 4.09%

Manually selected DR 13.77 - 15.65 -

281

7. Selection of DRs based on problem instance characteristics

used, while in one occasion 28 DRs were used. Finally, the ANN classification method has

shown a similar behaviour as the C4.5 classification method. When ANN-5 was used, the DR

selection procedure achieved an improvement of 8.3% on the validation set, and 2.7% on the

test set, when compared to the manually selected DR. On the other hand, if seven neurons are

used in the hidden layer, then the DR selection procedure can achieve an improvement of 4.7%

on the validation set, and 4.1% on the test set. In both cases over 30 DRs were used by the

GAS method to create the learning set. Therefore it seems that the ANN classification method

performs better when a larger number of DRs are used to construct the learning set, while the

other two classification methods performed better when a smaller number of DRs was used to

construct the learning set.

7.4 Dynamic DR selection procedure

This section will analyse the performance of the dynamic DR selection mechanism. Since this

variant of the procedure also contains many parameters, some of which were not even present

in the static procedure, this section will also analyse the influence of the different parameters on

the performance of the procedure. In addition, the approach will also be tested on three different

types of problems, on one whose features remain the same through the entire problem, and on

two for which the features change over time.

7.4.1 Experimental design

Based on the obtained results for the static DR selection method, values of certain parameters

will be filtered out to reduce the number of experiments which need to be performed. For the

dynamic DR selection procedure, the following five classification methods will be used: knn-5,

knn-7, naive Bayes, C4.5, and ANN-5. Although the static DR selection procedure achieved

poor results when using the naive Bayes classification method, it was nevertheless included to

test whether the method will also exhibit poor performance on other problem types. For the

dynamic DR selection procedure the influence of the problem set size will not be analysed,

since for the static variant it was already shown what sizes are preferable. Therefore, a set of

180 problem instances will be used for creating the learning set for the dynamic DR selection

procedure. Finally, regarding the feature set, Table 7.4 shows the four feature set combinations

which will be applied. The feature set containing all the features was selected since the best

overall median value was obtained for it by the static DR selection procedure. The feature set

consisting of only the due date related features was also included to test how it will perform

when used by the dynamic DR selection procedure. In addition, the number of DRs supplied

to the GAS procedure will also be limited to 10, 15, 20, 25, 30, 35, and 40 DRs. The experi-

282

7.4. Dynamic DR selection procedure

Table 7.4: Feature set combinations used by the dynamic DR selection procedure

Feature set index Features

1 DDR, DDT

2 DDR, DDT , LD

3 DDR, DDT , p̂, MJR, RT T

4 DDR, DDT , p̂, MJR, RT T , LD

ments will be performed in the same way as was the case for the static scheduling procedure.

This means that the procedure will be executed for all value combinations of the different pa-

rameters. When analysing the performance for a concrete parameter, all experiments will be

aggregated for each of the tested values for that parameter. The procedure was trained by using

the learning set, while the performance of the procedure will be denoted on an independent val-

idation set. In all experiments the Twt criterion was optimised. In addition, the box plot figures

which represent the influence of different parameter values will not include outliers, since quite

dispersed results were achieved by the procedure, since some parameter values lead to a quite

bad performance of the procedure.

The definition of the problem instances will also change slightly when compared to the

previously used problem instances. All properties of jobs will be generated in the same way as

denoted in Section 4.3.2, except the due dates which are calculated as

d j ∈
[

r j + pmin +max
(

pavg *
(

1−T − R
2

)
,0
)
,r j + pmin +max

(
pavg *

(
1−T +

R
2

)
,0
)]

,

where pmin represents the minimum processing time of job j, pavg the average processing time

of job j on all machines, R and T the due date range and due date tightness, respectively. The

reason for using these definitions was that the problem characteristics can be approximated

more precisely, since the due dates will be much less dispersed than by using the previous way

of generating the due dates.

All three generated problem sets consist of 60 problem instances. Each of the problem in-

stances in those sets will contain 1000 jobs and 10 machines. The number of jobs was increased

to simulate larger systems which have a longer execution time. In the first problem set type,

all jobs were generated with the same due date tightness and due date range parameters which

were defined for the entire problem instance. Therefore, the characteristics of all jobs should be

roughly the same during the execution of the system. In the second problem set type, the due

date tightness and due date range characteristics of the problem instance will change over time.

In this problem type, each instance will have three values defined for those two parameters.

283

7. Selection of DRs based on problem instance characteristics

The first third of the released jobs will have due dates generated by the first values of due date

tightness and due date range parameters. The due date values of the second third of released

jobs will be generated by using the second pair of values, while the due dates for the last third of

the released jobs will be generated by the third pair of values. In the final problem type, the due

dates were generated in the same way as described for the second problem set type. However, in

addition to the changing due date characteristics of the system, the release time of jobs will also

be distributed more unevenly. Namely, one third of jobs will have their release times randomly

generated from the interval

r j ∈ [0,0.2* p̂],

the second third will have their release times generated from the interval

r j ∈ [0.2* p̂,0.3* p̂],

while the release times of the remaining jobs are generated from the interval

r j ∈ [0.3* p̂,0.5* p̂].

p̂ is defined like in Section 4.3.2 as

p̂ =
∑

n
j=1 ∑

m
i=1 pi j

m2 .

Therefore, less jobs will be released at the beginning and the end of the system, while most of

the jobs will be released during the middle of the system execution. This will also result in more

tardy jobs, which will be seen from larger Twt values in later sections.

7.4.2 Results obtained for experiments with constant problem parame-
ters

This section will present the results achieved by the dynamic DR selection method when it is

applied on scheduling problems whose characteristics do not change during the execution of the

system.

Parameter influence analysis

Figure 7.5 denotes the influence of the classification methods on the performance of the dynamic

DR selection procedure. Out of the tested classification methods, the best performance was

clearly achieved by the C4.5 classification method. The knn method also achieved quite good

results, with slightly better results being achieved if the neighbourhood of size seven was used.

284

7.4. Dynamic DR selection procedure

knn-5 knn-7 Bayes C4.5 ANN-5

3.4

3.6

3.8

4

4.2

4.4

Figure 7.5: Performance of the DR selection procedure depending on the classification methods, for
problems with constant characteristics

released scheduled interval

3.4

3.6

3.8

4

4.2

Figure 7.6: Performance of the DR selection procedure depending on the methods used for determining
when the procedure should be used, for problems with constant characteristics

The ANN method achieved a similar median value as the knn method, although ANN usually

obtained more dispersed results. The naive Bayes classification method achieved the overall

worst results among all the tested methods.

Figure 7.6 represents the influence of the different methods which are used to determine

when the DR selection procedure should be applied. The labels released and scheduled denote

that the number of released or scheduled jobs is used to perform the decision, while the interval

label is used to denote that the decision will be performed after a certain time interval has

passed. The figure shows that all three methods perform equally well. Slightly better results for

the median value are obtained when a fixed time interval is used. Therefore, from the results

it is evident that the method for choosing when the DR selection procedure should be applied

does not have any significant effect on the performance of the DR selection procedure.

Figure 7.7 represents the influence of the choice on how many times the DR selection pro-

cedure should be applied during the execution of the system. The results labelled as no repeat

285

7. Selection of DRs based on problem instance characteristics

no repeat repeat window
3.4

3.6

3.8

4

4.2

Figure 7.7: Performance of the DR selection procedure depending on the frequency of performing the
selection, for problems with constant characteristics

denote that the DR selection procedure is executed only once, and that all released jobs are

used to calculate the features of the problem instance. On the other hand, repeat denotes that

the DR selection procedure is executed repeatedly, and that the features are calculated based

on all released jobs until the decision moment. Finally, the window method also denotes that

the selection procedure is executed repeatedly, however, the features of the problem are cal-

culated only based on the jobs which were released from the last moment in time when the

selection procedure was applied. The figure shows that there is no difference if the method

is applied only once or several times during the execution. In addition, it is also evident that

the window method achieved to a small extent worse results when compared to the other two

methods. However, such results are expected since the characteristics of the problems do not

change over time. Therefore, it is preferred to calculate the features based on all jobs released

into the system.

The influence of the different feature sets on the performance of the DR selection procedure

is outlined in Figure 7.8. As with the static DR selection procedure, better results are achieved

when using the larger feature sets. The introduction of the LD feature into the sets did not lead

to any significant improvements in the results. However, by using this additional feature the

procedure has a greater chance of achieving better results. Therefore, using the two larger sets

seems to be more beneficial for the DR selection procedure even when applied under dynamic

conditions.

The influence of the number of DRs on the performance of the DR selection procedure is

illustrated in Figure 7.9. This figure shows some quite interesting behaviour of the DR selection

procedure. The less DRs are used, the better median values are achieved by the DR selection

procedure. However, with the increase of the number of applied DRs, the procedure is also able

to achieve better minimum values. Unfortunately, the dispersion of the results increases with

the number of DRs which are used for generating the learning set. This can especially be seen

286

7.4. Dynamic DR selection procedure

1 2 3 4

3.5

4

4.5

Figure 7.8: Performance of the DR selection procedure depending on the applied feature set, for
problems with constant characteristics

10 15 20 25 30 35 40

3.5

4

4.5

Figure 7.9: Performance of the DR selection procedure depending on the number of DRs used to
construct the learning set, for problems with constant characteristics

when 30 or more DRs are used, since in those cases the procedure achieved the most dispersed

results. Based on the previous observations, it is hard to determine which number of DRs should

ideally be used. With a smaller number of DRs the procedure will be more stable, however, with

a larger number of DRs better results can be achieved. Therefore the choice depends on which

of the aforementioned properties is more important.

Figure 7.10 shows the influence of the number of jobs that need to be released or scheduled,

before the decision process is performed. The figure shows that as the number of jobs which

are used to perform the decision increases, the results of the approach deteriorate up to a certain

point, after which the results mostly stagnate. This means that even a smaller number of jobs

is enough to make a good approximation about the characteristics of the problem instance. It is

also preferred to perform the DR selection process as soon as possible, since this increases the

chance that if an inappropriate DR was selected as the initial DR, that it will be replaced as soon

as possible. Therefore the initial DR will not have a large negative influence on the performance

287

7. Selection of DRs based on problem instance characteristics

50 100 150 200 250 300 350 400 450 500

3.5

4

4.5

Figure 7.10: Performance of the DR selection procedure depending on the number of released or
scheduled jobs used to calculate the features, for problems with constant characteristics

100 200 300 400 500 600 700 800 900 1000

3.5

4

4.5

Figure 7.11: Performance of the DR selection procedure depending on the interval length between
performing the selection, for problems with constant characteristics

of the created schedule.

Figure 7.11 represents the influence of the time interval length which is used before per-

forming the DR selection procedure. For this parameter, a similar behaviour can be observed

from the figure, as was the case when a fixed number of released or scheduled jobs was used.

For smaller interval values the procedure does not only achieve better median values, but it can

also achieve a better minimum value as well. Therefore, it is more beneficial to use smaller

interval values for the DR selection procedure.

Performance comparison with a manually selected DR

This section will present the results of the DR selection procedure, for several selected param-

eter value combinations. Table 7.5 represents the results obtained for five selected parameter

combinations, as well as for the DR which achieved the best overall results on the training set.

The first thing which can be noticed is that the worst result is achieved when the ANN classifi-

288

7.4. Dynamic DR selection procedure

cation method is used. In this case the procedure achieved an improvement of only 1.2% on the

validation set, however, on the test set it achieved an improvement of 8.1%.

For the other four results, the procedure performs quite well for all of the tested parameters.

In three occasions, the procedure performs its decision after a small time period, or after a

small number of jobs is released. For all these experiments the procedure achieved good results

on both problem instance sets. On the other hand, for the experiment where the decision is

performed after 150 jobs are released into the system, the procedure achieved to a certain extent

worse results than in other experiments, where a smaller number of released jobs was used.

Therefore, the DR selection procedure obtains a good approximation of the characteristics of

the problem instance after only a small number of jobs is released. As a consequence, it is

preferred to use the DR selection procedure as soon as possible, to select which of the available

DRs is appropriate for solving the current problem instance. Therefore, by performing the

selection of the appropriate DR as soon as possible, the influence of the initially applied DR,

which might not be suitable for solving the current problem instance, will be reduced. When

using a smaller feature set, the procedure can perform well by using only a smaller number of

DRs, as can be seen from last two examples in the table. As the number of features in the feature

set increases, the procedure achieves better results as more DRs are used by the procedure. This

is demonstrated by the first two examples in the table. The best results for the validation and test

set are achieved when the DR selection procedure uses the no repeat method, which is expected

since the characteristics of the scheduling problem do not change over time. By using the repeat

or window methods, the procedure achieves to a certain extent worse results, but it still easily

achieves better results than by using only a single manually selected DR. For the validation set,

the best result was achieved when using the knn-7 classification method in the DR selection

procedure, while the best result on the test set was achieved when the C4.5 method was used by

the procedure.

The DR selection procedure achieved an improvement of at most 14.11% on the validation

set, and 15.9% on the test set, when compared to the manually selected DR. Therefore, the pro-

cedure does not achieve only good improvements on the validation set, on which its parameters

were tuned, but also on an unseen problem set. More importantly, the results denoted in the

table show that the procedure performs well on both problem instance sets for the same param-

eter combination. This demonstrates that with a good choice of parameters, the DR selection

procedure can perform well on various problem instances.

7.4.3 Results obtained for experiments with changing due dates

In this section, the parameter influence on the DR selection procedure will be analysed when the

procedure is applied for solving problems in which the due date characteristics of jobs change

throughout the problem.

289

7. Selection of DRs based on problem instance characteristics

Table 7.5: Results of the dynamic DR selection procedure for several selected parameter values, when
applied on problems with constant characteristics

DR selection procedure parameters
Twt value on
the validation

set

Improvement
on the

validation set

Twt value on
the test set

Improvement
on the test set

Feature set: 3

Classification method: knn-7

Number of DRs used: 30

Calculation method: released

Calculation frequency: no repeat

Number of released jobs: 50

3.444 14.11% 3.667 15.21%

Feature set: 4

Classification method: C4.5

Number of DRs used: 30

Calculation method: interval

Calculation frequency: window

Interval length: 100

3.452 13.92% 3.656 15.47%

Feature set: 4

Classification method: ANN-5

Number of DRs used: 20

Calculation method: interval

Calculation frequency: no repeat

Interval length: 100

3.993 0.42% 3.976 8.07%

Feature set: 2

Classification method: C4.5

Number of DRs used: 10

Calculation method: released

Calculation frequency: repeat

Number of released jobs: 150

3.526 12.07% 3.783 12.5%

Feature set: 2

Classification method: C4.5

Number of DRs used: 15

Calculation method: released

Calculation frequency: no repeat

Number of released jobs: 50

3.456 13.82% 3.639 15.86%

Manually selected DR 4.010 - 4.325 -

290

7.4. Dynamic DR selection procedure

knn-5 knn-7 Bayes C4.5 ANN-5

3.4

3.6

3.8

4

4.2

4.4

Figure 7.12: Performance of the DR selection procedure depending on the classification methods, for
problems with changing due date characteristics

released scheduled interval

3.6

3.8

4

Figure 7.13: Performance of the DR selection procedure depending on the methods used for
determining when the procedure should be used, for problems with changing due date characteristics

Parameter influence analysis

Figure 7.12 denotes the influence of the classification methods which are used by the DR selec-

tion procedure. It is immediately evident that this time the naive Bayes classifier leads to the

best median value of the results. The knn method performs mostly equally well as the naive

Bayes, however the other two methods achieved worse median values, and also more dispersed

results. These results just prove that the performance of the classification method heavily de-

pends on the problem type on which the methods are applied.

The influence on the methods for determining when the DR selection procedure should

be applied is shown in Figure 7.13. For this parameter it can be seen that the choice of the

method once again does not have a large influence on the performance of the DR selection

procedure. However, once again the procedure achieves a slightly better median value when

using a constant time interval before the selection of a DR is performed. Nevertheless, by using

any of the three suggested methods the procedure will obtain similar results.

291

7. Selection of DRs based on problem instance characteristics

no repeat repeat window

3.6

3.8

4

Figure 7.14: Performance of the DR selection procedure depending on the frequency of performing the
selection, for problems with changing due date characteristics

Figure 7.14 denotes the influence of the frequency of performing the DR selection proce-

dure. The figure shows that the best results are achieved if the selection procedure is performed

repeatedly. This is expected since the characteristics of the problem change slightly during the

execution of the system. However, it is surprising that the variant which uses all released jobs to

calculate the features achieved better performance, than when using only the jobs which were

released after the previous decision point. The cause for this can be that the characteristics

of the problems do not change drastically enough, and therefore better approximations can be

obtained by using all released jobs. In the end, any of the selected calculation frequencies will

lead the procedure to obtain good results, and therefore the choice of this parameter does not

seem to be overly important.

Figure 7.15 represents the influence of the feature set combinations on the performance of

the DR selection procedure. The figure shows some interesting behaviour of the procedure

depending on the choice of the feature set that is used. For this concrete problem, the best

median value was achieved when using the feature set consisting only of the due date related

features, denoted as feature set 1. The feature set 3, which previously performed better, is now

unable to match the results achieved by feature set 1. Adding the LD feature into the sets did

not show any benefit in this occasion. Therefore, the procedure seems to perform the best when

using only the features which will capture the changing conditions of the problem instance. The

inclusion of other features which are mostly constant during the execution of the system seems

to only complicate the training of the classifiers, and does not lead to any improvement in the

performance.

The influence of the number of applied DRs on the performance of the DR selection pro-

cedure is shown in Figure 7.16. The results obtained for this problem type are similar to those

obtained for the problem with constant characteristics. The DR selection procedure achieved

the best performance when using a smaller number of DRs. Once again the results of the pro-

292

7.4. Dynamic DR selection procedure

1 2 3 4

3.6

3.8

4

4.2

Figure 7.15: Performance of the DR selection procedure depending on the applied feature set, for
problems with changing due date characteristics

10 15 20 25 30 35 40

3.4

3.6

3.8

4

4.2

4.4

Figure 7.16: Performance of the DR selection procedure depending on the number of DRs used to
construct the learning set, for problems with changing due date characteristics

cedure deteriorate heavily after more than 25 DRs are used. Therefore, for this problem type it

is better to use a smaller number of DRs for the DR selection procedure. For this problem type

the procedure achieved the best median value when only 10 DRs were used.

Figure 7.17 illustrates the influence of the number of released or scheduled jobs after which

the DR selection procedure is applied. The figure shows that it is better to perform the selection

procedure as soon as possible. This makes sense since it decreases the influence of the initial

DR on the quality of the schedule, but also allows for changes of the DRs based on the changes

of the problem characteristics. As the value of this parameter increases to include a significant

portion of the jobs, the performance of the procedure starts deteriorating. This is expected since

the procedure will have less opportunity to select good DRs. In addition, if the DR selection

procedure is not performed frequently enough, then the procedure might not be able to pick up

the changes which happen in the system, or it will not be able to react to them in timely manner.

Figure 7.18 represents the influence of the time interval before the DR selection procedure is

293

7. Selection of DRs based on problem instance characteristics

50 100 150 200 250 300 350 400 450 500

3.4

3.6

3.8

4

4.2

Figure 7.17: Performance of the DR selection procedure depending on the number of released or
scheduled jobs used to calculate the features, for problems with changing due date characteristics

100 200 300 400 500 600 700 800 900 1000

3.4

3.6

3.8

4

4.2

Figure 7.18: Performance of the DR selection procedure depending on the interval length between
performing the selection, for problems with changing due date characteristics

applied. The results obtained for this parameter are similar to those obtained for the number of

released or scheduled jobs. The best results are again achieved when a smaller time interval is

used. Therefore, based on all previous observations it can be concluded that much better results

can be achieved when the DR selection procedure is applied in earlier stages of the system

execution, since this will allow for most flexibility of the procedure.

Performance comparison with a manually selected DR

In this section several best parameter combinations for the DR selection procedure will be se-

lected, and by using them the procedure will be tested on an additional test set. Table 7.6

represents the results of the five selected parameter combinations on the validation and test set.

The worst results are achieved by the second experiment, where the smallest feature set,

consisting only of the due date related features, was used. The other experiments in the table all

achieved very good results on both problem instance sets. Even by using the naive Bayes classi-

294

7.4. Dynamic DR selection procedure

Table 7.6: Results of the DR selection procedure for several selected parameter values, when applied
on problems with changing due date characteristics

DR selection procedure parameters
Twt value on
the validation

set

Improvement
on the

validation set

Twt value on
the test set

Improvement
on the test set

Feature set: 2

Classification method: C45

Number of DRs used: 10

Calculation method: released

Calculation frequency: repeat

Number of released jobs: 50

3.425 14.65% 3.353 16.63%

Feature set: 1

Classification method: knn-5

Number of DRs used: 30

Calculation method: released

Calculation frequency: no repeat

Number of released jobs: 50

3.559 11.31% 3.673 8.68%

Feature set: 4

Classification method: Bayes

Number of DRs used: 25

Calculation method: interval

Calculation frequency: no repeat

Interval length: 200

3.556 11.39% 3.440 14.47%

Feature set: 4

Classification method: knn-7

Number of DRs used: 25

Calculation method: interval

Calculation frequency: no repeat

Interval length: 100

3.523 12.21% 3.512 12.68%

Feature set: 4

Classification method: C4.5

Number of DRs used: 10

Calculation method: released

Calculation frequency: repeat

Number of released jobs: 50

3.525 12.16% 3.412 15.17%

Manually selected DR 4.013 - 4.022 -

295

7. Selection of DRs based on problem instance characteristics

fication method, which achieved quite bad results when applied for static scheduling problems,

the DR selection procedure achieved quite good results for the problem with changing due date

characteristics. From the table it is evident that the C4.5 classification method was in both cases

applied with a small number of DRs in it, while the knn and naive Bayes classification methods

used a larger number of DRs in the learning set. Therefore, C4.5 seems to generally perform

better when a smaller number of DRs is supplied to it. For all experiments the procedure uses

a small interval or number of released jobs between subsequent selections of DRs. This again

proves that an earlier and more frequent application of the DR selection procedure leads to

better results. Most of the presented experiments use the feature set which consists out of all

features, which leads to the conclusion that the procedure is more likely to achieve good results

if it has access to a larger number of problem characteristics.

The best result was achieved by the first experiment, for both the validation and test set.

With these parameter values the DR selection procedure outperformed the manually selected

DR by 14.7% on the validation set, and 16.6% on the test set. When achieving the best results,

the DR selection procedure was used with the C4.5 classification method, and with only ten

DRs for creating the learning set. Thus, the procedure does not require the use of many DRs to

perform well. Based on the results it is evident that the DR selection procedure performs quite

well for the selected parameter combinations on both the validation and the test set, even when

applied on problems with changing characteristics.

7.4.4 Results obtained for experiments with changing due dates and re-
lease times

In this section, the performance of the DR selection procedure will be analysed on a scheduling

problem in which the due date and release time characteristics change during the execution of

the system.

Parameter influence analysis

The influence of the different classification methods is shown in Figure 7.19. The results show

that in most cases the knn method achieved the best median value of the results. For this problem

type the naive Bayes has also achieved quite good results, whereas C4.5 and ANN achieved

worse results than the other methods. It is quite surprising that ANN, although having the most

dispersed results, achieved a better median value of solutions than the C4.5 method. This once

again proves that the performance of a concrete method heavily depends on the problem which

is solved.

Figure 7.20 represents the influence of the methods for determining when the selection of

DRs should be executed, on the performance of the DR selection procedure. Once again the

296

7.4. Dynamic DR selection procedure

best median values are achieved when using the interval decision method. On the other hand,

there seems to be no difference when using either the number of released or scheduled jobs

for determining when the selection procedure should be invoked. Thus, even for this type of

problem this parameter does not have a large influence on the performance of the procedure.

Therefore, the DR selection procedure should achieve good results by using any of the three

methods.

Figure 7.21 represents the influence of the frequency of applying the DR selection procedure

on its performance. The obtained results are a bit surprising, since it was expected that the

window method would achieve much better results than the other methods, since it calculates the

features using only jobs which were released after the last decision point. However, the window

method was still able to achieve the overall best result out of the three methods. Therefore, when

the window method is used, it is evident that the performance of the procedure depends much

more on the choice of the other parameters. Also, it is interesting to note that the procedure

performs extremely well even when performing the decision only once. It seems that even if the

characteristics of the system change slightly over time, the changes do not seem to be drastic

enough so that performing the DR selection procedure repeatedly would lead to significant

improvements in the performance.

The influence of the different feature sets on the performance of the DR selection proce-

dure is shown in Figure 7.22. The best median value was achieved when using feature set 1,

which consist only of the two due date related features. As the feature set grows, the median

value of the obtained results deteriorates and the DR selection procedure achieved more dis-

persed results. However, with the increase of the feature set size, the procedure is also able

to achieve better minimum values. This means that the with the larger feature sets, the proce-

dure becomes more expressive, but also much more sensitive to the selected values of all other

parameters. Therefore, it will be more difficult to find parameter values for which the entire

knn-5 knn-7 Bayes C4.5 ANN-5

5

5.5

6

6.5

Figure 7.19: Performance of the DR selection procedure depending on the classification methods, for
problems with changing due date and release time characteristics

297

7. Selection of DRs based on problem instance characteristics

released scheduled interval

5

5.5

6

Figure 7.20: Performance of the DR selection procedure depending on the methods used for
determining when the procedure should be used, for problems with changing due date and release time

characteristics

no repeat repeat window

5

5.5

6

Figure 7.21: Performance of the DR selection procedure depending on the frequency of performing the
selection, for problems with changing due date and release time characteristics

298

7.4. Dynamic DR selection procedure

1 2 3 4

5

5.5

6

6.5

Figure 7.22: Performance of the DR selection procedure depending on the applied feature set, for
problems with changing due date and release time characteristics

10 15 20 25 30 35 40

5

5.5

6

Figure 7.23: Performance of the DR selection procedure depending on the number of DRs used to
construct the learning set, for problems with changing due date and release time characteristics

approach achieves good results.

Figure 7.23 represents the influence of the number of used DRs on the performance of the

DR selection procedure. The results once again show that the procedure performs better if a

smaller number of DRs is used. Even though the GAS procedure filters out some DRs from

the initially supplied set of DRs, including too many DRs will nevertheless result in inferior

performances of the DR selection procedure.

The influence of the number of released and scheduled jobs, which are used for calculating

features, is denoted in Figure 7.24. The procedure achieved the best results when performing

the decision after a smaller or medium sized number of jobs has been scheduled or released.

Naturally, performing the decision sooner is beneficial since it will reduce the influence of the

initial DR. However, using more released jobs will lead to more precise approximations of the

problem characteristics. Thus, for the smallest parameter values (50 and 100) the procedure

achieved better minimum results, while for parameter values of 150 and 200 jobs the procedure

299

7. Selection of DRs based on problem instance characteristics

50 100 150 200 250 300 350 400 450 500

5

5.5

6

Figure 7.24: Performance of the DR selection procedure depending on the number of released or
scheduled jobs used to calculate the features, for problems with and release time changing due date

characteristics

100 200 300 400 500 600 700 800 900 1000

5

5.5

6

Figure 7.25: Performance of the DR selection procedure depending on the interval length between
performing the selection, for problems with changing due date and release time characteristics

achieved better median values, but the value of the overall best solution deteriorates. The figure

also shows that using a parameter value larger than 300 leads to serious deterioration in the

results.

Figure 7.25 represents the influence of the interval length before applying the DR selection

procedure. The figure shows a quite similar behaviour of the procedure with the one observed

when using the number of released or scheduled jobs. For smaller intervals it is possible to

obtain better minimum values. However, better median values are achieved when using intervals

of medium lengths. The intuition behind such a behaviour is the same as was denoted for

experiments when using the number of released or scheduled jobs.

300

7.5. Analysis of the rule selection procedure

Performance comparison with a manually selected DR

This section will analyse the performance of the DR selection procedure on five selected prob-

lem instances. Table 7.7 represents the results for the five selected parameter combinations of

the DR selection procedure.

The DR selection procedure achieved the worst results when the ANN classification method

was used. In this case, the procedure outperformed the manually selected DR by 5.3% on the

validation set, and by 3.4% on the test set. Therefore, the ANN classification method is once

again unable to achieve equally good performance as the other applied methods. Most of the

experiments used around 20 DRs, regardless of the classification method, which seems to be

an optimal choice for this problem type. It is interesting to observe that the best results were

achieved by experiments which used the window and no repeat methods. The experiment which

used the repeat method achieved inferior results when compared to both of those methods,

without considering the experiment when the ANN classification method was used. Thus, it

seems that the repeat method is inferior to the other two methods when the release times in the

problem also change. In three experiments the procedure used the largest feature set, while in

the remaining two the procedure used the feature set consisting of the due date related features

and the LD feature. Therefore, it seems easier for the procedure to obtain good results when

using more information about the problem instances. In addition, all feature sets contain the

LD feature, which means that this feature seems to be useful for this problem type, probably

due to the increased load which occurs in the middle of the system. Although for most of the

experiments the selection procedure was applied after a short time interval, or after only a small

number of jobs were released, the second experiment shows that the procedure achieves good

results even if the selection procedure is applied after a larger number of jobs was released.

The largest improvement that the DR selection procedure can achieve over the manually

selected DR are 12.9% for the validation set, and 13.3% for the test set. Unfortunately, the

procedure was unable to achieve the best results on both problem sets for the same parameter

values. On the validation set the best result was achieved by the knn classification method, while

the best result on the test set was achieved by the C4.5 classification method. It seems as if the

C4.5 method can better extract general knowledge from the learning set and thus perform better

on unseen problem instances, whereas knn can adapt to the learning set more easily. However,

with its better adaptation to the learning set the knn methods seems to be more susceptible to

overfitting. As for the previous problem types, the DR selection procedure has again shown to

achieve consistently good results on both the validation and test set, given that good parameter

values are chosen.

301

7. Selection of DRs based on problem instance characteristics

Table 7.7: Results of the DR selection procedure for several selected parameter values, when applied
on problems with changing due date and ready time characteristics

DR selection procedure parameters
Twt value on
the validation

set

Improvement
on the

validation set

Twt value on
the test set

Improvement
on the test set

Feature set: 4

Classifier: knn-7

Number of DRs used: 25

Calculation method: released

Calculation frequency: window

Number of released jobs: 50

4.901 12.92% 5.450 10.70%

Feature set: 4

Classifier: C4.5

Number of DRs used: 20

Calculation method: released

Calculation frequency: no repeat

Number of released jobs: 150

5.009 11.00% 5.395 11.60%

Feature set: 4

Classifier: C4.5

Number of DRs used: 15

Calculation method: interval

Calculation frequency: repeat

Interval length: 100

5.177 8.01% 5.545 9.14%

Feature set: 2

Classifier: C4.5

Number of DRs used: 20

Calculation method: interval

Calculation frequency: no repeat

Interval length: 100

4.975 11.60% 5.292 13.29%

Feature set: 2

Classifier: ANN-5

Number of DRs used: 20

Calculation method: interval

Calculation frequency: no repeat

Interval length: 200

5.328 5.33% 5.895 3.41%

Manually selected DR 5.628 - 6.103 -

302

7.5. Analysis of the rule selection procedure

Table 7.8: Performance of the DR selection procedure on several selected problem instances from the
test set

Problem instance index DR selection procedure Manually
selected DR Twt

value

Value difference

DR index Twt value

2 7 0.279 0.210 -0.069

3 0 0.121 0.034 -0.087

4 13 0.168 0.246 0.078

7 3 0.523 0.581 0.058

16 9 0.786 0.867 0.081

26 7 0.015 0.100 0.085

27 0 0.035 0.162 0.127

30 3 0.338 0.289 -0.049

33 6 0.623 0.827 0.204

44 4 1.239 1.687 0.448

Fitness on the entire test set 14.70 15.65 0.956

7.5 Analysis of the rule selection procedure

In this section a short analysis of the selection process on the obtained results will be performed.

In the first part of the section the results obtained by the static DR selection procedure will

be analysed, while the second part of the section will analyse the results of the dynamic DR

selection procedure.

7.5.1 Analysis of the static selection procedure

Table 7.8 represents the performance comparison of the DR selection procedure and the man-

ually selected DR on several problem instances from the test set. The table includes an addi-

tional column denoted as value difference, which represents the difference between the values

achieved by the DR selection procedure and by the manually selected DR. Therefore, a positive

value will denote that the DR selection procedure achieved better results, while negative values

denote that the manually selected DR achieved a better performance. The values for the prob-

lem instances on which the DR selection procedure performed better will be denoted in bold.

The parameters of the DR selection procedure were set to the values of the fourth experiment

in Table 7.3.

The table represents ten selected problem instances, in three of which the DR selection pro-

303

7. Selection of DRs based on problem instance characteristics

cedure does not outperform the manually selected DR, and seven in which the DR selection

procedure achieved a better performance. Based on the results obtained on the individual prob-

lem instances it is evident that the DR selection procedure achieved better improvements over

the manually selected DR than vice versa. On the other four problem instances in the table,

the DR selection procedure achieved improvements that are similar to those which the man-

ually selected DR achieved over the DR selection procedure for problem instances 2, 3, and

30. Therefore, the procedure can achieve worse results than the manually selected DR in some

cases, but it will usually achieve much better improvements on other problem instances. In

total, the DR selection procedure achieved an improvement of 6.1% over the manually selected

DR on all problem instances.

When the complete problem instance set is observed, the DR selection procedure outper-

forms the manually selected DR for 19 problem instances, while for 10 of them it performs

worse. On the remaining problem instances both performed equally well. It might seem sur-

prising that for ten problem instances the DR selection procedure was unable to outperform the

manually selected DR, however the DR selection procedure still selected a DR which performs

well on the given problem instances, and therefore the difference between the value achieved

by the DR selection procedure and the manually selected DR is small, as denoted previously

in the table. The real strength of the DR selection procedure is evident on problem instances

on which the manually selected DR does not perform well. On these problem instances the

DR selection method can, by selecting a DR suited for solving that concrete problem instance,

significantly outperform the manually selected DR, and thus achieve a better performance on

the entire problem instance set. Because of that reason it is not mandatory that the DR selection

procedure selects the absolutely best available DR for each problem instance, which is in itself

hardly possible. However, the DR selection procedure is required to provide a DR which per-

forms well for the given problem instance. As a consequence the DR selection procedure will

be able to perform well over many problem instances, while a single DR will perform well only

on those problem instances for which it specialised.

Aside from observing the performance of the DR selection procedure on the different prob-

lem instances, it is also interesting to additionally examine how often each DR is used by the

DR selection procedure. Figure 7.26 represents a histogram of the number of times that each

DR was applied on the problem instances from the test set. The histogram shows that certain

DRs have a much higher frequency of being applied, which is due to the fact that these DRs

performed well on the learning set for several problem instances. In most cases, the DR selec-

tion procedure used the DRs 0, 3, 4, and 7, which were all selected for eight or more problem

instances. The remaining DRs are mostly selected just for a few problem instances, while DRs

2, 5, 8, and 12, were not selected for even one problem instance.

The frequency of using DRs on the learning set and the performance of the individual DRs

304

7.5. Analysis of the rule selection procedure

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

18

20

DR index

T
he

nu
m

be
ro

ft
im

es
a

D
R

w
as

ap
pl

ie
d

on
th

e
te

st
se

t

Figure 7.26: Histogram of the frequency of applying the DRs on the test set

on the learning set is also analysed to get a better impression of why DRs denoted in the his-

togram were most often used on the learning set. Table 7.9 represents the frequencies and Twt

values of DRs when applied on the learning set and the test set. The occurrence frequencies

on the learning set and test set show that DRs which were more often applied on the learning

set, will mostly have a higher application rate on the test set as well. Therefore, rules 0, 3,

and 7, will be used for most of the problem instances on both of the problem sets. However,

for some rules there is a certain difference in the number of times that they are applied on the

two problem instances. Although rules 4 and 13 are used for solving almost the same number

of problem instances in the learning set, rule 13 is used only in one occasion on the test set,

while rule 4 was applied on eight problem instances. Furthermore, rules 9 and 10 are used for

solving several more problem instances than rule 4 on the learning set, however, each of them

is selected for solving only four problem instances on the test set. Therefore, even though the

DRs which were more often used on the learning set will have a higher probability of being

selected on new problem sets, certain discrepancies are possible due to a different composition

of the problem instance set.

Apart from the similarity between the frequencies on the two problem instance sets, it is also

important to analyse how the fitness of the DRs influences the frequency of their appearance in

the learning set. The results show that the two best rules, 10 and 15, do not have a big frequency

of being applied by the DR selection procedure. The largest frequency is achieved by the rule 0,

which achieved a moderate value for the Twt criterion, and is applied for solving one fourth of

305

7. Selection of DRs based on problem instance characteristics

problem instances. Rule 7, which has the third largest frequency, achieved even worse results.

This rule is used for about 10% of problem instances. This shows that although the best DRs

are included in the DR selection procedure, they will not necessarily be the dominantly applied

rules. When observing the test set, the rules which achieved the best results for the validation

set do not necessarily perform well on this set as well. Out of the four most frequently applied

DRs on the validation set, namely rules 0, 7, 3, and 4, neither achieved especially good results

on the test set. However, this does not seem to influence the performance of the DR selection

procedure, since it only applies those DRs on problem instances for which they are best suited,

therefore achieving overall good results. Thus, based on all the previous observations, it is

evident that the overall fitness of the DRs does not have a significant influence on the number

of times it will be applied by the DR selection procedure. This conclusion is also backed up by

the Spearman’s Rho test, for which the values ρ =−0.188 and p = 0.470 were obtained. These

values prove that no significant association between the two variables exists.

Since certain DRs are rarely used by the DR selection procedure, one could argue that this

information could be used to select a smaller set of DRs, and use it when training the procedure

on the learning set. In order to test this hypothesis, seven DRs, which were applied on most of

the problem instances from the learning set, were selected and used for training the DR selection

procedure. Unfortunately, this process did not lead to any improvement in the results, but rather

resulted in a serious deterioration of the results which caused the DR selection procedure to

perform similarly as the manually selected DR. This demonstrates that it is important not to

restrict the number of DRs which are used by the DR selection procedure, since the procedure

will not have access to DRs which could perform well on certain problem instances.

In order to gain an insight on how the DRs are associated with different problem instances,

Figure 7.27 represents the distribution of DRs for different samples in the learning set, with

regards to the due date range and due date tightness features. The figure demonstrates that

a large amount of the learning set space is covered by DRs 0, 3, and 7, especially problem

instances which have a due date tightness value which is smaller than 0.65. Therefore, it does

not come as a surprise that these DRs are selected for solving the majority of problem instances.

The figure shows that large portions of the problem instance space are usually solved well by

only a single DR, if the due date tightness of the problem instances is less than 0.65. For

example, problem instances which have a due date tightness value smaller than 0.65, and have

a due date range value larger than 0.6, are mostly associated with DR 0. On the other hand, the

problem instances which have a due date range smaller than 0.6 are most commonly associated

with rules 3 and 7. Therefore, most of the problem instances in that part of the problem instance

space are associated with only a few DRs. The reason why this happens, is because most of

the problem instances with a smaller due date tightness are usually more easily solved by DRs.

Thus, a single DR will usually perform well on many of such problem instances. However,

306

7.5. Analysis of the rule selection procedure

Table 7.9: Performance of the individual DRs used by the DR selection procedure

DR index
Learning set Test set

Frequency Twt Frequency Twt

0 157 109.6 16 16.20

1 14 109.6 1 15.49

2 8 109.0 0 16.47

3 94 107.3 9 15.90

4 35 108.8 8 15.77

5 18 112.2 0 15.72

6 14 112.5 1 16.01

7 66 112.0 10 15.92

8 8 109.6 0 15.56

9 40 112.6 4 15.95

10 40 106.0 4 15.67

11 19 113.2 1 16.39

12 5 110.7 0 15.69

13 36 112.2 1 15.38

14 10 113.3 1 15.90

15 25 106.5 2 15.65

16 11 109.6 1 15.31

307

7. Selection of DRs based on problem instance characteristics

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Due date tightness

D
ue

da
te

ra
ng

e

DR 0 DR 1 DR 2 DR 3 DR 4 DR 5 DR 6 DR 7 DR 8
DR 9 DR 10 DR 11 DR 12 DR 13 DR 14 DR 15 DR 16

Figure 7.27: Association of DRs to samples in the learning sample space

as the due date tightness value increases, it is harder only for a single DR to perform well on

many problem instances. As a consequence, in this part of the problem instance space DRs

will usually be associated with a smaller number of problem instances. In addition, problem

instances with similar due date characteristics are also quite commonly associated with different

DRs, which just further proves that a DR which performs well for all these problem instances

does not exist. This happens because of the higher due date tightness which causes more jobs

to be tardy, and therefore it will be much harder for DRs to find the best solution. Therefore, a

single DR will usually not be able to perform well on too many of such problems, which is the

reason why more DRs are associated with these problem instances.

308

7.5. Analysis of the rule selection procedure

7.5.2 Analysis of the dynamic selection procedure

In this section the the dynamic DR selection procedure will be analysed. For that purpose the

problem type with the changing due date and release time characteristics was selected. The

parameters for the DR selection procedure will be set to those of the first experiment denoted

in Table 7.7, but all three frequencies of performing the DR selection procedure will be tested

to illustrate the differences in behaviour of the procedure.

Table 7.10 represents the behaviour of the DR selection procedure during the execution

of several problem instances. At each decision point, when enough jobs were released, the

table shows the index of the DR that is selected for further scheduling, as well as the Twt value

achieved from the start of the system until that decision point. The starting rule in all procedures

is DR 13. In addition, since the no repeat method performs the decision only once after 50 jobs

are released, all subsequent cells will be marked with "-", since the method does not perform

any more selections of DRs. The results of the manually selected DR are also included in the

table to additionally illustrate its behaviour. At the end of the table, the results for all methods

on the entire test set are also included.

Problem instance 6 shows that all three methods perform better than the manually selected

DR. Even at the start of the problem the selected DR performs poorly, while the DR selection

procedure changes the rule which is used, and is therefore able to keep the value of Twt at

zero until 150 jobs are released. It is interesting to note that the no repeat method achieved

better results in the beginning of the schedule. However, as more jobs were released into the

system, the other two methods slowly decreased the difference between them and the no re-

peat method. This can best be seen the between 400 and 450 released jobs, where the window

method achieved the smallest increase in the Twt value by switching to rule 5. A similar thing

can also be observed between 650 and 700 released jobs. In the end with these changes the

window method is outperforms the other two methods, while the repeat method slightly out-

performed the no repeat method. On the other hand, on problem instance 8 only the window

method achieved a better performance than the manually selected DR. The window method

again shows that by performing good rule changes it outperforms all the other results. The no

repeat method, on the other hand, achieved a quite bad result. The reason for this is that it selects

a good DR for the start of the schedule, which unfortunately performs poorly as soon as the load

of the system increases. Therefore, after around 400 jobs are released, the selected rule starts

to perform bad decisions, and the Twt value of the system increases. The repeat method also

achieved worse results than the manually selected DR, but not as much as the repeat method.

309

7.Selection
ofD

R
s

based
on

problem
instance

characteristics

Table 7.10: Dynamic DR selection procedure behaviour analysis

Problem instance Method
Number of released jobs

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

7

No repeat
DR index 3 - - - - - - - - - - - - - - - - - - -

Twt 0 0 0 0.002 0.002 0.004 0.013 0.024 0.051 0.077 0.096 0.126 0.151 0.172 0.176 0.176 0.176 0.176 0.176 0.176

Repeat
DR index 3 8 2 2 2 18 11 6 9 9 8 8 8 8 8 8 8 8 8 8

Twt 0 0 0 0.005 0.005 0.008 0.019 0.030 0.050 0.088 0.103 0.127 0.149 0.171 0.174 0.174 0.174 0.174 0.174 0.174

Window
DR index 3 15 13 1 3 8 3 5 3 3 2 3 3 2 3 3 3 0 3 8

Twt 0 0 0 0.005 0.005 0.006 0.016 0.028 0.041 0.073 0.095 0.121 0.141 0.155 0.159 0.159 0.159 0.159 0.159 0.159

Selected DR 0.000 0.008 0.008 0.013 0.013 0.019 0.035 0.046 0.079 0.122 0.137 0.179 0.203 0.219 0.224 0.224 0.224 0.224 0.224 0.224

8

No repeat
DR index 1 - - - - - - - - - - - - - - - - - - -

Twt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.010 0.013 0.022 0.031 0.032 0.039 0.041 0.041 0.041 0.041 0.041 0.041

Repeat
DR index 1 8 8 3 2 11 11 6 9 9 8 8 8 8 8 8 8 8 8 8

Twt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.016 0.016 0.021 0.028 0.028 0.029 0.029 0.029 0.029 0.029 0.029

Window
DR index 1 3 3 3 3 3 0 3 3 3 3 3 3 3 0 3 1 3 0 0

Twt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.005 0.007 0.012 0.012 0.013 0.013 0.013 0.013 0.013 0.013

Selected DR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.009 0.009 0.011 0.019 0.020 0.020 0.020 0.020 0.020 0.020 0.020

30

No repeat
DR index 1 - - - - - - - - - - - - - - - - - - -

Twt 0.001 0.007 0.016 0.017 0.022 0.022 0.022 0.022 0.022 0.022 0.023 0.025 0.029 0.032 0.032 0.032 0.032 0.033 0.033 0.033

Repeat
DR index 1 8 8 2 2 2 8 8 6 6 9 9 8 8 8 8 8 8 8 8

Twt 0.001 0.007 0.015 0.019 0.019 0.020 0.020 0.020 0.022 0.026 0.028 0.031 0.034 0.035 0.035 0.035 0.035 0.036 0.036 0.037

Window
DR index 1 1 1 3 1 3 1 3 3 3 3 3 3 3 15 3 1 4 3 3

Twt 0.001 0.007 0.016 0.017 0.017 0.017 0.017 0.017 0.019 0.019 0.019 0.020 0.024 0.025 0.025 0.025 0.025 0.026 0.027 0.028

Selected DR 0.001 0.015 0.029 0.033 0.036 0.036 0.036 0.036 0.039 0.041 0.043 0.045 0.047 0.049 0.049 0.049 0.050 0.051 0.051 0.052

310

7.5.
A

nalysis
ofthe

rule
selection

procedure

Table 7.10: Dynamic DR selection procedure behaviour analysis

Problem instance Method
Number of released jobs

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

37

No repeat
DR index 3 - - - - - - - - - - - - - - - - - - -

Twt 0.002 0.004 0.006 0.009 0.012 0.015 0.018 0.038 0.055 0.081 0.094 0.109 0.118 0.139 0.140 0.140 0.140 0.140 0.140 0.140

Repeat
DR index 3 8 2 2 2 2 11 6 9 9 8 8 8 8 8 8 8 8 8 8

Twt 0.002 0.004 0.006 0.009 0.018 0.023 0.027 0.056 0.084 0.109 0.123 0.146 0.164 0.188 0.189 0.189 0.189 0.189 0.189 0.189

Window
DR index 3 1 3 3 3 3 3 3 5 3 5 3 3 3 0 3 0 3 3 3

Twt 0.002 0.004 0.006 0.009 0.012 0.015 0.017 0.038 0.055 0.083 0.114 0.131 0.143 0.164 0.165 0.165 0.165 0.165 0.165 0.165

Selected DR 0.002 0.005 0.006 0.010 0.012 0.015 0.018 0.042 0.061 0.100 0.119 0.142 0.186 0.212 0.212 0.212 0.212 0.212 0.212 0.212

50

No repeat
DR index 3 - - - - - - - - - - - - - - - - - - -

Twt 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.003 0.005 0.017 0.031 0.032 0.034 0.034 0.038 0.040 0.047 0.052 0.063 0.064

Repeat
DR index 3 8 8 2 2 11 11 9 9 8 8 8 8 8 8 8 8 8 8 8

Twt 0.000 0.000 0.000 0.000 0.000 0.005 0.005 0.005 0.007 0.013 0.028 0.030 0.031 0.031 0.034 0.037 0.044 0.049 0.062 0.064

Window
DR index 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3

Twt 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.003 0.005 0.017 0.030 0.032 0.034 0.034 0.038 0.040 0.046 0.051 0.062 0.063

Selected DR 0.000 0.000 0.001 0.001 0.005 0.009 0.009 0.009 0.016 0.030 0.043 0.045 0.049 0.055 0.058 0.060 0.067 0.072 0.074 0.076

Test set

No repeat 0.140 0.259 0.421 0.548 0.648 0.801 0.937 1.362 1.933 2.501 3.065 3.661 4.194 4.656 4.801 4.933 5.050 5.184 5.336 5.488

Repeat 0.140 0.255 0.409 0.571 0.685 0.837 0.962 1.328 2.037 2.624 3.176 3.823 4.364 4.787 4.949 5.077 5.199 5.326 5.478 5.638

Window 0.140 0.255 0.410 0.557 0.679 0.835 0.964 1.280 1.870 2.442 3.048 3.636 4.175 4.630 4.795 4.919 5.038 5.163 5.305 5.450

Selected DR 0.140 0.310 0.486 0.660 0.776 0.944 1.109 1.566 2.342 2.924 3.513 4.095 4.749 5.187 5.336 5.474 5.616 5.772 5.914 6.103

311

7. Selection of DRs based on problem instance characteristics

For problem instance 30, all three methods achieved better results than the manually se-

lected DR. The table shows that all three methods achieve quite similar results for this problem

instance. Because it made a good decision at the beginning of the schedule, the no repeat

method outperforms the repeat method. The window method again achieved the best results,

even though at the end of the schedule it performed some bad decisions which resulted in an in-

crease of the Twt value. However, at the beginning and the middle of the schedule, the window

method performed some good decisions, which allowed it to perform better than the no repeat

method. The manually selected DR performs bad decision even in the beginning of the sched-

ule, because of which the Twt of the schedule increases significantly even from the start. For

problem instance 37 the no repeat method achieved the best results among all three methods.

The reason for this is that the rule which is first selected performs well for the given problem

instance. The window method also uses this rule for scheduling most of the jobs, however in

certain cases it switched to rule 5, which in the end did not lead to good improvements in the

results, and even later on had a negative effect when rule 3 was again selected for scheduling.

This is best evident in the period between the release of the 600th and 700th job, where although

the no repeat and window methods used the same DR, the window method obtained a slightly

higher Twt value, as a result of the decisions which were previously performed when rule 5 was

used by the procedure. Finally, for problem instance 50, all three methods show to outperform

the manually selected DR, however in this case all three methods achieved similar results. It is

interesting to note how the window method uses DR 3 for the most of the schedule, and only in

two occasions it switches to other DRs. Although the first switch was unnecessary, since it did

not lead to any improvement in the Twt value, the second one resulted in a slightly better Twt

value.

By comparing all methods on the entire problem set, the manually selected DR starts to

perform worse than the DR selection procedure immediately from the beginning of the sched-

ule. On the other hand, the DR selection procedure performs much better since it immediately

switches the DR which is used after 50 jobs are released into the system. It is also interesting to

observe that the no repeat method outperforms the window method in several occasions. How-

ever, by selecting different DRs the window method is, in the end, still able to achieve the best

performance. On the other hand, the repeat method achieved the worst result among the three

tested methods, which shows that calculating the features from all released jobs might not be

beneficial in some cases. The repeat method seems to have most problems during the middle of

the system, where the load becomes the highest. Nevertheless, all three methods achieved much

better results than the manually selected DR, and thus prove their advantage over selecting and

using only a single DR.

312

7.6. Discussion

7.6 Discussion

The last few sections have shown that the proposed DR selection method achieved better per-

formance than by using only a single manually selected DR for creating the entire schedule.

The procedure is applicable in both static selection of DRs, where the DR is selected before the

start of system execution, and in dynamic selection of DRs, where the DR is selected during the

execution of the system. However, the procedure introduces a large amount of new parameters

which have a serious impact on the performance of the procedure, and the values of which need

to be optimised in order for the procedure to perform well.

One of the most important parameters of the procedure is the choice of the classification

method which will be used to select the DR which should be applied for selecting the appro-

priate DR. Out of the six applied classification methods, the knn, C4.5 and ANN methods have

achieved the best performance for the static DR selection procedure. However, when consid-

ering the dynamic DR selection procedure, the knn method obtained a better median value

when all experiments are considered, although the C4.5 method also achieved solutions of good

quality. The reason why the knn classification method seems to perform so well is because it

keeps all the learning samples and tries to determine to which of these samples the problem

instance in question is most similar. In addition, the performance of the naive Bayes classifier

also improves when used by the dynamic DR selection procedure, which demonstrates that the

performance of the classification methods also depends on the considered problem. Based on

all the previous observations it can be concluded that knn and C4.5 represent the best choices

for the classification method.

The number of problem instances and number of DRs which are used to construct the learn-

ing set, also represent two important parameters of the procedure. The experiments have shown

that with the largest learning set size the procedure achieved the best results. However, medium

sized learning sets achieved similarly good results, therefore they were selected since the learn-

ing process of the classification methods is shorter when using a smaller learning set. For the

number of DRs that were used, the procedure performed better when between 10 and 30 DRs

were used. With a smaller number of DRs the procedure does not seem to have enough expres-

siveness to cover all problem instances with an appropriate DR, and therefore ends up using an

inappropriate rule for certain problem instances. On the other hand, a too large number of DRs

also has a negative effect on the learning process, since many DRs will be associated to only a

few problem instances. Because of this large variability, it will be much harder to train a good

classifier from such a learning set.

The features which are used to perform the classification have also a large influence on the

performance of the DR selection procedure. The static DR selection procedure achieved the

best results when a larger number of features was used. It is interesting to note that although the

313

7. Selection of DRs based on problem instance characteristics

Twt criterion was optimised, using only the two due date related features did not lead to good

results of the DR selection procedure. However, including the p̄ feature, which approximates the

makespan of the schedule, improved the performance of the procedure. Therefore, it seems to

be important for the procedure to also have access to the information about the expected length

of the schedule. When the dynamic DR selection procedure is used, the largest feature sets

again lead to good results. However, the procedure also achieved good results even if the two

smaller feature sets were used. Therefore it seems that for dynamic DR selection the additional

features are much less useful, since the DR selection process is performed in discrete moments

in time, and therefore the approximated duration of the schedule, or the job machine ratio do

not hold as much information as in the static case, where they are used before the execution of

the system to perform the decisions.

In addition to the previously described parameters, the dynamic scheduling procedure in-

troduced several additional parameters, which are used to determine when the DR selection

procedure should be performed. The first parameter was the one which determines when the

decision should be performed. Although using a fixed time interval leads to the best results,

the other two methods perform equally well, meaning that there is no significant difference in

the performance of the procedure when using any of the three proposed methods. The sec-

ond parameter determines how often the procedure should be applied. Surprisingly, even this

parameter does not have a large influence on the performance of the procedure. Even when ap-

plied on problems with changing characteristics, most of the time the three methods performed

equally well, with the repeat method sometimes achieving worse performance than the other

two methods. The reason why the repeat method achieved worse performance than the other

two, is because it calculates the features of the problem based on all released jobs, which can

have a negative effect if the characteristics of the problem change over time. Therefore, the

calculated features in the latter parts of the schedule might not be precise and correct. The no

repeat method performs well because in many cases the DR it selected works well throughout

the entire problem instance. The final parameter which is introduced determines the interval

length before the DR selection is performed. The results show that for both, the time interval

and number of released or scheduled jobs, it is more beneficial to use smaller values, meaning

that the DR selection should be performed sooner, and more often if the procedure is performed

several times. The benefit of this is that the influence of the initial DR is minimised. Also, if

the DR selection is performed several times, it gives the procedure the possibility to perform

its decision more often, and therefore to adapt better to the current problem instance and its

changing characteristics.

From all the results denoted in the previous sections it can be concluded that the DR se-

lection procedure performs better than by using a single manually selected DR for solving all

problem instances. The procedure has proven to be viable in both the static and dynamic con-

314

7.7. Conclusion

ditions. Therefore, if characteristics about the problem instance are known in advance, the pro-

cedure can be used to select the DR before the system even starts with its execution. However,

since it is more likely that this information is not available, the procedure may also be applied

in dynamic conditions as well. The results have shown that even for dynamic conditions the

DR selection procedure achieved better results than a manually selected DR. The procedure

achieved constantly good results, even when it was applied on different problem types, where

in some the characteristics of the problems were constant through its execution, while in others

the characteristics changed. The improvements which the procedure achieved were mostly the

same for all three tested problem types. Therefore, it is evident that the procedure is appropriate

for solving the different types of problems it was applied on.

7.7 Conclusion

Since a single DR cannot perform well on all possible problem instances, it is important to select

an appropriate DR to obtain better a performance. However, in dynamic scheduling conditions

it is difficult to know in advance which of the available DRs would be best suited for solving

the concrete problem instance. Therefore, several studies proposed different procedures of

selecting appropriate DRs for solving the current problem instance. Unfortunately, in all cases

only manually designed DRs were considered, and neither of the studies used automatically

generated DRs.

The purpose of this chapter was to present a procedure for selecting automatically generated

DRs, based on characteristics of the currently solved problem instance, and analyse if by using

this method it is possible to achieve better results than by using a single DR. The proposed

procedure was applied in both static and dynamic conditions. In addition, the procedure was

applied for several different problem types, in some of which the characteristics of the problem

instances changed over time. Through the experiments the influence of different parameters

of this procedure was analysed. In addition, for several parameter values the procedure was

applied on an independent problem set in order to validate it and analyse its behaviour even

further.

The obtained results have shown that the DR selection procedure performs well when ap-

plied in both static and dynamic scheduling conditions. In both cases the procedure achieved

much better performance than by using a single manually selected DR would be applied for the

entire problem set. Even when applied on problems where the characteristics change over time,

the DR selection procedure achieved good results. The only drawback of the procedure is the

large number of parameters for which good values need to be selected, since the performance

of the procedure depends heavily on the selected values.

Based on all the previous observations, it can be concluded that the described DR selection

315

7. Selection of DRs based on problem instance characteristics

procedure represents a viable addition to automatic generation of DRs, since it enables that

an appropriate DR is selected for each problem instance. However, even if good results were

achieved by this procedure, there are still many open topics which can be researched in the

future. One possible research direction is to further examine which characteristics of scheduling

problems could be extracted into features that could be used to describe the problem. These

additional features could lead to a better performance of the DR selection procedure. The

procedure can also be tested with other classification methods and machine learning methods

which could be used to perform the decision. An especially interesting topic here would be to

use GP to create the decision function for selecting the DRs, and evolve it at the same time when

the DRs are evolved. In addition, instead performing the DR selection at fixed time moments,

the procedure could also be extended so that it determines when the selection procedure should

be performed.

316

Chapter 8

Design of DRs for static scheduling
conditions

Although DRs are most commonly used in dynamic scheduling environments, there is no obsta-

cle in applying them also for the static scheduling environments. Various metaheuristic methods

are most often used for solving scheduling problems under static conditions, however, DRs pro-

vide two advantages over those methods. The first advantage is the superior execution speed of

DRs over metaheuristic methods, which means that DRs will construct the schedule in a smaller

amount of time. The second advantage is that DRs construct the schedule incrementally, which

means that parts of the schedule which have been constructed can already be executed, while

the rest of the schedule is being constructed by the DR. However, since DRs are designed for

dynamic environments, they cannot usually match the performance obtained by metaheuristic

approaches, since DRs do not use all the static information of the problem. Therefore there is a

need to construct DRs which use the available static information about the problem to increase

their performance.

Until now, research on this topic has been quite sparse. In one study, DRs which use look-

ahead information were generated by GP [42]. Unfortunately, the experiments have shown that

no significant improvements were achieved by additionally using look-ahead, and that there was

a large variance of the obtained results. A new DR method, called iterative dispatching rules,

which is more suitable for static scheduling, was also recently proposed in [43]. The proposed

method achieved better performance than standard DRs evolved by GP. In addition, the method

was also combined with look-ahead information, which was also evolved as a part of the DRs.

The results have shown that the addition of the look-ahead information leads to even better

performance. However, look-ahead was not applied by its own to analyse its effectiveness, and

neither were the approaches compared to any metaheuristic methods, to determine how their

performance compares with such methods. Iterative DRs were also applied for the unrelated

machines scheduling problem [151], and their results were compared with results achieved by

317

8. Design of DRs for static scheduling conditions

metaheuristic methods. However, this study did not provide any further analysis of other static

scheduling methods.

The purpose of this chapter is to analyse several methods for adapting automatically gener-

ated DRs to static scheduling problems. In addition, all the methods will be compared to the

results obtained by a metaheuristic method, and the difference between the execution times of

the different methods will also be analysed. First, an overview of methods of adapting automat-

ically generated DRs for static scheduling will be presented. After that, the performance of the

different methods will be analysed. Finally, an analysis of the execution time of different meth-

ods will be presented and compared with the execution time of a metaheuristic optimisation

method. The chapter is concluded with a short overview and guidelines for future research.

8.1 Design and adaptation of DRs for static scheduling

This section will describe four methods which will be used to adapt DRs for scheduling under

static conditions. The first method will simply introduce new terminal nodes which will include

certain static information about the scheduling environment. The second method will allow the

DRs to use look-ahead to consider jobs which are still not released into the system. To further

increase its performance the iterative DR method will also be applied with a larger number of

nodes than in previous studies. Finally, the rollout algorithm will be applied for the first time

with automatically generated DRs. This algorithm will use an automatically generated DR to

approximate which scheduling decision leads to the best result.

8.1.1 Terminal nodes with static information

A simple and intuitive way of generating DRs for the static scheduling environment is to de-

sign additional terminal nodes, which contain static information about the system. With these

terminals GP can design priority functions which will also use information about the future of

the system to perform the next scheduling decision. However, the terminal nodes need to be

selected very carefully to include only the information which will be useful for DRs.

The static terminal nodes which will be used in this thesis are presented in Table 8.1. These

terminals can be divided into two groups. The first seven terminals denoted in the table rep-

resent the first group of terminals, which do not depend on the choice of which job would be

scheduled next. This means that at the current decision point, these terminals will have the same

value for each job which is considered. However, some of the terminals depend on the currently

considered machine, which means that they will have different values for all the available ma-

chines. The terminals in this group represent general information about the future of the system,

like the time until the next job arrives or the slack of the next job which will be released into the

318

8.1. Design and adaptation of DRs for static scheduling

system.

The rest of the terminals in the table belong to the second group of static terminal nodes, that

represents terminals which denote how the scheduling of one job could affect the future of the

system. These terminals will be denoted as casual static nodes, since they analyse the causality

on the future of the system if the currently considered job j would be scheduled on a given

machine. The first four terminals in this group (NREL, NRELM, SLAVGD and MLOADD) are

quite simple, since they only extract information about jobs which would be released during the

execution of job j. On the other hand, the other twelve terminals try to approximate how much

the scheduling of job j could influence the tardiness of jobs which would be released during the

execution of job j. The first six terminals (from FUTLATES until WLATEL) approximate the

tardiness of jobs which would be released during the execution of the currently considered job

j. The other six terminals approximate the difference between the tardiness of job j, if it would

be delayed and other jobs would be scheduled before it, and the tardiness of other jobs which

would be released during the execution of job j, if job j would be executed immediately.

Table 8.1: List of static terminal nodes

Node name Node description

NSHORT Number of unreleased jobs which have the shortest processing time for the

given machine

SLNXT Slack of the next job that is released into the system

SLNXTM Slack of the next job that is released into the system, and has the shortest

processing time for the given machine

SLAVG Average slack of jobs with the shortest processing time for the given machine

TTAR Time until the next job arrives into the system

TTARM Time until the next job, which has the shortest processing time for the given

machine, arrives into the system

MLOAD Sum of processing times of unreleased jobs, which have the shortest process-

ing time for the given machine

NREL Number of jobs which will be released during the execution of the selected

job

NRELM Number of jobs which will be released during the execution of the selected

job, and have the shortest processing time for the given machine

319

8. Design of DRs for static scheduling conditions

SLAVGD Slack of jobs which will be released during the execution of the selected job,

and have the shortest processing time for the given machine

MLOADD Sum of processing times of jobs released during the execution of the selected

job, and which have the shortest processing time for the given machine

FUTLATES Approximation of the weighted tardiness of the job which has the fastest exe-

cution time for the considered machine, and is released first during the execu-

tion of job j. The approximation is performed as if the considered job would

be executed immediately after the completion of job j

WLATES Approximation of the unit penalty of the job which has the fastest execution

time for the considered machine, and is released first during the execution

of job j. The approximation is performed as if the considered job would be

executed immediately after the completion of job j

FUTLATE Approximation of the weighted tardiness of all jobs which are released first

during the execution of job j, and have the smallest processing time for the

given machine. The approximation is performed as if each of the jobs would

be executed right after the completion of job j

WLATE Approximation of the weighted number of tardy jobs, of all jobs which are

released first during the execution of job j, and have the smallest processing

time for the given machine. The approximation is performed as if each of the

jobs would be executed right after the completion of job j

FUTLATEL Approximation of the weighted tardiness of all jobs which are released first

during the execution of job j, and have the smallest processing time for the

given machine. The approximation is performed as if each of the jobs would

be executed sequentially after the completion of job j

WLATEL Approximation of the weighted number of tardy jobs, of all jobs which are

released first during the execution of job j, and have the smallest processing

time for the given machine. The approximation is performed as if each of the

jobs would be executed sequentially after the completion of job j

FLDS Difference between the approximation of the weighted tardiness of job j and

the value of the FUTLATES terminal. The weighted tardiness is approximated

as if job j would be executed after the job that has the fastest execution time

for the considered machine, and is released first during the execution of job j,

finishes with its execution

320

8.1. Design and adaptation of DRs for static scheduling

WLDS Difference between the approximation of the tardiness weight of job j and

the value of the WLATES terminal. The tardiness weight is approximated as

if job j would be executed after the job that has the fastest execution time for

the considered machine, and is released first during the execution of job j,

finishes with its execution

FLD Difference between the approximation of the weighted tardiness of job j and

the value of the FUTLATE terminal. The approximation is performed as if job

j would be executed after all the jobs with the fastest execution time for the

considered machine, which are released during the execution of job j, finish

with their execution

WLD Difference between the approximation of the tardiness weight of job j and

the value of the WLATE terminal. The approximation is performed as if job

j would be executed after all jobs with the fastest execution time for the con-

sidered machine, which are released during the execution of job j, finish with

their execution

FLDL Difference between the approximation of the weighted tardiness of job j and

the value of the FUTLATEL terminal. The approximation is performed as if

job j would be executed after all jobs with the fastest execution time for the

considered machine, which are released during the execution of job j, finish

with their execution

WLDL Difference between the approximation of the tardiness weight of job j and

the value of the WLATEL terminal. The approximation is performed as if

job j would be executed after all jobs with the fastest execution time for the

considered machine, which are released during the execution of job j, finish

with their execution

Since the last twelve terminals are not trivial to calculate, details about their calculation are

given in Algorithm 8.1. The terminals FUTLATES, FUTLATEL, and FUTLATE approximate

the tardiness of jobs that would be released into the system during the execution of the currently

considered job j. The difference between those terminals is only in the manner in which they

approximate the tardiness. The FUTLATES terminal approximates the tardiness of the next

job which would be released into the system during the execution of job j and has the fastest

processing time on the machine m on which job j is executing. The approximation is performed

in a way that the tardiness of the next job is calculated as if it would be scheduled on machine m

after job j finished with its execution. The FUTLATE terminal considers all jobs which would

321

8. Design of DRs for static scheduling conditions

be released during the execution of job j, and which achieve the fastest processing time on

machine m. The tardiness of all these jobs is approximated as if each job would be executed

on machine m after the completion of job j, independently of each other. Since this is a quite

optimistic approximation, the FUTLATEL terminal, which represents a much more pessimistic

approximation, is introduced. This terminal approximates the tardiness in a similar way as

FUTLATE, however, it calculates the tardiness as if all the jobs were scheduled sequentially on

machine m, in order of their release times, after job j finishes with its execution. The terminals

WLATES, WLATE and WLATEL perform the approximation of the weighted number of tardy

jobs in the same manner as FUTLATES, FUTLATE, and FUTLATEL, respectively.

Unfortunately, the six previously described terminals approximate only the tardiness of jobs

which would be released during the execution of job j, but do not take into account the tardiness

of job j if its execution would be delayed. For that reason, six additional terminals are defined,

which also approximate the tardiness of job j if it were delayed. The FLDS terminal approxi-

mates the tardiness of job j in a way that it delays its execution until the job which would first

be released into the system during the execution of job j, and has the smallest processing time

on machine m, finishes with its execution. The value of the FUTLATE terminal is additionally

subtracted to determine which decision would lead to a greater tardiness value. The WLDS

terminal uses the same concept, just for approximating the weighted number of tardy jobs, and

subtracting its value with the value of the WLATES terminal. For the FLD and FLDL terminals,

the approximation of the tardiness of job j is performed somewhat differently. For those two

terminals, the tardiness of job j is approximated as if job j would be executed after all jobs

which were released during its execution and have the smallest processing time on machine

m, would be executed sequentially on the considered machine m. For the FLD terminal, the

approximation is additionally subtracted by the value of the FUTLATE terminal, while for the

FLDL terminal the approximated tardiness value is subtracted with value of the FUTLATEL

terminal. The last two terminals, WLD and WLDL, also use the same concepts as FLD and

FLDL to approximate the number of tardy jobs, and subtract the approximation by the WLATE

and WLATEL terminals, respectively.

8.1.2 Look-ahead

In the dynamic scheduling environment, DRs use the priority function to calculate the priorities

only of those jobs which were already released into the system. Since in the static scheduling

environment the information about all jobs is known in advance, the DRs can be extended so

that they also calculate the priorities for jobs which are not yet released into the system. This

property, that DRs also calculate priorities for yet unreleased jobs, is called look-ahead. Algo-

rithm 8.2 represents the adapted schedule generation scheme which uses look-ahead. The first

thing which can be noticed in the schedule generation scheme, is that it uses the look-ahead fac-

322

8.1. Design and adaptation of DRs for static scheduling

Algorithm 8.1 Calculation procedure of terminals which approximate the tardiness and
weighted number of tardy jobs values

1: Let j denote the job which should be scheduled on machine i
2: Let time denote the current system time
3: startTime← time
4: shouldSet ← true
5: tSum← max(time,r j)+ pi j
6: wtardL← 0
7: wlateL← 0
8: wtard ← 0
9: wlate← 0

10: wtardS← 0
11: wlateS← 0
12: wEnd ← 0
13: for each job k which has the minimum processing time for machine i, and is released during

the execution of job j do
14: if rk > startTime then
15: startTime← rk
16: end if
17: startTime+= pik
18: if dk < (tsum+ pik) then
19: initialLate← 0
20: if dk < (rk + pik) then
21: initialLate← (pik + rk−dk)*wTk

22: end if
23: wtardL+= (pik + tSum−dk)*wTk− initialLate
24: if initialLate == 0 then
25: wlateL+= wTk

26: end if
27: end if
28: tSum+= pi j
29: if dk < (max(r j, time)+ pi j + pik) then
30: initialLate← 0
31: if dk < (rk + pik) then
32: initialLate← (pik + rk−dk)*wTk

33: end if
34: wtard+= (pi j + pik−dk +max(r j, time))*wTk− initialLate
35: if initialLate == 0 then
36: wlate+= wTk

37: end if
38: if shouldSet then
39: shouldSet ← f alse
40: wtardS← wtard
41: wlateS← wlate
42: wEnd ← rk + pik
43: end if
44: end if
45: end for

323

8. Design of DRs for static scheduling conditions

46: jInitialLate← 0
47: if d j < (r j + pi j) then
48: jInitialLate← (pi j + r j−d j)*wTj

49: end if
50: if d j < (startTime+ pi j) && initialLate == 0 then
51: lateWeight ← wTj

52: else
53: lateWeight ← 0
54: end if
55: if d j < (wEnd + pi j) && initialLate == 0 then
56: lateWeightS← wTj

57: else
58: lateWeightS← 0
59: end if
60: tardinessWeight ← 0
61: tardinessWeightS← 0
62: if d j < (startTime+ pi j) then
63: tardinessWeight ← (startTime+ pi j−d j)*wTj − initialLate
64: end if
65: if d j < (wEnd + pi j) then
66: tardinessWeightS← (wEnd + pi j−d j)*wTj − initialLate
67: end if
68: FUT LAT ES← wTards
69: WLAT ES← wLates
70: FUT LAT EL← wtardL
71: WLAT EL← wlateL
72: FUT LAT E ← wTard
73: WLAT E ← wLate
74: FLDS← tardinessWeightS−wTards
75: WLDS← lateWeightS−wLates
76: FLDL← tardinessWeight−wTardL
77: WLDL← lateWeight−wlateL
78: FLD← tardinessWeight−wTard
79: WLD← lateWeight−wLate

324

8.1. Design and adaptation of DRs for static scheduling

tor α to determine the amount of unreleased jobs which will be considered when calculating the

priority values. The set of jobs which are considered when calculating the priority values will

be denoted as the look-ahead horizon. The look-ahead parameter is quite sensitive to the size of

the problem instance, meaning that more unreleased jobs will be considered in each iteration if

there are more jobs in the scheduling problem. Instead of using this look-ahead factor, a fixed

number of unreleased jobs that should be considered in each iteration can also be used. This

has the advantage that regardless of the problem instance size, the same number of jobs will

always be considered. The second important thing which can be observed from the algorithm,

is that jobs which are not yet released will not be scheduled until they are actually released into

the system. Therefore, there is a possibility that in the meantime another job is scheduled on

the machine for which previously an unreleased job achieved the largest priority. When using

look-ahead, a new terminal node also needs to be introduced. This terminal, denoted as AR, de-

termines the amount of time until the job is released into the system. Without this terminal DRs

can not take into account when the jobs become ready, and would consequentially be unable to

prioritise jobs which are released sooner. The overall benefit of look-ahead is that it allows the

schedule generation scheme to introduce idle times into the schedule, if it determines that in the

near future a job that needs to be scheduled immediately will be released.

Algorithm 8.2 Schedule generation scheme used for DRs with look-ahead

1: while unscheduled jobs are available do
2: Wait until at least one job and one machine are available
3: for all jobs where r j < (time+(max j(r j)− time)*α) and all machines do
4: Obtain the priority πi j of scheduling job j on machine i
5: end for
6: for all jobs where r j < (time+(max j(r j)− time)*α) do
7: Determine the best machine (the one for which the best value of priority πi j
8: is achieved)
9: end for

10: while jobs whose best machine is available exist do
11: Determine the best priority of all such jobs
12: Schedule the job with best priority if it is released
13: end while
14: end while

8.1.3 Iterative dispatching rules

Iterative dispatching rules (IDRs), unlike standard DRs, construct the schedule several times.

Each time a new schedule is constructed IDRs use information from previously generated sched-

ules to improve the newly constructed schedules. The schedule is reconstructed until the fitness

of the newly constructed schedule stops improving. The motivation behind this approach is that

325

8. Design of DRs for static scheduling conditions

by using information from previously created schedules, IDRs could correct mistakes made in

previous iterations. The steps of the schedule generation scheme used by IDRs are shown in

Algorithm 8.3. The algorithm shows that new schedules are created as long as the fitness of the

schedule is improved. In the end, the procedure does not return the schedule which was created

in the last iteration, but the previous one, since that schedule achieved the best fitness value.

Algorithm 8.3 Schedule generation scheme used by IDRs

1: Let R represent the set of parameters extracted from the previous schedule which are used
by the priority function, and let R0 represent their initial values

2: R← R0
3: Fitness*← ∞

4: Let S represent the current schedule (empty at the begging), and bestS the best created
schedule

5: do
6: bestS← S
7: Generate the schedule using the standard schedule generation scheme and the priority

function π

8: S← generated schedule
9: Fitness*← Fitness

10: Fitness← fitness value of the generated schedule S
11: Calculate new values for schedule dependant nodes, based on the constructed schedule

S, and store the calculated values in R
12: while (Fitness* > Fitness)
13: Return bestS as the result

In order for the priority function to use information about previously created schedules, ad-

ditional nodes need to be defined, the values of which will be calculated based the schedule

created previously by the IDR. These nodes are updated every time a new schedule is created.

Table 8.2 represents additional nodes which use information from previously created sched-

ules. All nodes represent terminal nodes, apart from the ISLATE node, which is a function that

executes one branch if the currently considered job was late in the previous schedule, and the

other branch if not. The aim of this node is to create priority functions where one part of the

function is appropriate for scheduling jobs which were late in the previous schedule, making it

possible to apply a different scheduling strategy for those jobs. The terminal nodes were de-

signed to provide different information from the previous schedule. The NLATE, LATENESS,

and TARDINESS nodes provide information about the entire previously created schedule, in

the form of the total number of tardy jobs, total lateness of the schedule, and total weighted

tardiness of the schedule. Nodes INDLATE, INDWTARD, and INDTARD provide information

about the lateness, weighted tardiness, and tardiness of a single job in the previous schedule.

By using these nodes the priority function can put more emphasis on jobs which were tardy in

the previous schedule. Finally, nodes JOBFINISH and FLOWTIME provide information about

the completion time and the flowtime of jobs in the previous schedule. Although these nodes

326

8.1. Design and adaptation of DRs for static scheduling

Table 8.2: Additional nodes used by IDRs

Node name Node description

NLATE number of tardy jobs in the previous schedule

LATENESS total lateness of the entire previously created schedule

INDLATE lateness of a concrete job in the previous schedule

TARDINESS total weighted tardiness of the entire previously created schedule

INDTARD tardiness of a concrete job in the previous schedule

INDWTARD weighted tardiness of a concrete job in the previous schedule

ISLATE if the job was late in the previous schedule the left branch of the node is
executed, otherwise the right branch is executed

JOBFINISH completion time of a concrete job in the previous schedule

FLOWTIME flowtime of a concrete job in the previous schedule

do not provide any due date related information, they were included to analyse whether this

kind of information could also be useful for IDRs. An additional thing which also needs to be

defined for these nodes are their initial values which are used in the first iteration, when there is

no previous schedule from which the information could be extracted. In that case, all the nodes

are initialised to large values which can not be achieved by any schedule constructed by the

schedule generation scheme, while for the ISLAT E node all jobs are denoted as late.

8.1.4 Rollout algorithm

The rollout algorithm is a simple approach which can improve the results of different heuristic

methods [296, 297, 298, 299, 300]. The algorithm tries to balance between exhaustive search

and heuristic methods to perform better than heuristic methods, but still be able to obtain solu-

tions faster than exhaustive search. In order to achieve this, at each decision moment the rollout

algorithm considers all possible decisions. However, to determine which one of these decisions

is the best, the algorithm does not perform an exhaustive search for each of those decisions,

but rather uses a heuristic method which, for each possible decision, constructs the rest of the

solution. The algorithm then performs the decision which leads to the best solution after ap-

plying the heuristic method. These steps are repeated for each decision moment until the entire

solution is constructed.

The rollout algorithm can easily be combined with DRs in a way that at each decision mo-

ment and for each possible decision at that point, the rollout algorithm applies a DR to construct

the rest of the schedule. After constructing the schedule for each decision, the algorithm per-

327

8. Design of DRs for static scheduling conditions

forms the decision for which the DR obtained a schedule of the best quality. Algorithm 8.4

denotes the steps of the rollout algorithm for solving scheduling problems with DRs. In the first

part, the algorithm tries out all possible scheduling decisions at the current moment in time, and

uses a predefined DR to construct the rest of the schedule from that decision onwards. Unfor-

tunately, applying the rollout algorithm in this way will lead to bad solutions, since the rollout

algorithm can only create schedules in which jobs are scheduled immediately on a machine if

it is free. On the other hand, DRs can introduce idle times in the schedule even if there are

available machines. Therefore, it is possible that the DRs construct a schedule approximation

which can not be obtained by the rollout algorithm, since it can not introduce idle times in

the schedule. As a consequence, instead of improving the fitness of the schedule during the

execution of the rollout algorithm, the fitness will oscillate and will sometimes be even worse

than that obtained by the DR. To solve this problem it is required to determine if in the current

iteration the best decision, which can be performed by the rollout algorithm, leads to a fitness

value which is worse than the one obtained by the algorithm in the last iteration. When this

situation occurs, instead of performing the decision selected by the rollout algorithm, the DR is

used to perform the next scheduling decision. Therefore, if the rollout algorithm will in itself

not be able to perform the best decision, it will delegate this task to the underlying DR, which

can then easily introduce idle times into the schedule. This modification of the rollout algorithm

will ensure that the fitness of the schedule decreases monotonically during the execution of the

rollout algorithm.

The execution time of the rollout algorithm can also be improved if not all jobs need to

be considered at each decision moment. The intuition behind this is that jobs which will be

released far in the future will have a small probability of being scheduled at the current decision

moment. Therefore, it is preferable to consider only a smaller number of yet unreleased jobs

which have a closer release time to the current decision moment. For that purpose it is possible

to define a rollout factor γ or a number of unreleased jobs which will be considered in each

iteration, similarly as in the look-ahead approach. The set of jobs which is considered in each

iteration will be denoted as the rollout horizon.

8.1.5 Combination of static methods

The benefit of the previous four methods is that they can be combined in various ways to im-

prove the results even further. All methods can easily be combined with each other without any

additional adjustments, except for two cases. The first case is when combining static terminals

with look-ahead. The problem here is that static terminals are calculated based on all unreleased

jobs, however, in look-ahead the priorities are calculated even for some unreleased jobs. This

would mean that the properties of unreleased jobs which are considered by the DRs would still

be used in the calculation of the static terminal nodes. Therefore, when using look-ahead, it

328

8.2. Results

Algorithm 8.4 Rollout algorithm for scheduling with DRs

1: time← 0
2: previousFitness← ∞

3: bestFitness← ∞

4: while unscheduled jobs are available do
5: Set time to the next point in time where there is at least one released job and one avail-

able machine
6: for each unscheduled job j where r j < (time+(max j(r j)− time)* γ) do
7: for each machine m do
8: Use a DR to construct the rest of the schedule when job j would be scheduled

on machine m.
9: Let f itness denote the fitness of the constructed schedule.

10: if f itness < bestFitness then
11: bestFitness← f itness
12: Let bestPair denote the selected job-machine pair
13: end if
14: end for
15: end for
16: if previousFitness > bestFitness then
17: previousFitness← bestFitness
18: Schedule the job from bestPair on the machine from bestPair
19: else
20: Execute the DR to perform the next scheduling decision
21: end if
22: end while

could prove to be beneficial to calculate the static terminals only from those jobs which are

currently outside the look-ahead horizon. In the result section, both methods of calculating

the static terminals will be tested, to determine their influence on the quality of the look-ahead

method.

The second problematic case is when trying to combine IDRs with the rollout algorithm.

The problem here arises from the fact that IDRs need to reconstruct the entire schedule, which

would mean that the schedule constructed by the rollout algorithm would be lost, and that prob-

ably a schedule of inferior quality would be constructed. This could be fixed by not recreating

the entire schedule with IDRs, but only those parts which were not constructed by the rollout al-

gorithm. However, because IDRs use certain information from previously generated schedules,

any changes introduced in the schedules outside the IDRs can have a significant influence on the

performance of IDRs. This leads to a great instability of the approach, since in each iteration

the approximation obtained by IDRs would be quite different. Therefore, the entire rollout algo-

rithm would perform poorly, since the IDRs would not properly guide the algorithm. Because

of those reasons the combination of the rollout algorithm and IDRs will not be considered.

329

8. Design of DRs for static scheduling conditions

8.2 Results

In this section, the results for all the tested methods that adapt DRs for scheduling under static

conditions will be presented. Each experiment was executed 30 times and the minimum, me-

dian, and maximum values were calculated based on the best results achieved in each run. In

all the experiments the Twt criterion was be optimised. Statistical tests were also performed

to additionally test whether there is a significant difference between DRs evolved by GP which

uses only dynamic information (DGP), and methods which are developed for static scheduling.

The results of these tests are presented in an additional column denoted as stat. diff. The experi-

ments in which the static methods achieve significantly better results than DGP will be denoted

with + in the column. On the other hand, ≈ will denote that there is no significant difference

between the results, whereas − will denote that the static methods achieved significantly worse

results than DGP. The results of DGP are also included in tables to allow for an easier compari-

son. However, for all experiments with the rollout algorithm the statistical difference was tested

against the results of a GA, since the rollout algorithm always achieves significantly better re-

sults than DGP. The applied GA will use the floating point representation described in Section

2.4.1.

8.2.1 Results obtained by DRs with static terminal nodes

In this section the results of using additional static terminal nodes will be presented. All the

proposed static nodes will be used in addition to all terminal nodes used for generating DRs

for the dynamic environment. Since 23 static nodes were proposed, it is impossible to try out

all node combinations to find the best one. For that reason, two greedy heuristics are used to

guide the selection of static nodes, the constructive and destructive heuristic. The constructive

heuristic starts with a node set which contains only nodes used for the dynamic environment.

For each static node the heuristic adds it to the set of terminal nodes which are used by GP,

performs 30 runs and saves the overall minimum value, and then removes the selected terminal

node from the set. The node for which GP achieved the best minimum value is selected and

added permanently to the set of terminal nodes used by GP. In the next iteration the procedure

is repeated, however, the nodes which were already permanently added to the set of nodes used

by GP are not considered any more. The entire procedure continues until all the static nodes

are added to the set of terminal nodes used by GP. From the description it is evident that the

heuristic adds static nodes, one by one, to the set of terminal nodes used by GP, in a way that

it selects the node for which the best result will be obtained. Naturally, it is possible that the

fitness deteriorates from one iteration to the other. Although the procedure could also be stopped

at the point where there is no improvement in the fitness by adding any static terminal node,

it is better to continue the procedure, since the quality of the generated DRs can still increase

330

8.2. Results

if further nodes are added. Out of all the created sets of static terminal nodes, the one which

achieved the best performance can be selected. The destructive heuristic, on the other hand,

starts by adding all static nodes to the set of nodes used by GP. After that, it determines the

node whose removal would result in the best performance of GP. The selected node is removed,

and the entire procedure is repeated until there are no more static nodes which can be removed

from the set of nodes used by GP. Therefore, this procedure gradually decreases the number of

nodes, trying to remove those nodes which do not provide any important information.

Since the number of tested combinations of static nodes is vast even when using the two

heuristics, only 21 combinations which achieved the best minimum values are selected and pre-

sented in Table 8.3. The last line in the table, denoted as DGP, represents the results achieved

by GP without the use of static terminal nodes. The best values achieved by all the results are

denoted in bold. The table shows that although GP achieved a better minimum value by using

all presented static node combinations, the median value is not always better than that of DGP.

DRs with static nodes achieved a maximum improvement over DGP by 6.9% for the minimum

value, and 2.9% for the median value. Therefore, by using static terminal nodes it is possible to

obtain much better DRs, although it is more difficult for the algorithm to evolve such good rules.

The statistical tests also show that only in three cases GP with static terminal nodes achieves

statistically better results than DGP, while in all other cases there was no statistically signifi-

cant difference. Out of all the combinations denoted in the table, the first five were generated

by the constructive heuristic, while the remaining were generated by the destructive heuristic.

Therefore, better terminal node sets can be constructed by iteratively removing the nodes from

the terminal node set. The best overall DR was generated when using the static terminal node

combination denoted with index 21. This terminal set consists mostly of nodes which provide

information about the tardiness of future jobs, as well as about their slack values. An additional

thing which is evident from the table is that the best minimum values are mostly achieved by

experiments which use smaller terminal node sets, such as those used by experiments 1, 17, 18,

19, and 21. In addition, in all these terminal node sets different terminal node types were used,

which leads to the conclusion that better results will be achieved by simultaneously using nodes

which provide different kinds of information to the DR.

Table 8.3: Results obtained by using additional static terminal nodes

Static terminal node set Min Med Max Stat. diff.

1 FLDL , FUTLATES, SLAVGM, TTAR 12.17 13.82 15.27 ≈

2 FLDL, FUTLATES, MLOAD, NREL, NRELM,

SLAVGM, TTAR

12.14 13.53 15.77 ≈

331

8. Design of DRs for static scheduling conditions

3 FLDL, FLD, FUTLATES, MLOAD, NSHORT,

NREL, NRELM, SLAVGD, SLAVGM, SLNEXT,

TTAR, TTARM, WLATES, WLDS

12.25 13.59 15.44 ≈

4 FLDL, FLD, FUTLATE, FUTLATES, MLOAD,

NSHORT, NREL, NRELM, SLAVGD, SLAVGM,

SLNEXT, TTAR, TTARM, WLATES, WLDS

12.26 13.70 15.93 ≈

5 FLD, FLDL, FUTLATE, FUTLATEL, FUT-

LATES, MLOAD, MLOADD, NREL, NRELM,

NSHORT, SLAVGD, SLAVGM, SLNEXT,

SLNEXTM, TTAR, TTARM, WLATE, WLATES,

WLATEL, WLDL, WLDS

12.29 13.40 14.76 ≈

6 FLD, FLDS, FUTLATE, FUTLATEL, FUT-

LATES, MLOAD, MLOADD, NREL, NSHORT,

SLAVGD, SLAVGM, SLNEXT, SLNEXTM,

TTAR, TTARM, WLATE, WLATEL, WLATES,

WLD, WLDL, WLDS

12.29 13.69 15.44 ≈

7 FLD, FLDS, FUTLATE, FUTLATEL, FUT-

LATES, MLOAD, MLOADD, NREL, NRELM,

NSHORT, SLAVGD, SLAVGM, SLNEXT, TTAR,

TTARM, WLATE, WLATEL, WLATES, WLD,

WLDL, WLDS

12.30 13.55 15.66 ≈

8 FLD, FLDS, FUTLATE, FUTLATEL, FUT-

LATES, MLOAD, MLOADD, NREL, NRELM,

NSHORT, SLAVGD, SLAVGM, SLNEXT,

SLNEXTM, TTARM, WLATE, WLATEL,

WLATES, WLD, WLDL, WLDS

12.25 13.32 15.08 ≈

9 FLD, FLDS, FUTLATE, FUTLATEL, FUT-

LATES, MLOADD, NREL, NRELM, NSHORT,

SLAVGD, SLAVGM, SLNEXT, SLNEXTM,

TTARM, WLATE, WLATEL, WLATES, WLD,

WLDL, WLDS

12.27 13.72 15.65 ≈

332

8.2. Results

10 FLD, FLDS, FUTLATE, FUTLATEL, FUT-

LATES, MLOADD, NREL, NRELM, NSHORT,

SLAVGD, SLNEXT, SLNEXTM, TTARM,

WLATE, WLATEL, WLATES, WLD, WLDL,

WLDS

12.22 13.46 16.87 ≈

11 FLD, FLDS, FUTLATE, FUTLATES,

MLOADD, NREL, NRELM, NSHORT,

SLAVGD, SLNEXT, SLNEXTM, TTARM,

WLATE, WLATEL, WLATES, WLD, WLDL,

WLDS

12.28 13.62 15.40 ≈

12 FLD, FLDS, FUTLATE, FUTLATEL, FUT-

LATES, MLOADD, NREL, NSHORT, SLAVGD,

SLNEXT, SLNEXTM, TTARM, WLATE, WLA-

TEL, WLATES, WLD, WLDL, WLDS

12.20 13.83 15.37 ≈

13 FLD, FLDS, FUTLATE, FUTLATES,

MLOADD, NREL, NSHORT, SLAVGD,

SLNEXT, SLNEXTM, TTARM, WLATE, WLA-

TEL, WLATES, WLD, WLDS

12.29 13.43 15.39 ≈

14 FLD, FLDS, FUTLATE, MLOADD, NREL,

NSHORT, SLAVGD, SLNEXT, SLNEXTM,

TTARM, WLATE, WLATEL, WLATES, WLD,

WLDS

12.27 13.21 15.10 +

15 FLD, FLDS, FUTLATE, MLOADD, NREL,

NSHORT, SLAVGD, SLNEXT, TTARM,

WLATE, WLATEL, WLATES, WLD, WLDS

12.30 13.46 16.01 ≈

16 FLD, FUTLATE, MLOADD, NREL, NSHORT,

SLAVGD, SLNEXT, WLATES, WLD

12.26 13.30 15.34 ≈

17 FLD, FUTLATE, MLOADD, NREL, SLAVGD,

SLNEXT, WLATES, WLD

12.08 13.30 14.62 +

18 FLD, FUTLATE, MLOADD, NREL, NSHORT,

SLNEXT, WLATES, WLD

12.08 13.42 16.06 ≈

333

8. Design of DRs for static scheduling conditions

19 FLD, FUTLATE, MLOADD, NREL, NSHORT,

SLAVGD, WLATES, WLD

12.15 13.62 14.70 ≈

20 FLD, FUTLATE, NREL, SLAVGD, SLNEXT,

WLATES, WLD

12.24 13.29 16.50 ≈

21 FUTLATES, NREL, SLAVGD, SLNEXT, WLD 12.06 13.30 16.59 +

DGP 12.96 13.60 14.62

Figure 8.1 shows the box plot representation of the results obtained from different static

terminal combinations. The box plot shows that by using the static terminal nodes GP usually

finds quite dispersed results, with a much greater possibility of obtaining solutions which rep-

resent outliers. Because of that large dispersion, the improvement in the median and average

values of GP with static terminal nodes over DGP are in best cases quite small. It is also evident

that for all the static terminal node combinations quite similar minimum values are obtained,

meaning that most of the tested node combinations have a similar expressiveness.

8.2.2 Results obtained by DRs with look-ahead

This section will present the results achieved by using look-ahead in automatically designed

DRs. Look-ahead will be tested with both the look-ahead factor and a fixed number of jobs in

the look-ahead horizon, to determine how this parameter influences the overall procedure.

Table 8.4 represents the results achieved by DRs which additionally use look-ahead when

calculating the priorities of jobs. In this case, DRs will use priority functions generated by using

the terminal set consisting only of nodes used for the dynamic scheduling environment, and the

additional AR node. The table demonstrates that by using look-ahead DRs achieved better

results than those generated by DGP. The only time when DRs with look-ahead significantly

outperformed DRs generated by DGP is when a small look-ahead factor was used. However,

this is expected since this means that for smaller problem instances the DRs will not even use

look-ahead, and will therefore perform similarly as DRs without look-ahead. However, with

larger look-ahead factor values, DRs with look-ahead significantly outperform DRs without

look-ahead by at most 13.8% for the minimum value, and 11.8% for the median value. The best

results are achieved when using larger values for the look-ahead factor, which is expected since

DRs will have a broader overlook on jobs which arrive into the system.

On the other hand, when using a fixed number of jobs in the horizon, DRs with look-ahead

consistently performed better than DRs without look-ahead, even for a smaller number of jobs

in the look-ahead horizon. The improvements which are achieved over DRs without look-ahead

334

8.2. Results

D
G

P
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

12

12
.513

13
.514

14
.515

15
.516

16
.517

Fi
gu

re
8.

1:
B

ox
pl

ot
re

pr
es

en
ta

tio
n

of
th

e
re

su
lts

ob
ta

in
ed

by
us

in
g

di
ff

er
en

ts
ta

tic
no

de
co

m
bi

na
tio

ns

335

8. Design of DRs for static scheduling conditions

Table 8.4: Results for DRs with look-ahead obtained by using only terminal nodes for dynamic
scheduling

Look-ahead
factor

Min Med Max Stat.
diff.

Number
of jobs

Min Med Max Stat.
diff.

0.03 11.88 13.45 15.56 ≈ 3 11.24 12.25 15.06 +

0.05 12.20 13.53 15.16 ≈ 5 11.31 12.06 14.32 +

0.1 12.12 12.78 14.55 + 10 10.82 11.83 14.60 +

0.2 11.67 12.44 13.89 + 20 10.96 11.83 13.60 +

0.5 11.30 11.99 14.86 + 50 11.17 11.69 15.30 +

1 11.17 12.02 15.35 + 100 11.02 11.64 13.53 +

DGP 12.96 13.60 14.62 12.96 13.60 14.62

are at most 16.5% for the minimum value, and 14.4% for the median value. The results demon-

strate that with the increase of the number of jobs in the look-ahead horizon the performance

gradually increases. However, the improvement of the performance is not as drastic as when

using the look-ahead factor, since DRs that use a small number of jobs in the look-ahead hori-

zon also achieve quite good results. An additional interesting behaviour which can be observed

from the results is that the increase in the number of jobs in the look-ahead horizon will not

always lead to better results. This is evident by comparing results achieved when using 10 and

20, or 50 and 100 jobs in the look-ahead horizon, since the median values achieved for those

experiments were mostly similar.

The results also display that DRs achieve better performance when using a fixed number

of jobs in the look-ahead horizon, than when using a look-ahead factor to determine which

jobs belong to the horizon. The main reason for such a behaviour is that by using a constant

number of jobs in the horizon the procedure is more stable since it will always consider the same

number of unreleased jobs. On the other hand, when using the look-ahead factor, the number

of unreleased jobs which are considered depends not only on the number of jobs in the problem

instance, but also on the distribution of the release times of jobs. This is due to the fact that

the look-ahead factor is used only to define a time window, and jobs that are released during

that time window belong to the look-ahead horizon. However, it is possible that in certain time

windows no jobs are released, and therefore no unreleased jobs would be considered. Because

of this variability the performance of DRs is not as good as when using a constant number of

jobs in the look-ahead horizon.

Figure 8.2 represents the box plot representation of the results. The figure demonstrates that

when designing DRs with look-ahead it is more likely that outlier solutions will appear. How-

336

8.2. Results

D
G

P

l0
.0

3

l0
.0

5

l0
.1

l0
.2

l0
.5 l1 n
3

n
5

n
10

n
20

n
50

n
10

0

11

12

13

14

15

16

Figure 8.2: Box plot representation of the results obtained by using DRs with look-ahead

ever, most of the remaining solutions will obtain better performance than the DRs generated

by DGP. In addition, the figure depicts that the solution distributions for look-ahead factors of

0.5 and 1, and for certain numbers of jobs in the look-ahead horizon (those of 10, 20, 50, 100)

are quite similar with smaller variations in the median and minimum values. This means that it

is possible to use smaller values of the parameters without a large deterioration in the results.

Based on all the aforementioned observations it can be concluded the DRs with look-ahead

generally achieve much better results than DRs generated by DGP.

8.2.3 Results obtained by look-ahead with static terminal nodes

In the previous section no additional nodes which contain static information, except for the

AR node, were used. To test whether it is beneficial to provide additional static information

to DRs which use look-ahead, certain static nodes will be included into the terminal set of

GP when generating DRs which use look-ahead. Since trying out all possible combinations of

static terminal nodes and look-ahead parameters would be too time consuming, only the set of

static terminal nodes which achieved the best overall minimum value will be used to analyse

the influence of the look-ahead parameters. This terminal node combination is denoted with the

index 21 in Table 8.3. After the influence of the look-ahead parameters is analysed, the values

of the look-ahead parameters were fixed to a certain value, and the remaining 20 static node

combinations from Table 8.3 were tested with the optimised value of the look-ahead parameter.

337

8. Design of DRs for static scheduling conditions

Table 8.5: Results obtained by DRs with look-ahead and static terminal nodes calculated based on all
unreleased jobs

Look-ahead
factor

Min Med Max Stat.
diff.

Number
of jobs

Min Med Max Stat.
diff.

0.03 12.25 13.60 15.34 ≈ 3 11.43 12.92 14.23 +

0.05 12.19 13.99 15.46 − 5 12.05 12.82 16.10 +

0.1 11.97 12.98 14.44 + 10 11.22 12.46 14.21 +

0.2 12.15 12.94 13.94 + 20 11.53 12.91 19.98 +

0.5 11.23 12.55 15.04 + 50 11.53 12.67 17.89 +

1 11.60 12.78 15.07 + 100 11.59 12.83 14.38 +

DGP 12.96 13.60 14.62 12.96 13.60 14.62

In addition, two methods of calculating the static terminal nodes were used, the first which

calculates the static terminals based on all unreleased jobs, and the other which calculates the

static terminals based on unreleased jobs outside the look-ahead horizon.

Table 8.5 represents the results of DRs which use look-ahead together with static terminals

calculated based on all yet unreleased jobs. The results show that, similarly as when not using

static nodes, DRs with look-ahead outperform DRs generated by DGP in all cases, except when

using the look-ahead parameter values of 0.03 and 0.05. The improvements achieved over DGP

were this time at most 13.3% for the minimum value, and 8.4% for the median value. By

comparing the results of look-ahead with and without static nodes, it can be concluded that the

addition of static nodes does not lead to improvements in the results, but rather that the results

deteriorate. This is backed up by statistical tests which show that for the same look-ahead

parameter values, DRs which use look-ahead and static nodes were unable to outperform DRs

which only use look-ahead.

Figure 8.3 represents the box plot representation of the results. The "l" label represents that

the look-ahead parameter of the specified value is used, while the "n" label represents that the

specified number of jobs in the look-ahead horizon is used. The figure shows that this time there

is no large difference between the results obtained by using either the look-ahead parameter or

the number of jobs in the look-ahead horizon. By using small values for the number of jobs in

the look-ahead horizon the procedure achieves good results, however, the improvements in the

results do not increase significantly when increasing the value of the parameter. The figure also

denotes that the procedure is less stable than DGP, since it achieved more dispersed results, and

quite large outlier solutions for certain parameter values.

Table 8.6 represents the results achieved by DRs with look-head and static terminal nodes

338

8.2. Results

D
G

P

l0
.0

3

l0
.0

5

l0
.1

l0
.2

l0
.5 l1 n
3

n
5

n
10

n
20

n
50

n
10

0

12

14

16

18

20

Figure 8.3: Box plot representation of the results obtained by DRs with look-ahead and static terminal
nodes calculated based on all unreleased jobs

calculated out of unreleased jobs outside the look-ahead horizon. With this calculation method

of static nodes, improvements of at most 15.9% for the minimum value, and 14.4% for the me-

dian value over DRs generated by DGP were achieved. Therefore, when calculating the values

of static nodes, better results were obtained when the values of those nodes were calculated only

based on the unreleased jobs outside the look-ahead horizon. In such a way, jobs which are in

the look-ahead horizon will not influence the values of the static terminal nodes, and the whole

procedure will be more stable. However, with this calculation method it can happen that if a

too large look-ahead horizon is selected, that very soon in the procedure static terminals will

become useless, since all jobs will be inside of the look-ahead horizon. This can best be seen

when using the constant number of jobs in the look-ahead horizon, where the results improve

until the value of the parameter reaches 20, after which the results start to deteriorate. Therefore,

smaller look-ahead horizons should be preferred with this calculation method, so that static ter-

minal nodes still provide useful information. The table shows that for this calculation method

GP obtained results which were significantly better than that of DGP for all parameter values,

except for the two smallest values of the look-ahead factor. Unfortunately, neither this calcula-

tion method achieved results which were significantly better than those when using look-ahead

without static terminals.

Figure 8.4 represents the box plot representation of the results. The figure shows that by

using a constant number of jobs in the look-ahead horizon, better results and solution distribu-

tions were achieved. The figure also denotes that better results were achieved if not a too large

339

8. Design of DRs for static scheduling conditions

Table 8.6: Results obtained by DRs with look-ahead and static terminal nodes calculated based on
unreleased jobs outside the look-ahead horizon

Look-ahead
factor

Min Med Max Stat.
diff.

Number
of jobs

Min Med Max Stat.
diff.

0.03 12.08 13.48 17.59 ≈ 3 11.42 12.10 15.30 +

0.05 12.11 13.65 15.75 ≈ 5 11.10 11.95 15.22 +

0.1 11.81 12.98 14.44 + 10 10.90 12.24 14.11 +

0.2 11.86 12.39 14.94 + 20 11.10 11.64 14.54 +

0.5 11.02 12.24 16.48 + 50 11.04 11.86 14.15 +

1 11.10 12.33 14.27 + 100 10.95 12.35 14.51 +

DGP 12.96 13.60 14.62 12.96 13.60 14.62

look-ahead horizon was used, which is consistent with the previous observations about the cal-

culation method of static nodes. However, for certain parameter values, the method obtained

several large outlier solutions.

Through the previously denoted results the influence of the look-ahead parameters for a

concrete set of static terminal nodes was analysed. Now the look-ahead parameter will be fixed

to a certain value, and the other 20 combinations of static terminal nodes will be tested to

analyse if the results can further be improved by using a different combination of static nodes.

The experiments were executed with the second calculation method, in which the static nodes

are calculated only based on unreleased jobs outside the look-ahead horizon, since GP achieved

better results for this calculation methods. Although the overall best result was achieved when

using 10 jobs in the lookahead horizon, this parameter will not be selected since it it did not

achieve a good median value. Therefore, a parameter value of 20 jobs in the look-ahead horizon

will be selected, since it achieved the best median value, and the second best minimum value.

Table 8.7 represents the results obtained when using different static terminals node combi-

nations with look-ahead. The index in the first column denotes the considered static terminal

combination from Table 8.3. The results in the table show that the performance of DRs with

look-ahead depends heavily on the static terminal set which is used. Although for all the combi-

nations of static terminal nodes the DRs significantly outperformed DRs designed by DGP, not

even one combination achieved better results than look-ahead with the same parameter values,

but without the static terminals. It should be noted that none of the other 20 tested static terminal

node combinations achieved a better median value than the one which was selected for optimis-

ing the look-ahead parameters (denoted in the table with the index 21). For all static terminal

node combinations quite similar minimum values were achieved, which means that all the se-

340

8.2. Results

D
G

P

l0
.0

3

l0
.0

5

l0
.1

l0
.2

l0
.5 l1 n
3

n
5

n
10

n
20

n
50

n
10

0

11

12

13

14

15

16

17

18

Figure 8.4: Box plot representation of the results obtained by DRs with look-ahead and static terminal
nodes calculated based on unreleased jobs outside the look-ahead horizon

lected terminal node combinations are similarly expressive. However, much larger differences

in the median and maximum values can be observed when using the different node combina-

tions. In most cases, better median values were achieved by experiments where a smaller set of

additional static terminal nodes was used.

Figure 8.5 represents the box plot for the different combinations of static nodes with look-

ahead. In the box plot the result for the DRs which use look-ahead with the same parameter

value, but without static terminals, is also included and denoted as n-20. The figure denotes

that by using static terminals the entire procedure becomes more unstable. This is evident by

the great dispersion of the results, and the many outlier solutions which were obtained by the

method. In addition, the outlier solutions obtained by the method mostly achieved objective

values that were much worse than the maximum values obtained by DGP. Nevertheless, this

did not have an influence on the possibility of the method to outperform the results achieved by

DGP.

Based on all the results and observations in this section, it can be concluded that the combi-

nation of look-ahead with static terminal nodes does not lead to significant improvements in the

results. Neither by adjusting the look-ahead parameters, nor by using different static node com-

binations was it possible to achieve improvements over DRs which only use lookahead. The

reason for this is probably due to the fact that look-ahead already enables the DRs to consider

the important jobs which arrive in the future, and therefore there seems to be no need to provide

additional information about future jobs through the static terminal nodes.

341

8. Design of DRs for static scheduling conditions

Table 8.7: Results obtained by using DRs with a look-ahead horizon 20 jobs and different combinations
of static terminal nodes

Static terminal combination Min Med Max Stat. diff.

1 11.10 12.20 18.52 +

2 11.28 11.99 16.68 +

3 11.25 12.25 15.29 +

4 11.26 12.45 16.44 +

5 11.22 12.30 15.10 +

6 11.24 12.22 15.35 +

7 11.10 12.51 19.19 +

8 11.29 12.67 17.59 +

9 11.01 12.61 16.70 +

10 11.02 12.12 15.53 +

11 11.28 12.24 15.96 +

12 11.03 12.33 16.98 +

13 11.14 12.00 18.24 +

14 11.09 12.08 15.19 +

15 11.00 12.25 13.27 +

16 11.02 11.94 13.98 +

17 11.09 12.50 17.54 +

18 11.20 11.64 14.99 +

19 11.07 11.94 18.29 +

20 11.20 11.81 15.66 +

21 11.10 11.64 14.54 +

DGP 12.96 13.60 14.62

342

8.2. Results

D
G

P
n-

20
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

11121314151617181920

Fi
gu

re
8.

5:
B

ox
pl

ot
re

pr
es

en
ta

tio
n

of
th

e
re

su
lts

ob
ta

in
ed

by
D

R
s

w
ith

lo
ok

-a
he

ad
an

d
di

ff
er

en
ts

ta
tic

no
de

co
m

bi
na

tio
ns

343

8. Design of DRs for static scheduling conditions

8.2.4 Results obtained by IDRs

In this section the results for IDRs with different combinations of IDR nodes will be presented.

Since nine IDR nodes were proposed, testing all possible combinations of those nodes would

be too time consuming. For that reason, the same destructive and constructive heuristics, which

were used for creating the sets of static terminal nodes, will also be used here to create sets

of IDR nodes. Since the number of combinations tested even by those two heuristics is quite

substantial, only the ten combinations which achieved the best minimum values were selected.

Table 8.8 represents the results achieved by the ten best combinations of IDR nodes. The

first seven combinations were obtained by using the constructive heuristic, while the remain-

ing three combinations were obtained by using the destructive heuristic. The table shows that

IDRs, which used the node combinations generated by the constructive heuristic, achieved sig-

nificantly better results than DGP. On the other hand, for the three remaining node sets created

by the destructive heuristic, there was no significant difference between the results achieved

by IDRs and DGP. The table also shows that better results were achieved when using smaller

sets of IDR nodes, usually between one and three nodes. Therefore, it is evident that for IDRs

to work well, not many additional nodes are needed, but rather it is important to select those

which represent useful information. The experiments have shown that for optimising the Twt

criterion, the best results are achieved when using nodes which contain information about the

tardiness of the jobs. The IDRs usually achieved the best results when using the INDTARD,

INDWTARD, and NLATE nodes. The first two nodes are important since they denote the tardi-

ness and weighted tardiness for each of the jobs, while the third node gives a notion about the

number of jobs which were late in the previous schedule. Nodes that do not contain tardiness

information, like FLOWTIME or JOBFINISH, do not seem to be very useful. Furthermore, the

results also demonstrate that by using the LATENESS and TARDINESS nodes, which represent

the tardiness and lateness of the entire schedule, IDRs usually do not achieve good results.

Therefore, nodes which provide information about the tardiness of individual jobs lead to much

better performance of IDRs.

Figure 8.6 shows the box plot representation of IDRs for the different combinations of IDR

nodes. The figure shows that IDRs achieved more dispersed results than DGP, but most of these

results were of good quality, which leads to good average and median values of the results.

Although the IDRs generated by using node sets constructed by the destructive heuristic obtain

better minimum values than DGP, the distribution of most solutions is similar to the one ob-

tained by DGP, and therefore there is no significant difference between the two methods. On

the other hand, when using node combinations generated by the constructive heuristic, IDRs

achieved quite good solution distributions, especially for node sets 2 and 3.

344

8.2. Results

Table 8.8: Results obtained by IDRs with various IDR node combinations

IDR node combinations Min Med Max Stat. diff.

1 INDTARD 12.09 13.19 14.77 +

2 INDWTARD 12.09 13.07 14.40 +

3 INDWTARD, NLATE 11.87 13.08 13.94 +

4 INDTARD, INDWTARD, NLATE 11.82 13.18 14.39 +

5 FLOWTIME, INDTARD, INDWTARD, NLATE 12.03 13.37 15.05 +

6 INDLATE, INDTARD, INDWTARD, NLATE 12.01 13.23 14.30 +

7 INDWTARD, NLATE, INDTARD, INDLATE,
LATE, TARDINESS

12.06 13.21 14.51 +

8 FLOWTIME, INDTARD, INDWTARD,
JOBFINISH, LATE, LATENESS, NLATE,
TARDINESS

12.08 13.60 18.73 ≈

9 FLOWTIME, INDLATE, INDTARD, INDW-
TARD, LATE, LATENESS, NLATE, TARDI-
NESS

11.90 13.53 15.02 ≈

10 FLOWTIME, INDLATE, INDTARD, IN-
DWTARD, JOBFINISH, LATE, LATENESS,
NLATE, TARDINESS

12.06 13.56 15.09 ≈

DGP 12.96 13.60 14.62

345

8. Design of DRs for static scheduling conditions

DGP 1 2 3 4 5 6 7 8 9 10

12

13

14

15

16

17

18

19

Figure 8.6: Box plot representation of the results obtained by IDRs for various combinations of IDR
nodes

8.2.5 Results obtained by IDRs with static terminal nodes

In this section IDRs will be combined with static terminal nodes to determine whether combin-

ing these two approaches can lead to improved results, when compared to the results obtained

by using each approach individually. First, the influence of the different IDR node combinations

will be tested when the best combination of static terminal nodes is used (the one denoted with

index 21 in Table 8.3). After that, the set of IDR nodes will be fixed to the best combination

and the procedure will be tested with different combinations of static terminal nodes.

Table 8.9 represents the results achieved by the combination of IDRs and static terminal

nodes for different IDR node combinations. The experiments which achieve significantly better

results than DRs that use only the best combination of static terminal nodes are denoted with

a grey background. On the other hand, experiments which perform significantly better than

the IDRs with the same node combination will be underlined. The results show that although

the procedure outperformed the results achieved by DGP in most cases, it struggled to perform

better than either DRs with static terminal nodes or IDRs on their own. Only for experiment 4

the combination of IDRs and static terminal nodes significantly outperformed the best results

obtained by using only static terminal nodes, which is hardly enough to justify the combination

of these two methods.

Figure 8.7 shows the box plot representation of the results. The box plot denotes that for all

IDR node combinations the achieved solution distributions are mostly similar. As in the pre-

vious experiments, better results are usually obtained by small sets of nodes, since the results

346

8.2. Results

Table 8.9: Results obtained by IDRs with static terminal nodes and different combinations of IDR
nodes

IDR node combination Min Med Max Stat. diff.

1 INDTARD 11.89 13.16 14.79 +

2 INDWTARD 12.12 13.31 14.45 +

3 INDWTARD, NLATE 11.93 13.16 14.55 +

4 INDTARD, INDWTARD, NLATE 12.11 12.88 14.31 +

5 FLOWTIME, INDTARD, INDWTARD, NLATE 12.07 13.17 14.45 +

6 INDLATE, INDTARD, INDWTARD, NLATE 12.26 13.28 14.98 +

7 INDWTARD, NLATE, INDTARD, INDLATE,
LATE, TARDINESS

12.07 13.37 14.69 +

8 FLOWTIME, INDTARD, INDWTARD,
JOBFINISH, LATE, LATENESS, NLATE,
TARDINESS

12.47 13.38 14.48 +

9 FLOWTIME, INDLATE, INDTARD, INDW-
TARD, LATE, LATENESS, NLATE, TARDI-
NESS

12.25 13.36 14.66 ≈

10 FLOWTIME, INDLATE, INDTARD, IN-
DWTARD, JOBFINISH, LATE, LATENESS,
NLATE, TARDINESS

12.26 13.33 14.25 +

DGP 12.96 13.60 14.62

347

8. Design of DRs for static scheduling conditions

DGP Stat-21 1 2 3 4 5 6 7 8 9 10

12

13

14

15

16

17

Figure 8.7: Box plot representation of the results obtained by IDRs with static terminal nodes and
different combinations of IDR nodes

slowly deteriorate as the number of nodes increases. This can be seen from both the achieved

minimum and median values of the results. In the figure the best results achieved by DRs using

static terminal nodes are additionally included and denoted as Stat-21. These results addition-

ally illustrate that the combination of static nodes and IDRs is unable to achieve improvements

over the best results achieved by DRs using only static terminal nodes.

Table 8.10 represents the results achieved by the combination of IDRs and static terminal

nodes, but for different combinations of static nodes. For these experiments the IDR node com-

bination denoted with index 4 in Table 8.8 was used. The results which are significantly better

than those of the best result achieved by IDRs are underlined. On the other hand, the results

which are significantly better than those of DRs with the same static node combinations are

denoted with a grey background. The results show that the combination of IDRs and static

terminals performed significantly better than DGP. The combination has even shown to signif-

icantly outperform, for certain static node combinations, DRs which use only static terminal

nodes. However, this usually occurred for node combinations where DRs with static terminal

nodes did not perform well. Therefore, by using IDRs it was easier to achieve better results for

those terminal node combinations. On the other hand, the combination of IDRs and static termi-

nal nodes did not achieve significantly better results when compared to the best result achieved

by IDRs. This just confirms the previous observations, which have shown that the addition of

static terminal nodes does not significantly improve the results of IDRs.

Figure 8.8 shows the box plot representation of the results. The figure demonstrates that

348

8.2. Results

Table 8.10: Results obtained by IDRs and different combinations of static terminal nodes

Static terminal node combination Min Med Max Stat. diff.

1 12.03 13.26 14.57 +

2 12.03 13.29 14.58 +

9 12.13 13.37 14.80 +

10 11.91 13.10 14.45 +

12 12.31 13.28 14.34 +

17 12.35 13.30 14.13 +

18 12.33 13.23 14.40 +

19 12.25 13.20 14.31 +

20 12.24 13.06 15.28 +

21 12.11 12.88 14.31 +

DGP 12.96 13.60 14.62

all combinations of static nodes achieve quite similar distributions of results. The best result

achieved by IDRs (denoted as IDR-4) is also included in the figure to denote that it achieved

similar solution distributions as most combinations of IDRs and static nodes. Therefore, the plot

demonstrates that no significant improvements are achieved by adding static terminal nodes to

IDRs.

Based on all the results denoted in this section, it can be concluded that the combination

of IDRs and static terminal nodes did not achieve results which would justify the use of this

combination, since in most cases it even struggled to outperform results of IDRs without static

terminals. Therefore, it is more beneficial to use IDRs on their own, without the addition static

terminal nodes.

8.2.6 Results obtained by IDRs with look-ahead

In this section IDRs will be combined with look-ahead to analyse whether this combination

can lead to improved results. First, the set of IDRs which achieves the best minimum value

will be selected (the one with the index 4 in Table 8.8), while the look-ahead parameters will

be optimised. After that, the look-ahead parameter will be fixed to a concrete value, while the

different combinations of IDR nodes will be tested.

Table 8.11 represents the results achieved for IDRs with look-ahead, for different look-ahead

parameters. To additionally denote whether there are improvements over IDRs and look-ahead

349

8. Design of DRs for static scheduling conditions

DGP IDR-4 1 2 9 10 12 17 18 19 20 21
11.5

12

12.5

13

13.5

14

14.5

15

15.5

Figure 8.8: Box plot representation of the results obtained by IDRs and different combinations of static
terminal nodes

on their own, those results which achieve significantly better results than those two methods will

be specially denoted in the table. The experiments which achieve better results than the IDRs

with the same combination of nodes will be underlined. On the other hand, the experiments

which achieve significantly better results than look-ahead with the same parameters, but without

using IDRs, will be denoted with a grey cell. The table shows that the combination of IDRs

and look-ahead does not only outperform results of DGP, but also that it, in almost all cases,

significantly outperforms the results of DRs with look-ahead, and IDRs on their own. This

proves that the combination of these two methods is beneficial for increasing their performance.

The reason why this combination performs well is due to the fact that DRs with look-ahead

already perform quite well, however, since IDRs create the schedule several times by using

information from the previously created schedules, they iteratively increase the performance of

the schedule even further. Although the best results were achieved by using the largest values

for the look-ahead parameters, extremely good results were achieved even for smaller values of

the look-ahead parameters, for example for five and ten jobs in the look-ahead horizon.

Figure 8.9 shows the box plot representation of the results. The results for the best IDR

node combination (denoted with the index 4 in Table 8.8) without look-ahead have also been

included in the figure, and are denoted as IDR-4. The figure clearly demonstrates that for most

of the look-ahead parameter values, much better solution distributions are achieved by IDRs

with look-ahead than by DGP or IDRs on their own. Except for the few outlier solutions,

all other solutions obtained by IDRs with look-ahead are better than the best solution found by

350

8.2. Results

Table 8.11: Results obtained by IDRs and look-ahead when using different look-ahead parameter
values

Look-ahead
factor

Min Med Max Stat.
diff.

Number of
jobs

Min Med Max Stat.
diff.

0.03 11.94 12.64 14.35 + 3 10.80 11.37 13.20 +

0.05 11.96 12.93 16.11 + 5 10.75 11.17 14.41 +

0.1 10.86 11.78 17.16 + 10 10.80 11.17 16.46 +

0.2 11.14 12.01 13.73 + 20 10.79 11.50 13.72 +

0.5 11.06 11.62 21.66 + 50 10.73 11.15 14.94 +

1 10.63 11.54 12.95 + 100 10.53 11.10 12.44 +

DGP 12.96 13.60 14.62 12.96 13.60 14.62

DGP, when using a constant number of jobs in the look-ahead horizon. Therefore, this approach

can easily obtain much better results than DGP.

Table 8.12 represents the results for the combination of IDRs with look-ahead for different

combinations of IDR nodes. For these experiments five jobs in the look-ahead horizon were

used. This parameter value was selected since it lead to the largest improvement when com-

bining IDRs and look-ahead over the results obtained by using look-ahead on its own. In the

table, the experiments which achieve significantly better results than IDRs with the same node

combinations, but without look-ahead, are underlined. On the other hand, experiments which

achieve significantly better results than look-ahead of the same parameters, but without IDRs,

will be denoted with a grey cell. The results in the table show that the combination of IDRs

and look-ahead consistently achieved better results than either DGP or IDRs. By comparing the

results to those achieved by look-ahead, it can be noticed that for smaller combinations of IDR

nodes better results are achieved when additionally using IDRs. However, for larger combina-

tions there was no significant difference between using a combination of IDRs and look-ahead,

and using only look-ahead. Such a result is expected since IDRs on their own did not achieve

good results for larger combinations of IDR nodes. The experiments also show that neither of

the other nine node combinations achieved a better median value than the combination of IDR

nodes used for optimising the look-ahead parameters.

Figure 8.10 shows the box plot representation of the results. The results obtained by the

look-ahead method with 5 jobs in the look-ahead horizon are also included in the figure, and

denoted as n-5. The figure illustrates that the best solution distributions are achieved when using

between two and four IDR nodes, while for a smaller or larger number of nodes the methods

obtained more dispersed results. As the number of IDR nodes used in the primitive set grows,

351

8. Design of DRs for static scheduling conditions

Table 8.12: Results obtained by IDRs with look-ahead when using different IDR node combinations

IDR node combinations Min Med Max Stat. diff.

1 INDTARD 10.67 11.43 13.14 +

2 INDWTARD 10.96 11.53 12.88 +

3 INDWTARD, NLATE 10.89 11.41 12.36 +

4 INDTARD, INDWTARD, NLATE 10.75 11.17 14.41 +

5 FLOWTIME, INDTARD, INDWTARD, NLATE 10.76 11.41 13.07 +

6 INDLATE, INDTARD, INDWTARD, NLATE 10.85 11.42 13.22 +

7 INDWTARD, NLATE, INDTARD, INDLATE,
LATE, TARDINESS

10.73 11.52 13.38 +

8 FLOWTIME, INDTARD, INDWTARD,
JOBFINISH, LATE, LATENESS, NLATE,
TARDINESS

10.94 11.64 13.57 +

9 FLOWTIME, INDLATE, INDTARD, INDW-
TARD, LATE, LATENESS, NLATE, TARDI-
NESS

10.71 11.71 13.77 +

10 FLOWTIME, INDLATE, INDTARD, IN-
DWTARD, JOBFINISH, LATE, LATENESS,
NLATE, TARDINESS

10.66 11.34 14.15 +

DGP 12.96 13.60 14.62

352

8.2. Results

D
G

P

ID
R

-4

l0
.0

3

l0
.0

5

l0
.1

l0
.2

l0
.5 l1 n
3

n
5

n
10

n
20

n
50

n
10

0

10

12

14

16

18

20

22

Figure 8.9: Box plot representation of the results obtained by IDRs with look-ahead when using
different look-ahead parameter values

especially beyond the size of six nodes, the obtained results start to deteriorate. Therefore, it can

be concluded that a combination of IDRs and look-ahead achieves good results when a small or

moderate number of IDR nodes is used in the primitive set, whereas for a larger number of IDR

nodes the results deteriorate.

8.2.7 Results obtained by IDRs with static terminals and look-ahead

This section will analyse whether the combination of IDRs, look-ahead and static terminals at

the same time can lead to improved results. Through three experiment sets it will be analysed

how different look-ahead parameters, IDR node combinations and static terminal node combi-

nations influence the quality of the results. Through all the experiments the static nodes will be

calculated based on all unreleased jobs outside the look-ahead horizon.

Table 8.13 represents the results achieved for IDRs with look-ahead and static terminal

nodes. This table analyses the influence of the different look-ahead parameters on the quality

of the results. The experiments used the set of static terminal nodes denoted with the index

21 in Table 8.3, and the set of IDR nodes with the index 4 from Table 8.8. The experiments

which achieve significantly better results than look-ahead for the same parameter combination

will be denoted with a grey cell. On the other hand, the results which achieve better results

than look-ahead with static terminal nodes for the same parameter values will be underlined.

The results denote that except for one experiment, all other experiments achieved significantly

353

8. Design of DRs for static scheduling conditions

DGP n-5 1 2 3 4 5 6 7 8 9 10

11

12

13

14

15

Figure 8.10: Box plot representation of the results obtained by IDRs with look-ahead when using
different IDR node combinations

better results than DRs generated by DGP. Half of the experiments achieved better results than

look-ahead on its own, however, no experiment achieved significantly better results than IDRs

with look-ahead.

Figure 8.11 represents the box plot representation of the results. The figure denotes that

look-ahead with a fixed number of jobs in the look-ahead horizon performs much better than

when using smaller values for the look-ahead factor. In addition, when using the fixed num-

ber of jobs in the look-ahead horizon, better distributions can be achieved when using smaller

parameter values. This is expected since with the growth of the number of jobs in the look-

ahead horizon, the static nodes will hold less useful information. Therefore, with this approach

a smaller value of the number of jobs in the look-ahead horizon should be used. The figure also

includes the results achieved by the best combination of static terminal nodes and IDR nodes,

which is denoted as IDR-4 S-21 (the indices denote which IDR and static node combinations

were used). The results show that by adding look-ahead to IDRs with static terminal nodes

leads to improved results for most look-ahead parameter values.

Table 8.14 represents the influence of the different IDR node combinations on the results

for IDRs with look-ahead and static nodes. These experiments use the static terminal node set

denoted with the index 21 in Table 8.3, and 5 jobs in the look-ahead horizon. The underlined

experiments in the table represent those for which significantly better results are achieved, when

compared to the results obtained by the same IDR node combinations with the best set of static

terminal nodes. The cells denoted in grey represent results in which the experiments signifi-

cantly outperform IDRs with look-ahead for the same IDR node combinations, and the same

354

8.2. Results

Table 8.13: Results obtained by IDRs with look-ahead and static terminals when using various
look-ahead parameter values

Look-ahead
factor

Min Med Max Stat.
diff.

Number
of jobs

Min Med Max Stat.
diff.

0.03 11.92 12.56 13.98 + 3 10.87 11.77 13.75 +

0.05 11.86 13.62 15.05 ≈ 5 10.63 11.52 14.00 +

0.1 11.04 12.12 13.94 + 10 10.77 11.42 14.29 +

0.2 11.58 12.12 13.68 + 20 10.61 11.56 14.49 +

0.5 10.66 11.61 14.42 + 50 10.53 11.76 13.39 +

1 10.59 11.62 13.86 + 100 10.52 11.85 13.07 +

DGP 12.96 13.60 14.62 12.96 13.60 14.62

D
G

P

ID
R

-4
S-

21

l0
.0

3

l0
.0

5

l0
.1

l0
.2

l0
.5 l1 n
3

n
5

n
10

n
20

n
50

n
10

0

11

12

13

14

15

Figure 8.11: Box plot representation of the results obtained by IDRs with look-ahead and static
terminals when using various look-ahead parameter values

355

8. Design of DRs for static scheduling conditions

Table 8.14: Results obtained by IDRs with look-ahead and static terminals when using various
combinations of IDR nodes

IDR node combination Min Med Max Stat. diff.

1 INDTARD 10.98 12.08 14.09 +

2 INDWTARD 10.89 11.39 14.07 +

3 INDWTARD, NLATE 10.82 11.33 13.46 +

4 INDTARD, INDWTARD, NLATE 10.63 11.52 14.00 +

5 FLOWTIME, INDTARD, INDWTARD, NLATE 10.74 11.61 13.38 +

6 INDLATE, INDTARD, INDWTARD, NLATE 10.86 11.98 15.23 +

7 INDWTARD, NLATE, INDTARD, INDLATE,
LATE, TARDINESS

10.98 11.70 14.97 +

8 FLOWTIME, INDTARD, INDWTARD,
JOBFINISH, LATE, LATENESS, NLATE,
TARDINESS

10.75 11.66 14.03 +

9 FLOWTIME, INDLATE, INDTARD, INDW-
TARD, LATE, LATENESS, NLATE, TARDI-
NESS

10.80 11.62 14.96 +

10 FLOWTIME, INDLATE, INDTARD, IN-
DWTARD, JOBFINISH, LATE, LATENESS,
NLATE, TARDINESS

10.86 11.90 13.50 +

DGP 12.96 13.60 14.62

look-ahead parameter value. The results denote that this combination achieved significantly

better results than DRs evolved by DGP, or when using static terminal nodes with IDRs. How-

ever, the achieved results are inferior to the results obtained by IDRs with look-ahead for the

same IDR combinations. Again, the best results were achieved when smaller sets of IDR nodes

were used.

Figure 8.12 shows the box plot representation of the results. The figure denotes that better

solution distributions are mostly achieved when using a smaller number of IDR nodes. When

compared to DGP, the method has shown to consistently achieve superior results. The figure

also includes the result obtained by look-ahead with static terminal nodes, denoted as n-5 S-21,

which used the same parameters as the other experiments in the figure, just without the IDR

nodes. These results show that by adding IDRs to look-ahead with static terminal nodes leads

to better median values for most IDR node combinations, especially for combinations 2, 3, and

4.

Table 8.15 represents the influence of the different static terminal node combinations on

356

8.2. Results

DGP n-5
S-21

1 2 3 4 5 6 7 8 9 10

11

12

13

14

15

Figure 8.12: Box plot representation of the results obtained by look-ahead with IDRs, when using
different IDR node combinations

IDRs with look-ahead and static nodes. The experiments will use the IDR node combina-

tion denoted with the index 4 in Table 8.8, and five jobs in the look-ahead horizon. The grey

cells denote experiments for which significantly better results were achieved than those of DRs

with look-ahead and the same static node combinations. On the other hand, the underlined

experiments denote those which achieved better results than IDRs with the same static node

combinations. The table shows that all experiments achieved significantly better results than

GP which uses the same static node combinations. Furthermore, for each combination of static

nodes the experiments outperform DGP and and IDRs with static terminal nodes. Therefore,

the inclusion of look-ahead to IDRs with static nodes leads to improved results. On the other

hand, the addition of IDRs to look-ahead with static nodes also leads to improved results, but

only for certain static node combinations.

Figure 8.13 shows the box plot representation of the results. The figure denotes that the

chosen combination of static nodes influences the obtained results. This is evident from the

fact that for certain node combinations the approach achieved quite dispersed results, which

consequentially lead to worse median values for those node combinations. This is especially

evident for static node combinations denoted with indices 12 and 18. On the other hand, for

static node combination like 1, 17, and 19 the method achieved the best solution distributions.

The figure also includes the results achieved by IDRs with look-ahead for the same parameter

values which were used by the other experiments. This result is denoted as IDR-4 n-5 in the

figure. The experiments show that by adding static terminal nodes to look-ahead with IDRs does

357

8. Design of DRs for static scheduling conditions

Table 8.15: Results obtained by IDRs with look-ahead and static terminal nodes, when using various
combinations of static terminal nodes

Static terminal combination Min Med Max Stat. diff.

1 10.71 11.53 12.98 +

2 10.71 11.85 13.89 +

9 10.87 11.67 14.35 +

10 10.63 11.61 13.98 +

12 10.67 11.76 19.75 +

17 10.86 11.32 19.22 +

18 10.87 12.03 14.10 +

19 10.78 11.54 13.46 +

20 10.63 11.56 14.11 +

21 10.63 11.52 14.00 +

DGP 12.96 13.60 14.62

not increase the performance of the method, regardless of the static node combination which

was used.

The experiments in this section have demonstrated that the combination of IDRs, static ter-

minal nodes, and look-ahead can achieve quite good results when compared to DGP. However,

the procedure did not show any improvements when compared to the results of IDRs with look-

ahead. Therefore, there is little benefit of using the combination of all three methods.

8.2.8 Results obtained by the rollout algorithm

In this section the results for the rollout algorithm by using DRs generated by DGP will be

presented. As denoted previously, since the rollout algorithm always achieves significantly

better results than DGP, the statistical tests will check whether the rollout algorithm achieves

significantly better results than a GA. The results of these tests will be denoted in the stat. diff.

column.

Table 8.16 represents the results achieved by the rollout algorithm when using DRs gen-

erated by DGP. It is evident that the performance of the rollout algorithm depends heavily on

whether the rollout factor or number of jobs in the rollout horizon will be used. The rollout

algorithm achieved much better performance when a constant number of jobs in the rollout

horizon was used. This is supported by the fact that by using a constant number of jobs in the

rollout horizon, the rollout algorithm can in most cases perform equally well or better than the

358

8.2. Results

DGP IDR-4
n-5

1 2 9 10 12 17 18 19 20 21
10

12

14

16

18

20

Figure 8.13: Box plot representation of the results obtained by IDRs with static terminal nodes and
look-ahead, when using various combinations of static terminal nodes

GA. On the other hand, the rollout algorithm outperforms the GA only when the largest value

of the rollout factor is used. An additional thing which can be observed from the experiments is

that after a certain value for the number of jobs in the rollout horizon the results do not improve

any further, which means that considering more jobs in the rollout horizon is not beneficial.

Such a behaviour is expected, since it is highly unlikely that at the current scheduling decision

a job which is released far in the future would be scheduled. Therefore, it is useful to consider

only a smaller number of jobs which arrive the closest to the current decision time.

Figure 8.14 shows the box plot representation of the results. The figure illustrates how

different values of the rollout parameters influence the performance of the rollout algorithm.

The experiments which use the rollout factor are denoted with "r" and the value of the parameter,

while the experiments which use a fixed number of jobs in the rollout horizon are denoted with

"n" and the value of the parameter. It is interesting to note that the rollout algorithm usually

achieved less dispersed results than the GA. In addition, the figure also denotes that good results

are achieved even by small values for the number of jobs in the rollout horizon, and that those

results slowly improve as the value of the parameter increases until the value of 20 is reached,

after which no further improvement is achieved. On the other hand, when using smaller values

for the rollout factor, the results that are achieved are quite bad compared to the GA, and only

for larger values does the rollout algorithm achieve equally good results as the GA. The only

disadvantage of the rollout algorithm, especially when using a constant number of jobs in the

rollout horizon, is that it obtained more outlier values than the GA.

359

8. Design of DRs for static scheduling conditions

Table 8.16: Results obtained by the rollout algorithm, when using different rollout parameter values
and DRs generated by DGP

Rollout
factor

Min Med Max Stat.
diff.

Number
of jobs

Min Med Max Stat.
diff.

0 10.51 10.87 11.21 − 0 10.51 10.87 11.21 −
0.03 10.07 10.63 10.98 − 3 9.956 10.37 10.65 −
0.05 10.16 10.56 11.07 − 5 9.883 10.24 11.18 ≈
0.1 10.07 10.41 10.77 − 10 9.956 10.22 11.09 ≈
0.2 9.956 10.36 10.79 ≈ 20 9.790 10.08 10.88 +

0.5 10.05 12.27 11.12 ≈ 50 9.790 10.08 10.88 +

1 9.790 10.08 10.88 + 100 9.790 10.08 10.88 +

GA 9.917 10.27 10.90 9.917 10.27 10.90

G
A r0

r0
.0

3

r0
.0

5

r0
.1

r0
.2

r0
.5 r1 n
0

n
3

n
5

n
10

n
20

n
50

n
10

0

9.8

10

10.2

10.4

10.6

10.8

11

11.2

Figure 8.14: Box plot representation of the results obtained by the rollout algorithm, when using
different rollout parameter values and DRs generated by DGP

360

8.2. Results

Based on the outlined results, it is evident that the rollout algorithm represents a viable

alternative to the GA, since depending on the parameter value it can achieve equally good or

even better results.

8.2.9 Results obtained by the rollout algorithm with static terminals

This section will analyse whether combining the rollout algorithm with DRs which use addi-

tional static terminal nodes can lead to improved results.

Table 8.17 represents the results achieved by the rollout algorithm when using DRs with

static terminal nodes. For the experiments the static node combination denoted with index 21 in

Table 8.3 was chosen, since it achieved the overall best result out of all the tester terminal node

combinations. For the experiments denoted in grey the rollout algorithm achieved significantly

better results by using DRs that contain static terminals, instead of using DRs generated by

DGP. The addition of static nodes has more benefit when using the rollout factor, where for

all but one experiment the addition of static terminal nodes leads to statistically better results.

Even when comparing the achieved results to those of the GA can it be seen that for more

parameter values the rollout algorithm is now able to perform equally well or better than the

GA. When using the fixed number of jobs in the rollout horizon, the rollout algorithm achieved

significantly better results for three, mostly smaller parameter values. Therefore, the addition of

static terminal nodes has shown to be beneficial when using the rollout algorithm. The reason

for this is probably due to the fact that DRs which use static terminal nodes can give a better

approximation of the rest of the schedule, and therefore guide the rollout algorithm to improved

solutions.

Figure 8.15 represents the box plot representation of the results. The figure shows that

when using a constant number of jobs in the rollout horizon there is a quite small difference

between the results achieved for the different values of the parameter. It can be noticed that for

smaller parameter values the rollout algorithm can achieve some quite bad results. However,

this happens for only one or two DRs, and these results have shown to represent outliers when

the entirety of all results are considered.

In the previous experiments the rollout algorithm used DRs which were all generated by

using the same combination of static terminal nodes. However, it is interesting to test whether

having DRs created by different node combinations leads to a significant difference in the re-

sults. For that purpose, 30 DRs which achieve the best results, but are generated by different

static node combinations, were chosen. These selected DRs are then used by the rollout algo-

rithm to generate the schedules. Table 8.18 represents the results for the rollout algorithm when

using such a combination of DRs. The experiments denoted in grey achieve significantly better

results than the rollout algorithm, which uses DRs generated by DGP for the same parameter

values. On the other hand, the underlined experiments achieve significantly better results than

361

8. Design of DRs for static scheduling conditions

Table 8.17: Results obtained by the rollout algorithm with static terminal nodes, when using different
rollout parameter values and DRs generated by using the best static terminal node combination

Rollout
factor

Min Med Max Stat.
diff.

Number of
jobs

Min Med Max Stat.
diff.

0 10.35 10.74 11.69 − 0 10.35 10.74 11.69 −
0.03 10.18 10.50 11.48 − 3 9.907 10.15 11.29 ≈
0.05 10.11 10.47 11.40 − 5 9.806 10.17 11.31 +

0.1 10.08 10.29 11.53 ≈ 10 9.765 10.12 11.08 +

0.2 9.994 10.21 11.18 ≈ 20 9.769 10.08 10.74 +

0.5 9.828 10.13 10.48 + 50 9.770 10.10 10.61 +

1 9.770 10.10 10.61 + 100 9.770 10.10 10.61 +

GA 9.917 10.27 10.90 9.917 10.27 10.90

G
A r0

r0
.0

3

r0
.0

5

r0
.1

r0
.2

r0
.5 r1 n
0

n
3

n
5

n
10

n
20

n
50

n
10

0

10

10.5

11

11.5

Figure 8.15: Box plot representation of the results obtained by the rollout algorithm, when using
different rollout parameter values and DRs generated by using the best static terminal node combination

362

8.2. Results

Table 8.18: Results obtained by the rollout algorithm with static terminal nodes, when using various
rollout parameter values and DRs generated by using different static node combinations

Rollout
factor

Min Med Max Stat.
diff.

Number
of jobs

Min Med Max Stat.
diff.

0 10.27 10.48 10.89 − 0 10.27 10.48 10.89 −
0.03 10.09 10.34 10.77 ≈ 3 9.911 10.08 10.65 +

0.05 10.02 10.34 10.78 ≈ 5 9.786 10.04 10.66 +

0.1 9.987 10.22 10.68 ≈ 10 9.832 10.04 10.77 +

0.2 9.976 10.14 10.75 + 20 9.683 10.04 10.72 +

0.5 9.862 10.05 10.65 + 50 9.729 10.03 10.55 +

1 9.719 10.03 10.64 + 100 9.719 10.03 10.64 +

GA 9.917 10.27 10.90 9.917 10.27 10.90

the rollout algorithm which used only DRs generated by the best combination of static terminal

nodes. The experiments show that by using a combination of DRs generated by different com-

binations of static terminal nodes, the rollout algorithm can in all cases, except for the smallest

parameter value, achieve at least equally good results as the GA. When using the constant num-

ber of jobs in the rollout horizon, the rollout algorithm achieved significantly better results than

the GA for all parameter values except 0. The experiments also achieved significantly better

results than rollout with DRs generated by DGP in most of the cases. However, when compared

to the results achieved by the rollout algorithm using DRs generated by the best combination

of static terminals, it can be seen that significantly better results are achieved only for smaller

parameter values, while for larger parameter values there is no significant improvement in the

results.

Therefore, using DRs generated with various static node combinations leads to quite good

results. However, this is more due to the fact that the very best DRs were used, than to the fact

that they were generated by different static node combinations. In addition, it is much more

time consuming to create such a set of DRs, since DRs need to be generated for various static

node combinations, instead of just one. Since the improvements achieved when using such a

combination of DRs by the rollout algorithm are quite small compared to the results achieved

when using DRs generated by the very best combination of static nodes, there is no evident

benefit of using such a combination of methods.

Figure 8.16 represents the box plot representation of the results. The figure denotes that

the rollout algorithm achieves solutions which are, except for a few outliers, less dispersed

than those obtained by the GA. In addition, the rollout algorithm achieved better results than

363

8. Design of DRs for static scheduling conditions

G
A r0

r0
.0

3

r0
.0

5

r0
.1

r0
.2

r0
.5 r1 n
0

n
3

n
5

n
10

n
20

n
50

n
10

0

9.6

9.8

10

10.2

10.4

10.6

10.8

11

Figure 8.16: Box plot representation of the results obtained by the rollout algorithm, when using
different rollout parameter values and DRs generated by using different static node combinations

the GA even when using a smaller number of jobs in the rollout horizon. Better results are

also achieved when the rollout algorithm uses a constant number of jobs in the rollout horizon,

instead of using the rollout factor.

Table 8.19 denotes the results achieved by the rollout algorithm when using DRs generated

by using different combinations of static terminal nodes. In the experiments three jobs in the

rollout horizon were used. This parameter value was chosen since in the previous experiments

it was already demonstrated that good results were achieved for it, and that an increase in the

parameter value did not lead to any significant improvements in the results. The cells denoted

in grey represent experiments for which significantly better results were achieved than by using

the rollout algorithm with DRs generated by DGP. The experiments show that for 16 out of the

21 tested combinations of static nodes significantly better results were achieved by the rollout

algorithm when using static terminal nodes instead of DRs generated by DGP. While for the

most static node combinations the rollout algorithm achieved the same results as the GA, for

the combination denoted with the index 17 the rollout algorithm managed to outperform the

GA. The results also demonstrate that for all combinations the rollout algorithm performed

quite well.

Figure 8.17 shows the box plot representation for the results obtained by the rollout algo-

rithm when using different static node combinations. The figure shows that the combination

of nodes which is used by the rollout algorithm heavily influences the dispersion of the re-

364

8.2. Results

Table 8.19: Results obtained by the rollout algorithm with static terminal nodes, when using DRs
generated by different combinations of static terminal nodes

Static terminal combination Min Med Max Stat. diff.

1 9.952 10.24 10.88 ≈
2 10.12 10.32 11.53 ≈
3 9.976 10.31 11.16 ≈
4 9.945 10.14 11.19 ≈
5 9.963 10.25 11.18 ≈
6 9.950 10.20 11.12 ≈
7 9.994 10.17 10.81 ≈
8 9.874 10.24 12.68 ≈
9 10.01 10.25 12.83 ≈
10 10.00 10.15 10.89 ≈
11 10.03 10.19 12.63 ≈
12 9.998 10.29 11.95 ≈
13 9.987 10.16 10.75 ≈
14 9.889 10.16 10.83 ≈
15 9.952 10.22 10.92 ≈
16 9.923 10.14 11.18 ≈
17 9.891 10.15 11.91 +

18 9.908 10.15 11.01 ≈
19 9.996 10.18 10.74 ≈
20 9.918 10.19 10.96 ≈
21 9.907 10.15 11.29 ≈

GA 9.917 10.27 10.90

365

8. Design of DRs for static scheduling conditions

sults. However, for certain node combinations, like those denoted with indices 16 and 17, less

dispersed results are achieved. The figure also includes the results achieved by the rollout algo-

rithm when using DRs generated by DGP for three jobs in the rollout horizon, which is denoted

as n-3. For most static node combinations the rollout algorithm achieved a better performance

when compared to the rollout algorithm which uses DRs generated by DGP.

Based on all the results presented in this section, it can be concluded that using DRs with

static terminal nodes in the rollout algorithm leads to better results than by using DRs without

additional static information.

8.2.10 Results obtained by the rollout algorithm with look-ahead

This section will analyse if combining the rollout algorithm with DRs that additionally use look-

ahead can further improve the results. The first part of the section will analyse the influence of

the rollout parameter values on the obtained results when a fixed look-ahead parameter value is

used. After that, the experiments will test the influence of the look-ahead parameter values on

the results when using a fixed rollout parameter value.

Table 8.20 represents the results achieved for different parameter values by the rollout al-

gorithm when using DRs with look-ahead. For all the experiments ten jobs in the look-ahead

horizon were used. The cells denoted in grey represent the experiments which achieved signif-

icantly better results than the rollout algorithm which used DRs generated by DGP. The table

shows that for all parameter values the rollout algorithm achieves significantly better results

when using DRs with look-ahead instead of DRs generated by DGP. Furthermore, when using

a constant number of jobs in the rollout horizon, the rollout algorithm achieves significantly

better results than the GA for all parameter values larger than 0. For the best parameter value

the rollout algorithm with look-ahead achieves a better performance than the GA by 3.6% for

the median value. Therefore, by using DRs with look-ahead good improvements in the results

over the GA can be achieved.

Figure 8.18 shows the box plot representation of the results. The figure demonstrates that

for a number of parameter values the rollout algorithm achieves a better distribution of solutions

than the GA. This is especially evident when using a larger number of jobs in the rollout horizon.

In addition, better results are again achieved when using a constant number of jobs in the look-

ahead horizon instead of using the look-ahead parameter. Furthermore, when using the constant

number of jobs in the rollout horizon, the results do not change drastically when using more than

10 jobs in the rollout horizon. Therefore, the procedure once again performs well without the

need of considering too many jobs at each decision moment.

Table 8.21 represents the influence of different look-ahead parameter values on the results

achieved by the rollout algorithm with look-ahead. For these experiments the number of jobs

in the rollout horizon was set to 3. The values denoted with a grey cell in the table represent

366

8.2. Results

G
A

n-
3

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21

10

10
.511

11
.512

12
.513 Fi

gu
re

8.
17

:B
ox

pl
ot

re
pr

es
en

ta
tio

n
of

th
e

re
su

lts
ob

ta
in

ed
by

th
e

ro
llo

ut
al

go
ri

th
m

w
ith

st
at

ic
te

rm
in

al
no

de
s,

w
he

n
us

in
g

D
R

s
ge

ne
ra

te
d

by
di

ff
er

en
t

co
m

bi
na

tio
ns

of
st

at
ic

te
rm

in
al

no
de

s

367

8. Design of DRs for static scheduling conditions

Table 8.20: Results obtained by the rollout algorithm with look-ahead, when using different rollout
parameter values

Rollout
factor

Min Med Max Stat.
diff.

Number of
jobs

Min Med Max Stat.
diff.

0 9.990 10.59 12.01 − 0 9.990 10.59 12.01 −
0.03 9.939 10.50 11.73 − 3 9.868 10.10 11.08 +

0.05 9.921 10.40 11.54 ≈ 5 9.785 10.04 11.20 +

0.1 9.853 10.26 11.27 ≈ 10 9.713 9.914 10.62 +

0.2 9.906 10.21 11.09 ≈ 20 9.744 9.903 10.76 +

0.5 9.824 10.08 10.64 + 50 9.780 9.955 10.78 +

1 9.780 9.955 10.85 + 100 9.780 9.955 10.85 +

GA 9.917 10.27 10.90 9.917 10.27 10.90

G
A r0

r0
.0

3

r0
.0

5

r0
.1

r0
.2

r0
.5 r1 n
0

n
3

n
5

n
10

n
20

n
50

n
10

0

9.5

10

10.5

11

11.5

12

Figure 8.18: Box plot representation of the results obtained by the rollout algorithm with look-ahead,
when using different rollout parameter values

368

8.2. Results

Table 8.21: Results obtained by the rollout algorithm with look-ahead, when using different look-ahead
parameter values

Look-ahead
factor

Min Med Max Stat.
diff.

Number
of jobs

Min Med Max Stat.
diff.

0.03 10.09 10.73 11.15 − 3 9.919 10.26 11.07 ≈
0.05 10.11 10.61 11.79 − 5 9.877 10.15 10.85 ≈
0.1 9.920 10.42 10.81 − 10 9.868 10.10 11.08 +

0.2 10.02 10.30 10.83 ≈ 20 9.932 10.18 10.88 ≈
0.5 9.884 10.23 11.09 ≈ 50 9.782 10.16 10.96 ≈

1 9.842 10.12 11.59 ≈ 100 9.773 10.05 10.69 +

GA 9.917 10.27 10.90 9.917 10.27 10.90

the results where for the same parameter value the rollout algorithm with DRs that use look-

ahead achieved significantly better results than the rollout algorithm which uses DRs generated

by DGP. The results demonstrate that when using DRs with constant number of jobs in the

look-ahead horizon the rollout algorithm achieves significantly better results, for most of the

parameter values, than the rollout algorithm which uses DRs generated by DGP. By using the

look-ahead factor, far worse results were achieved than by using a constant number of jobs in

the look-ahead horizon. However, by using a constant number of jobs in the rollout horizon very

similar results are achieved for various values of the look-ahead parameter. Therefore, by using

DRs with look-ahead the results of the rollout algorithm can be improved further. However,

the concrete value of the number of jobs in the look-ahead horizon will not have a significant

influence on the performance of the rollout algorithm.

Figure 8.19 shows the box plot representation of the results. The figure denotes that when

the look-ahead factor is used, the results constantly improve with the increase of the value of

the parameter. On the other hand, when a constant number of jobs in the look-ahead horizon

is used, the algorithm achieved similar results for parameter values larger than 5. The results

obtained by the rollout algorithm which uses DRs generated by DGP and three jobs in the rollout

horizon, are additionally included in the figure and denoted as R n-3. These results demonstrate

that when a constant number of jobs in the look-ahead horizon is used by the rollout algorithm,

it will achieve much better results than by using DRs generated by GP.

The results presented in this section show that the performance of the rollout algorithm

can be improved by using DRs with look-ahead. It was shown that the number of jobs which

are used in the look-ahead horizon do not have a large influence on the performance of the

rollout algorithm. It is only important not to select a too small number of jobs in the look-ahead

369

8. Design of DRs for static scheduling conditions

G
A

R
n-

3

l0
.0

3

l0
.0

5

l0
.1

l0
.2

l0
.5 l1 n
3

n
5

n
10

n
20

n
50

n
10

0

10

10.5

11

11.5

Figure 8.19: Box plot representation of the results obtained by the rollout algorithm with look-ahead,
when using different look-ahead parameter values

horizon.

8.2.11 Results obtained by the rollout algorithm with static terminals and
look-ahead

This section will analyse whether by combining the rollout algorithm with look-ahead and static

terminal nodes it is possible to achieve improved results than by using a combination of only two

of those approaches. The results will analyse how the rollout parameters, look-ahead parameters

and different combinations of static terminal nodes have an influence on the quality of the

results. In addition, the influence of the two calculation methods of static terminal nodes will

be tested in the experiments.

Table 8.22 represents the influence of the rollout parameters on the rollout algorithm which

uses look-ahead and static terminal nodes that are calculated based on all unreleased jobs. The

experiments use the static node combination denoted with index 21 in Table 8.3 and 20 jobs

in the look-ahead horizon. The statistical tests show that the obtained results do not perform

significantly better than neither the rollout algorithm with DRs generated by using static termi-

nal nodes, nor the rollout algorithm with look-ahead. However, for certain rollout parameter

values, especially when using a constant number of jobs in the rollout horizon, the experiments

outperformed the results obtained by the GA.

Figure 8.20 shows the box plot representation of the results for the influence of the rollout

370

8.2. Results

Table 8.22: Results obtained by the rollout algorithm with look-ahead and static terminal nodes
calculated based on all unreleased jobs, when using different rollout parameter values

Rollout
factor

Min Med Max Stat.
diff.

Number
of jobs

Min Med Max Stat.
diff.

0 10.04 10.71 11.61 − 0 10.04 10.71 11.61 −
0.03 9.975 10.51 11.47 − 3 9.827 10.15 11.21 ≈
0.05 9.905 10.49 11.04 − 5 9.729 10.06 10.71 +

0.1 9.828 10.33 11.13 ≈ 10 9.731 9.999 10.94 +

0.2 9.852 10.27 11.05 ≈ 20 9.732 10.03 11.05 +

0.5 9.878 10.11 10.96 + 50 9.738 10.03 10.92 +

1 9.738 10.05 10.92 + 100 9.738 10.05 10.92 +

GA 9.917 10.27 10.90 9.917 10.27 10.90

parameters. The figure shows that the rollout algorithm achieved quite bad results for smaller

parameter values, especially when using the rollout factor. In addition it is evident that for larger

parameter values it is more common that the approach obtains outlier values. Nevertheless, for

several parameter values the rollout algorithm achieved good solution distributions.

Table 8.23 represents the influence of the rollout parameters on the rollout algorithm with

look-ahead and static terminal nodes which are calculated based on unreleased jobs outside the

look-ahead horizon. The same node static terminal node combination and look-ahead param-

eters are used as for the previous experiments. The experiments which are denoted in grey

achieved significantly better results than the rollout algorithm with static terminal nodes. On

the other hand, the experiments which are underlined achieved significantly better results than

the rollout algorithm with look-ahead for the same parameter values. By using this calcula-

tion method of static terminal nodes, better results are achieved when compared to the previous

calculation method. This is evident from the fact that all experiments, except for the smallest

parameter value, achieved equally good or better results than the GA. In addition, for several

parameter values the experiments also achieved significantly better results than the rollout al-

gorithm with static terminal nodes. Therefore, adding look-ahead to the rollout algorithm with

static terminal nodes generally leads to better results. However, the experiments were unable to

outperform the rollout algorithm with look-ahead, which means that with the addition of static

terminal nodes it is not possible to obtain better results in that case.

Figure 8.21 denotes the box plot representation of the results. The figure shows that the

rollout algorithm achieved much better solution distributions than the GA for several rollout

parameter values. In addition, the experiments have also shown that the procedure is more

371

8. Design of DRs for static scheduling conditions

G
A r0

r0
.0

3

r0
.0

5

r0
.1

r0
.2

r0
.5 r1 n
0

n
3

n
5

n
10

n
20

n
50

n
10

0

10

10.5

11

11.5

Figure 8.20: Box plot representation of the results obtained by the rollout algorithm with look-ahead
and static terminal nodes calculated based on all unreleased jobs, when using different rollout parameter

values

Table 8.23: Results obtained by the rollout algorithm with look-ahead and static terminal nodes
calculated based on all unreleased jobs outside the look-ahead horizon, when using different rollout

parameters

Rollout
factor

Min Med Max Stat.
diff.

Number
of jobs

Min Med Max Stat.
diff.

0 9.977 10.60 11.36 − 0 9.977 10.60 11.36 −
0.03 9.942 10.36 10.95 ≈ 3 9.810 10.10 10.64 +

0.05 9.884 10.34 10.92 ≈ 5 9.713 10.04 10.63 +

0.1 9.774 10.31 10.91 ≈ 10 9.674 9.898 10.25 +

0.2 9.793 10.09 10.53 + 20 9.744 9.922 10.12 +

0.5 9.793 10.04 10.55 + 50 9.750 9.925 10.27 +

1 9.750 9.917 10.27 + 100 9.750 9.917 10.27 +

GA 9.917 10.27 10.90 9.917 10.27 10.90

372

8.2. Results

G
A r0

r0
.0

3

r0
.0

5

r0
.1

r0
.2

r0
.5 r1 n
0

n
3

n
5

n
10

n
20

n
50

n
10

0

9.6

9.8

10

10.2

10.4

10.6

10.8

11

11.2

11.4

Figure 8.21: Box plot representation of the results obtained by the rollout algorithm with look-ahead
and static terminal nodes calculated based on all unreleased jobs outside the look-ahead horizon, when

using different rollout parameters

stable than the GA, since it achieved less dispersed results. This is most evident from the results

achieved when using a constant number of jobs in the rollout horizon. Even when compared

to the previous calculation method it is evident that this calculation method achieved a much

better distribution of solution.

Table 8.24 represents the influence of the look-ahead parameters on the performance of

the rollout algorithm with look-ahead and static terminal nodes which are calculated based on

all unreleased jobs. The experiments use the static terminal node combination denoted with the

index 21 in Table 8.3 and three jobs in the rollout horizon. The underlined experiments achieved

a significantly better performance than the rollout algorithm with the same parameters, whereas

the experiments denoted in grey achieved significantly better results than the rollout algorithm

with look-ahead. The experiments have shown that only in a few occasions this method achieved

significantly better results than the rollout algorithm with and without look-ahead. In none of

the experiments were able to significantly outperform the results achieved by the GA.

Figure 8.22 denotes the box plot representation of the results. The figure shows that the

rollout algorithm achieved quite bad solution distributions, which are usually more dispersed

than those of the GA. The result of the rollout algorithm with static terminal nodes, which uses

the same parameters as the other experiments, is also included in the table and is denoted with

the label R-n-3 S-21.

Table 8.25 represents the influence of the look-ahead parameters on the results achieved by

373

8. Design of DRs for static scheduling conditions

Table 8.24: Results obtained by the rollout algorithm with look-ahead and static terminal nodes
calculated based on all unreleased jobs, when using different look-ahead parameter values

Look-ahead
factor

Min Med Max Stat.
diff.

Number
of jobs

Min Med Max Stat.
diff.

0.03 9.983 10.27 11.25 ≈ 3 9.870 10.27 10.82 ≈
0.05 10.05 10.45 11.70 − 5 9.889 10.27 10.73 ≈
0.1 9.894 10.31 11.58 ≈ 10 9.827 10.15 11.21 ≈
0.2 9.893 10.32 10.80 ≈ 20 9.891 10.27 12.22 ≈
0.5 9.765 10.19 10.61 ≈ 50 9.965 10.27 11.11 ≈

1 9.913 10.29 10.71 ≈ 100 9.773 10.33 11.32 ≈

GA 9.917 10.27 10.90 9.917 10.27 10.90

G
A

R
-n

-3
S-

21

l0
.0

3

l0
.0

5

l0
.1

l0
.2

l0
.5 l1 n
3

n
5

n
10

n
20

n
50

n
10

0

10

10.5

11

11.5

12

Figure 8.22: Box plot representation of the results obtained by the rollout algorithm with look-ahead
and static terminal nodes calculated based on all unreleased jobs, when using different look-ahead

parameter values

374

8.2. Results

Table 8.25: Results obtained by the rollout algorithm with look-ahead and static terminal nodes
calculated based on all unreleased jobs outside the look-ahead horizon, when using different look-ahead

parameter values

Look-ahead
factor

Min Med Max Stat.
diff.

Number
of jobs

Min Med Max Stat.
diff.

0.03 10.09 10.47 11.27 − 3 9.855 10.14 10.82 ≈
0.05 9.932 10.46 11.62 − 5 9.855 10.10 11.61 +

0.1 9.977 10.44 12.50 − 10 9.852 10.18 10.52 ≈
0.2 10.05 10.32 11.15 ≈ 20 9.810 10.10 10.64 +

0.5 9.928 10.33 11.30 ≈ 50 9.803 10.12 11.12 +

1 9.891 10.21 10.95 ≈ 100 9.903 10.22 11.15 ≈

GA 9.917 10.27 10.90 9.917 10.27 10.90

the rollout algorithm with look-ahead and static terminal nodes calculated from all unreleased

jobs outside the look-ahead horizon. The experiments use the static terminal node combination

denoted with the index 21 in Table 8.3 and three jobs in the rollout horizon. The underlined

experiments in the table achieved significantly better results than the rollout algorithm, while

on the other hand the experiments denoted in grey achieved significantly better results than

the rollout algorithm with look-ahead. The results show that the values of the look-ahead pa-

rameters do not have a strong influence on the performance of the rollout algorithm. When

observing the results for the number of jobs in the look-ahead horizon, depending on the choice

of the parameter value, the rollout algorithm will in certain cases outperform the GA, however,

the overall differences between the different experiments are small. Furthermore, in most cases

significantly better results were achieved than by using the rollout algorithm with DRs gener-

ated by DGP. However, only in one occasion the experiments achieved a better value than by

using the rollout algorithm with look-ahead. Finally, better results are generally achieved than

by using the previous calculation method of the static terminal nodes.

Figure 8.23 shows the box plot representation of the results. The figure denoted that the

rollout algorithm achieves good solution distributions for certain look-ahead parameter values

when compared to the GA. This is especially true when using a constant number of jobs in the

look-ahead horizon. In addition, it is also evident that this calculation method of static nodes

again achieves much better results than the calculation method based on all unreleased jobs.

The figure also includes the result for the rollout algorithm with static terminal nodes, where

the same parameter values are used as in the other experiments. This result is denoted with the

label R-n-3 S-21. The results show that most of the experiments did not achieve equally good

375

8. Design of DRs for static scheduling conditions

G
A

R
-n

-3
S-

21

l0
.0

3

l0
.0

5

l0
.1

l0
.2

l0
.5 l1 n
3

n
5

n
10

n
20

n
50

n
10

0

10

10.5

11

11.5

12

12.5

Figure 8.23: Box plot representation of the results obtained by the rollout algorithm with look-ahead
and static terminal nodes calculated based on all unreleased jobs outside the look-ahead horizon, when

using different look-ahead parameter values

results as the rollout algorithm which used only static terminal nodes.

Table 8.26 represents the results for different static node combinations achieved by rollout

with look-ahead and static terminal nodes calculated from all unreleased jobs. The experiments

use 20 jobs in the look-ahead horizon and 5 jobs in the rollout horizon. Unfortunately, it is

evident that the rollout algorithm achieved quite bad results for the different static node com-

binations. For none of the tested static node combinations the rollout algorithm achieved sig-

nificantly better results when compared to those obtained by the GA. The tested combinations

of methods also did not achieve better results than the rollout algorithm with DRs generated by

DGP or DRs with static terminal nodes.

Figure 8.24 represents the box plot representation of the results for the different static node

combinations, when calculating them based on all unreleased jobs. Based on the previous

observation, it can be concluded that by using static terminals with this calculation method

should be avoided since it leads to an unstable method that achieves generally bad results.

Table 8.27 represents the influence of different static node combinations on the rollout algo-

rithm with look-ahead and static terminal nodes calculated based on all unreleased jobs outside

the look-ahead horizon. The experiments use 20 jobs in the look-ahead horizon and 5 jobs in the

rollout horizon. Those experiments which achieved significantly better results than rollout are

376

8.2. Results

Table 8.26: Results obtained by the rollout algorithm with look-ahead and static terminal nodes
calculated based on all unreleased jobs, when using different static node combinations

Static terminal combination Min Med Max Stat. diff.

1 9.865 10.46 15.74 −
2 9.853 10.23 18.75 ≈
3 9.754 10.35 17.20 ≈
4 9.716 10.46 19.23 ≈
5 9.783 10.21 13.29 ≈
6 9.754 10.22 14.73 ≈
7 9.782 10.31 19.89 ≈
8 9.829 10.74 18.22 −
9 9.829 10.61 15.66 ≈
10 9.695 10.34 16.32 ≈
11 9.792 10.80 16.45 ≈
12 9.835 10.48 14.88 ≈
13 9.780 10.50 16.48 −
14 9.902 10.64 25.85 −
15 9.880 10.36 15.79 ≈
16 9.835 10.68 16.45 ≈
17 9.808 10.40 14.08 ≈
18 9.902 10.66 15.76 −
19 9.907 10.42 15.34 ≈
20 9.907 10.30 15.33 ≈
21 9.735 10.18 12.87 ≈

GA 9.917 10.27 10.90

377

8. Design of DRs for static scheduling conditions

G
A

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21

10 12 14 16 18 20 22 24 26

Figure
8.24:

B
ox

plotrepresentation
ofthe

results
obtained

by
the

rolloutalgorithm
w

ith
look-ahead

and
static

term
inalnodes

calculated
based

on
all

unreleased
jobs,w

hen
using

differentstatic
node

com
binations

378

8.2. Results

underlined, while on the other hand the experiments which achieved significantly better results

than the rollout algorithm with look-ahead are denoted in grey. Although for most of the static

node combinations the achieved results can not outperform the results achieved by the GA or

the rollout algorithm, there are a few node combinations for which good results are certainly

achieved. For all node combinations the rollout algorithm performed at least equally good as the

GA. In addition, based on the median values it is evident that big differences are not achieved

by the different static node combinations.

Figure 8.25 represents the box plot representation of the results for the different static node

combinations. The first thing which can be noticed is that with this calculation method the

rollout algorithm achieved much less dispersed solutions than by calculating static terminals

based on all unreleased jobs. There is still a chance of obtaining some bad outlier values, but

to a smaller extent than for the previous calculation method of the static terminal nodes. The

figure also shows that for certain node combinations, like 3 and 11, it is possible to achieve very

good solution distributions, much better than those of GA.

Based on the results denoted in this section it can be concluded that the the calculation

method of static nodes, which considers only unreleased jobs outside the look-ahead horizon,

achieves better results and should therefore be preferred. In addition, some experiments have

shown to achieve very good performance, which denotes that the combination of all three meth-

ods can perform well, but only with a good choice of parameters.

8.2.12 Comparison of all static scheduling methods

In the previous sections the results were presented for each of the methods individually, and

the influence of the parameters of each of those methods was analysed. In this section, the best

results from all the different methods will be collected and compared with each other. Since

experiments from different methods will be used, a proper nomenclature needs to be defined.

If static terminal nodes were used in the experiments, this will be denoted with "S" and the

index of the combination of static nodes that was used. The experiments which use look-ahead

will be denoted with "L". In addition, "l" will denote that the look-ahead factor is used, while

"n" denotes that a constant number of jobs in the look-ahead horizon is used. The value of

the look-ahead parameter will be denoted immediately after the "l" or "n" flag. If the static

terminal nodes are used together with look-ahead in the experiment, then the flag "u" will be

used to denote that the static terminals are calculated based on all unreleased jobs, while the

"ul" flag will be used if the static terminals are calculated based on all unreleased jobs outside

the look-ahead horizon. The use of IDRs will be denoted with "I", after which the index of

the applied IDR node combination will be denoted. The experiments which use the rollout

algorithm will be denoted with "R", followed by either "r", if the rollout factor is used, or "n",

if the number of jobs in the rollout-horizon is used. The value of the rollout parameter will be

379

8. Design of DRs for static scheduling conditions

Table 8.27: Results obtained by the rollout algorithm with look-ahead and static terminal nodes
calculated based on all unreleased jobs outside the look-ahead horizon, when using different static node

combinations

Static terminal combination Min Med Max Stat. diff.

1 9.927 10.27 12.01 ≈
2 9.769 10.07 10.94 +

3 9.754 10.05 12.37 +

4 9.802 10.17 11.82 ≈
5 9.783 10.15 12.56 ≈
6 9.754 10.15 12.35 ≈
7 9.780 10.12 11.30 +

8 9.873 10.12 11.84 ≈
9 9.799 10.24 11.36 ≈
10 9.834 10.17 10.94 ≈
11 9.737 10.08 10.73 +

12 9.841 10.05 10.73 +

13 9.778 10.08 10.79 +

14 9.793 10.11 11.31 ≈
15 9.882 10.26 11.13 ≈
16 9.814 10.07 11.65 ≈
17 9.753 10.18 11.58 ≈
18 9.885 10.26 12.71 ≈
19 9.754 10.22 12.62 ≈
20 9.839 10.16 10.88 ≈
21 9.713 10.04 10.63 +

GA 9.917 10.27 10.90

380

8.2. Results

D
G

P
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

9.
510

10
.511

11
.512

12
.513

Fi
gu

re
8.

25
:B

ox
pl

ot
re

pr
es

en
ta

tio
n

of
th

e
re

su
lts

ob
ta

in
ed

by
th

e
ro

llo
ut

al
go

ri
th

m
w

ith
lo

ok
-a

he
ad

an
d

st
at

ic
te

rm
in

al
no

de
s

ca
lc

ul
at

ed
ba

se
d

on
al

l
un

re
le

as
ed

jo
bs

ou
ts

id
e

th
e

lo
ok

-a
he

ad
ho

ri
zo

n,
w

he
n

us
in

g
di

ff
er

en
ts

ta
tic

no
de

co
m

bi
na

tio
ns

381

8. Design of DRs for static scheduling conditions

denoted immediately after the "r" or "n" flag.

The experiments will additionally include the results achieved by the static version of the

ATC rule [111]. This version of the ATC rule will calculate the priorities of jobs using the

following priority function:

πi, j =
wTj

pi j
exp
[
−max(d j− pi, j−max(r j, time),0)

k1 p̄

]
exp
[
−max(r j− time,0)

k2 p̄

]
,

where time denotes the current time of the system, p̄ the average processing time of all jobs

waiting to be scheduled, k1 and k2 the scaling parameters. The priority function shows that

the static ATC rule additionally uses release times of jobs to take into account the time when

unreleased jobs arrive in the system. Therefore, unlike the dynamic DRs where the priority

function is only calculated for unscheduled jobs which are already released, the static ATC rule

will calculate the priorities for all unscheduled jobs, whether they were already released into the

system or not. This will have the consequence that the procedure will be quite time consuming,

since it will have to calculate the priorities for all jobs each time when at least one job and one

machine are free. The parameters which were used by the ATC rule were 0.7 for k1 and 0.2 for

k2, since for those values the rule achieved the best results on the training set.

Table 8.28 contains the best results of all the methods which were tested in the previous

section. The results are additionally represented using box plots in Figure 8.26. The first thing

which can be noticed is that the methods achieve a wide range of results. The worst results are

achieved by IDRs and DRs which use static terminal nodes. Out of these two methods better

results were achieved by IDRs, but only by a very small margin. DRs which use look-ahead

already achieve much better results than IDRs or DRs with static terminal nodes, with improve-

ments of around 8.4% for the minimum value and 11% for the median value. Therefore, by

using look-ahead significantly better results can be achieved than by using either static terminal

nodes or IDRs. Combining look-ahead and static terminal nodes did not lead to any improve-

ments in the results over look-ahead on its own. On the other hand the combination of IDRs and

look-ahead outperformed the results of look-ahead by 2.7% for the minimum and 4.6% for the

median value. However, by additionally using static terminal nodes with IDRs and look-ahead

does not lead to any improvements in the results. Therefore, combining the static terminal nodes

with the other two methods did not prove to be worthwhile.

The rollout algorithm achieved the best results out of all four tested static DR methods.

The algorithm outperformed the results of IDRs and DRs with static terminal nodes by 24%

for the minimum value, and 23% for the median value. Furthermore, the rollout algorithm

outperformed DRs with look-ahead by 9.5% for the minimum value, and 13.4% for the median

value. Based on these results it is more than evident that the rollout algorithm achieves superior

performance compared to the other three tested methods. However, by combining the rollout

382

8.2. Results

Table 8.28: The results obtained by the different static scheduling methods

Method Min Med Max

DGP 12.96 13.60 14.62

ATC 12.45 - -

GA 9.917 10.27 10.90

S-14 12.27 13.21 15.10

S-21 12.06 13.30 16.59

L-n-10 10.82 11.83 14.60

L-n-100 11.02 11.64 13.53

L-n-10 S-u-21 11.22 12.46 14.21

L-n-10 S-ul-21 10.90 12.24 14.11

L-n-20 S-ul-21 11.10 11.64 14.54

I-3 11.87 13.08 13.94

I-4 11.82 13.18 14.39

I-4 S-21 12.11 12.88 14.31

I-4 L-n-5 10,75 11.17 14.41

I-4 L-n-100 10.53 11.10 12.44

I-4 L-n-10 S-ul-21 10.77 11.42 14.29

I-4 L-n-100 S-ul-21 10.52 11.85 13.07

R-n-3 9.956 10.37 10.65

R-n-20 9.790 10.08 10.88

R-n-20 S-21 9.769 10.08 10.74

R-n-10 L-n-10 9.713 9.914 10.62

R-n-20 L-n-10 9.744 9.903 10.74

R-n-3 L-n-100 9.773 10.05 10.69

R-n-10 L-n-20 S-u-21 9.731 9.999 10.94

R-n-3 L-n-50 S-u-21 9.965 10.27 11.11

R-n-3 L-n-20 S-ul-21 9.810 10.10 10.64

R-n-10 L-n-20 S-ul-21 9.674 9.898 10.25

R-n-10 L-n-100 S-ul-21 9.750 9.917 10.27

383

8. Design of DRs for static scheduling conditions

algorithm with look-ahead and static terminal nodes it is possible to even further increase the

performance. This combination of methods can outperform the rollout algorithm by 1.2% for

the minimum value, and 1.8% for the median value. Although the improvements are not large,

a very good distribution of the results was achieved, such that 75% of the results obtained a Twt

value smaller than 10. This combination of methods also achieved the overall best results for

the minimum, median, and maximum values. Therefore, it is evident that adding look-ahead

and static terminal nodes to the rollout algorithm is valuable, since it does not only improve the

overall performance of the approach, but also increases its stability.

Comparing the achieved results to those of a GA, it is evident that only the rollout algorithm

performed equally well or better than the GA. The GA was able to outperform DRs with static

terminal nodes by 17.7% for the minimum value, and 22.8% for the median value. On the other

hand, the GA outperformed IDRs by 16% for the minimum value, and 22% for the median

value. Therefore, both of these methods achieved quite poor performance when compared to

those of the GA. Although DRs with look-ahead perform better than IDRs and DRs with static

terminal nodes, the GA outperforms them by 10% for the minimum value, and 13% for the

median value. For the combination of IDRs and look-ahead, the GA outperforms their results

by 5.8% for the minimum value, and 7.5% for the median value. Therefore, the improvements

of the GA are now reduced almost by half when compared to the improvements it achieved

over DRs with look-ahead. These are also the smallest improvement which the GA achieved

over the static DR methods, if the rollout algorithm is not used. On the other hand, the rollout

algorithm outperformed the results of the GA by 1.3% for the minimum value, and 1.9% for

the median value. Although the improvements are small, they can be further increased by

combining the rollout algorithm with look-ahead and static terminal nodes. This combination

of methods outperformed the GA by 2.5% for the minimum value, and 3.6% for the median

value. Therefore, the rollout algorithm has demonstrated to be expressive enough to achieve

much better performance than the GA.

8.3 Execution time analysis

Apart from the performance of the different algorithms for a certain criterion, the execution

time of the algorithm also represents an important factor. For example, in certain occasions it

might be desirable to select a procedure which achieves worse results to a certain degree, but

on the other hand executes much faster. Sometimes it is also possible that certain procedures

perform similarly for the same criterion, but have vastly different execution times. Because

of those reasons it is important to also outline the execution times of the tested methods. For

that purpose, this section will give an overview of the execution times of the different methods

which were tested. It needs to be stressed out that only the time required to create the schedule

384

8.3. Execution time analysis

DGP

ATC

GA

S-14

S-21

L-l-10

L-n-100

L-n-10 S-u-21

L-n-10 S-ul-21

L-n-20 S-ul-21

I-3

I-4

I-4 S-21

I-4 L-n-5

I-4 L-n-100

I-4 L-n-10 S-ul-21

I-4 L-n-100 S-ul-21

R-n-3

R-n-20

R-n-20 S-21

R-n-10 L-n-10

R-n-20 L-n-10

R-n-3 L-n-100

R-n-10 L-n-20 S-u-21

R-n-3 L-n-50 S-u-21

R-n-3 L-n-20 S-ul-21

R-n-10 L-n-20 S-ul-21

R-n-10 L-n-100 S-ul-21

91011121314151617

Fi
gu

re
8.

26
:B

ox
pl

ot
re

pr
es

en
ta

tio
n

of
th

e
re

su
lts

ob
ta

in
ed

by
th

e
di

ff
er

en
ts

ta
tic

sc
he

du
lin

g
m

et
ho

ds

385

8. Design of DRs for static scheduling conditions

will be considered in this section, and not the time needed to evolve the various DRs, since

the evolution process can be done at a prior time. In the first subsection the influence of the

different parameter values on the execution time will be analysed. In the second subsection all

the methods will be compared based on their execution time and performance.

8.3.1 Influence of the parameter values of static methods on the execution
time

Through the experiments it was shown that the execution time of different methods depends

heavily on the selected parameter values. The combination of static terminal nodes and IDR

nodes does not have a large influence on the execution times, and therefore will not be consid-

ered in this section. However, the choice of look-ahead and rollout parameters influences the

execution time of the generated DRs. For that reason, this section will analyse the execution

times for the different values of the look-ahead and rollout parameters, when using DRs gener-

ated by DGP. The execution times for the combinations of different methods will not be anal-

ysed, since the increase in the parameter values has demonstrated to have the same influence.

All the execution times are calculated as average values of the 30 runs for each experiment, and

will be denoted in seconds.

Table 8.29 represents the influence of the look-ahead parameters on the execution time of

DRs which use look-ahead. Figure 8.27 graphically represents this influence. The results show

that when using small values for the look-ahead factor, there is little difference in the execution

time for the different values. This behaviour is expected, since for smaller problem instances

almost none of the unreleased jobs appear in the look-ahead horizon for smaller parameter

values. However, for the look-ahead factor values larger than 0.1, the execution time of the DRs

seems to be increasing linearly. This is also expected since the number of jobs which will be

considered in the look-ahead horizon will mostly linearly depend on the value of the parameter.

Therefore, by using a larger look-ahead parameter value the look-ahead horizon will contain

more jobs for which the priorities must be calculated, which leads to an increased execution

time of the method. On the other hand, when using a fixed number of jobs in the look-ahead

horizon the execution time does not linearly increase with the number of jobs in the look-

ahead horizon. The largest increase in the execution time is obtained for the smaller parameter

values, while for the two largest the increase in the execution times is much less prominent.

Such a behaviour is caused by the different problem instance sizes. When the number of jobs

in the look-ahead horizon becomes larger than the number of jobs in the problem instance,

this problem instance will have no effect on the execution time of the DR, since all jobs in the

instance will be in the look-ahead horizon. Therefore, the largest increase in the execution times

will occur for smaller parameter values, since the increase will have an effect on all problem

386

8.3. Execution time analysis

Table 8.29: Influence of the look-ahead parameter values on the execution time of the DRs

Look-ahead factor Execution time Number of jobs Execution time

0.03 0.100 3 0.096

0.05 0.100 5 0.104

0.1 0.099 10 0.113

0.2 0.112 20 0.134

0.5 0.123 50 0.152

1 0.154 100 0.159

0 0.2 0.4 0.6 0.8 1

0.1

0.12

0.14

0.16

(a) Influence of the look-ahead parameter

0 20 40 60 80 100

0.1

0.12

0.14

0.16

(b) Influence of the number of jobs

Figure 8.27: Graphical representation of the influence of the look-ahead parameter values on the
execution time of the DRs

instances, whereas for larger parameter values the increase of the parameter will only influence

the larger problem instances, therefore causing a smaller increase in the execution times. By

using the largest value for the number of jobs in the look-ahead horizon, the method executes 1.7

times slower than when using the smallest parameter value. Therefore, the results denote that

there is no significant difference between the execution times for smaller or larger parameter

values, meaning that larger values can be used without any significant increase in the execution

time.

Table 8.30 represents the influence of the rollout parameters on the execution time of the

rollout algorithm. This influence is also presented in Figure 8.28. The influence is quite similar

to that of the look-ahead parameters. With the increase of the rollout factor, the execution time

of the algorithm also increases mostly linearly. When using the number of jobs in the rollout

horizon, the increase in the execution times is again larger for the smaller parameter values,

because of the same reason that was outlined for look-ahead. It is interesting to note that the

387

8. Design of DRs for static scheduling conditions

Table 8.30: Influence of the rollout parameter values on the execution time of DRs

Rollout factor Execution time Number of jobs Execution time

0 41.69 0 41.69

0.03 71.47 3 101.0

0.05 86.35 5 127.0

0.1 126.2 10 192.1

0.2 207.3 20 375.5

0.5 499.7 50 733.4

1 1106 100 1106

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

(a) Influence of the rollout parameter

0 20 40 60 80 100
0

200

400

600

800

1000

1200

(b) Influence of the number of jobs

Figure 8.28: Graphical representation of the influence of the rollout parameter values on the execution
time of DRs

rollout parameters have a large influence on the execution time, since for the largest param-

eter value the algorithm is 27 times slower than for its smallest value. Therefore, depending

on whether the performance or the execution time is more important, the appropriate rollout

parameter needs to be selected.

8.3.2 Execution time comparison of all methods

This section will give an overview of the execution times of all methods in addition to their

performance, to analyse how the different methods balance between the quality of the obtained

solutions and the time needed to construct the schedules. This is necessary since depending on

the scheduling problem it might be required to make a compromise between the quality of the

solution and the execution time, so that the solution can be obtained faster but with a decreased

quality.

388

8.3. Execution time analysis

Table 8.31 contains the results and the execution times of all the selected methods. The

execution times in the table are denoted in seconds, and are calculated as the average value of the

execution times obtained from all experiments. The table shows that the methods differ vastly

by their execution times, ranging from 0.1 seconds up to 1603 seconds. The smallest execution

time is achieved by DRs evolved for the dynamic conditions. By using the static terminal

nodes, the execution times increase only slightly. The reason for this increase of the execution

time is because additional static terminal nodes need to be calculated. DRs which use look-

ahead also do not significantly increase the execution times, executing at most 1.8 times slower

than DGP. However, look-ahead leads to significant improvements in the results, outperforming

DGP by 17% for the minimum value, and 14% for the median value. Therefore, with only a

small increase in the execution times it is possible to achieve significantly better results than by

using DRs evolved by DGP. By combining look-ahead with static terminal nodes the execution

time increases, however, the performance of the approach does not improve, therefore making

this combination of methods useless. IDRs achieve the same execution time as look-ahead for

the largest parameter value, and outperform DGP by 8.8% for the minimum value, and 3.8%

for the median value. Unfortunately, the results obtained by IDRs are much worse than those

obtained by look-ahead, thus making this method inferior. The different combinations of these

three approaches increase the execution time, however, for all the combinations the execution

time did not increase beyond 0.45 seconds, which is 5 times larger than the execution time

of DRs evolved by DGP. The best results were achieved when using the combination of IDRs

and look-ahead, which outperformed DGP by 19% for the minimum value, and 18.4% for the

median value. This combination of methods achieved an execution time which is only 3.5 times

larger than the one obtained by DRs evolved using DGP. This demonstrates that by only a small

increase of the execution time a much better performance can be achieved than by using DGP.

When comparing the previous three approaches to the results achieved by the GA, it is

evident that they obtain solutions in a much faster time. Naturally, the solutions obtained by

these approaches will not be equally good as those achieved by the GA. For example, the GA

outperforms the best solution of IDRs with look-ahead by 5.8% for the minimum value, and

7.5% for the median value. However, the time needed by the GA to obtain the solutions is 1500

times larger than that of the IDRs with look-ahead. Therefore, it is possible to achieve results

which are to a certain extent worse than those obtained by the GA, but in time which can be

considered negligible when compared to that of the GA.

On the other hand, the rollout algorithm has a significantly larger execution time than DRs

evolved by DGP or any of the previous three methods. The execution time for the rollout

algorithm, when using DRs evolved by DGP and only 3 jobs in the rollout horizon, is around

101 seconds, which is 1110 times slower than that of DRs evolved by DGP. Naturally, the rollout

algorithm achieves much better results than any of the previous three methods, outperforming

389

8. Design of DRs for static scheduling conditions

Table 8.31: Results for the execution times obtained by the different methods

Index Method Min Med Execution time

1 DGP 12.96 13.60 0.091

2 ATC 12.45 12.45 1.899

3 GA 9.917 10.27 477.0

4 S-14 12.27 13.21 0.105

5 S-21 12.06 13.30 0.105

6 L-n-10 10.82 11.83 0.113

7 L-n-100 11.02 11.64 0.159

8 L-n-10 S-u-21 11.22 12.46 0.144

9 L-n-10 S-ul-21 10.90 12.24 0.144

10 L-n-20 S-ul-21 11.10 11.64 0.156

11 I-3 11.87 13.08 0.155

12 I-4 11.82 13.18 0.155

13 I-4 S-21 12.11 12.88 0.180

14 I-4 L-n-5 10.75 11.17 0.207

15 I-4 L-n-100 10.53 11.10 0.321

16 I-4 L-n-10 S-ul-21 10.77 11.42 0.350

17 I-4 L-n-100 S-ul-21 10.52 11.85 0.456

18 R-n-3 9.956 10.37 101.0

19 R-n-20 9.790 10.08 375.5

20 R-n-20 S-21 9.769 10.08 495.6

21 R-n-10 L-n-10 9.713 9.914 204.9

22 R-n-20 L-n-10 9.744 9.903 356.3

23 R-n-3 L-n-100 9.773 10.05 98.11

24 R-n-10 L-n-20 S-u-21 9.731 9.999 352.9

25 R-n-3 L-n-50 S-u-21 9.965 10.27 179.3

26 R-n-3 L-n-20 S-ul-21 9.810 10.10 175.9

27 R-n-10 L-n-20 S-ul-21 9.674 9.898 372.8

28 R-n-10 L-n-100 S-ul-21 9.750 9.917 1603

390

8.3. Execution time analysis

the minimum value of DGP by 23.2%, and the median value by 23.8%. Depending on the

rollout parameter values and the combinations with other methods, the execution time will

gradually increase. The best combination of methods can outperform DGP by 25% for the

minimum value, and 27% for the median value, but with an execution time which is 4000 times

slower than that of DRs evolved by DGP. The best combination of methods executes 10 times

slower than the rollout algorithm with DRs generated by DGP, and achieves an improvement

of 2.8% for the minimum value, and 3.7% for the median value. Therefore, by combining

different methods with the rollout algorithm it is possible to further increase its performance, at

the expense of a larger execution time.

For all the results which are included in the table, except the last one, the rollout algorithm

obtained a smaller execution time than the GA. In addition, except for two experiments, the

rollout algorithm always achieved significantly better results than the GA. The rollout algorithm

with DRs generated by DGP achieved significantly better results than the GA, outperforming

it by 1.5% for the minimum value, and 2.1% for the median value, with an execution time

which is almost five times smaller. Even the combination of methods, which achieved the

best improvements over the GA that amount to 2.5% for the minimum value, and 3.6% for

the median value, has a smaller execution time than the GA. Therefore, for a good choice of

parameters the rollout algorithm achieves significantly better results than the GA, and constructs

the schedule in a smaller amount of time.

To further illustrate the relation of the execution times and the performances of the various

methods, Figure 8.29 represents the relation between the minimum values and the execution

times obtained for each of the methods, while Figure 8.30 represents the relation between the

median values and the execution times obtained by the methods. Each point is denoted with the

index of the experiment it represents from Table 8.31. Furthermore, the points which represent

the Pareto front of solutions are denoted with red points, while the rest of solutions are repre-

sented by blue points. Since the execution times for different methods have largely different

values, a logarithmic scale was used for the axis which represents the execution times of the

methods. The figure shows how the different approaches are grouped together based on their

performance and execution times. The shortest execution times, but also the worst results, are

achieved by DRs evolved by DGP which is denoted with the index 1 in the figure. The group

of results which use static terminal nodes, look-ahead, IDRs, or any combinations of those

methods are represented by points with indices ranging from 4 to 17. These methods can be

seen to cover quite a large part of the values for the Twt criterion, with only small differences

in the execution times. Therefore, by increasing the execution time by a small extent a large

improvement in the achieved results can be obtained. The static ATC rule, denoted with the

index 2 achieved better results than DGP, but due to its slow execution time the approach is not

competitive to the other tested methods.

391

8. Design of DRs for static scheduling conditions

9.5 10 10.5 11 11.5 12 12.5 13

10−1

100

101

102

103

1

2

3

456
7 89 10

1112
1314

15 16
17

18

19

20

21
22

23

24

2526

27

28

Minimum Twt value

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Figure 8.29: The relation between the execution times and minimum values obtained by the tested
methods

392

8.4. Analysis of the static scheduling methods

The second group of results, those achieved by the rollout algorithm and combinations of it

with other methods, are denoted by indices ranging from 18 to 28. The results of these methods

are centred around the result achieved by the GA, which is denoted with the index 3. This group

of results covers a small range of the values for the Twt criterion, but covers a large range for

the execution time values. This means that to increase the results even for a small extent it is

required to significantly prolong the execution times of the methods. Nevertheless, many of the

results for the rollout algorithm do not only outperform the results obtained by the GA, but also

construct the schedule in a smaller amount of time. For some parameter values, such as for those

used in the experiment denoted with index 18, it is also possible to achieve results which are

only to a small extent worse than those obtained by the GA, but which are constructed in a much

smaller amount of time. The rollout algorithm also constructed the schedule in a smaller amount

of time for the experiment denoted with index 27, for which the rollout algorithm achieved the

overall best results.

Based on the presented results, several conclusions can be drawn about the tested methods.

Static terminal nodes, look-ahead, IDRs, and various combinations of those approaches have all

achieved better results than DGP, with an increase of the execution times that are at most five

times larger than the execution time obtained by DGP. This makes these methods preferable if

the execution time is equally important as the quality of the achieved results. By selecting the

appropriate method and parameter values, it is possible to make a trade off between the execu-

tion time and the quality of the obtained results. In addition, because of their small execution

times, it is also possible to execute several DRs for a certain problem, and select the best of the

obtained solutions. On the other hand, the rollout algorithm achieved the overall best results,

however, with much larger execution times. Although by using different parameter values or

combinations with other methods it is possible to reduce the execution times and improve the

performance of the rollout algorithm, even the lowest execution times achieved by it are still sig-

nificantly larger than those of the other methods. Nevertheless, the rollout algorithm achieved

better results in a smaller execution time than the GA. This makes the rollout algorithm a better

choice if the quality of the obtained results is of primary importance, and the execution time is

of less concern.

8.4 Analysis of the static scheduling methods

This section will give a short analysis of the four methods for adapting DRs to static scheduling

conditions. The aim of this section is to give more detail on how the different methods work.

The first thing which will be analysed is the frequency with which the static terminal nodes

appear in the individuals. For that purpose, 30 DRs which achieved the best performance on the

test set were selected, and the number of occurrences of each static node in those individuals

393

8. Design of DRs for static scheduling conditions

10 10.5 11 11.5 12 12.5 13 13.5

10−1

100

101

102

103

1

2

3

4 56
7 8910

11121314
15 16

17

18

19

20

21
22

23

24

2526

27

28

Median Twt value

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Figure 8.30: The relation between the execution times and median values obtained by the tested
methods

394

8.4. Analysis of the static scheduling methods

was calculated. Although the information about the number of times a node appears in a DR can

be misleading, since it is possible that the nodes appear in sub-expressions which do not provide

any information to the DR, it can nevertheless give a rough overview about the usefulness of

individual nodes.

Figure 8.31 shows a histogram which represents the number of occurrences of each static

node. The figure clearly shows that several static terminal nodes appear more frequently, and

thus seem to provide more useful information to the DRs during scheduling. The FUT LAT E

node appears by far most frequently in the DRs, which leads to the conclusion that it is the most

informative of the nodes. The FUT LAT ES node also appears quite often, which means that the

information about the possible tardiness of jobs which would be released during the execution of

the current job is useful to the DRs. However, the FUT LAT EL node, or the other nodes which

also take into account the possible tardiness of the current job if it would not be scheduled right

away, were seldom used. This leads to the conclusion that the more simple approximations

are already informative enough. The nodes which approximate the weighted number of tardy

jobs, if the current job would not be scheduled, also appear quite often in the individuals. Out

of these nodes the WLAT ES node, which approximates whether the next released job will be

tardy or not if the currently considered job is scheduled for execution, appears most often. For

this group of nodes it is evident that the more complex nodes appear more often, such as nodes

which approximate the difference of the weighted number of tardy jobs between the current

job and all those which would be released during the execution of the current job. Based on

the previous observations it is evident that the nodes which approximate the tardiness of jobs

appear most often and seem to be the most informative.

Out of the remaining nodes the most informative seem to be the ones providing information

about the number of jobs that will be released during the execution of the current job (NREL,

NRELM, NSHORT), the ones which provide information about the slack of the next job which

will be released (SLNEXT , SLNEXT M), the ones which provide the information about the

time until the next job will be released (T TAR) and the information about the machine load

(MLOAD). Out of these nodes, the NREL node appears eight times, while the others appear

three to five times. Therefore, these nodes appear a lot less often than some of the nodes which

provide information about the tardiness of jobs, which probably means that they provide less

useful information to the DRs.

The occurrence frequency of IDR nodes will be analysed in the same way, meaning that

the 30 IDRs, which achieved the best results on the test set regardless of the IDR node set

which was used to generate them, were collected and the number of occurrences of each IDR

node was calculated. Figure 8.32 represents a histogram of the total number of times that

each IDR node occurred in the selected IDRs. Clearly it can be seen that the FLOWTIME

and JOBFINISH nodes, which do not provide any information about the tardiness, appear the

395

8. Design of DRs for static scheduling conditions

FL
D

FL
D

L
FL

D
S

FU
T

L
A

T
E

FU
T

L
A

T
E

L
FU

T
L

A
T

E
S

M
L

O
A

D
M

L
O

A
D

D
N

R
E

L
N

R
E

L
M

N
SH

O
R

T
SL

AV
G

D
SL

AV
G

M
SL

N
E

X
T

SL
N

E
X

T
M

T
TA

R
T

TA
R

M
W

L
A

T
E

W
L

A
T

E
L

W
L

A
T

E
S

W
L

D
W

L
D

L
W

L
D

S0

5

10

15

20

25

30

35

40

Static terminal node

N
um

be
ro

fo
cc

ur
en

ce
s

of
te

rm
in

al
no

de
s

Figure 8.31: The frequency of static terminal nodes in the generated DRs

least number of times. The LATENESS node is also used quite rarely by the IDRs, which can

lead to the conclusion that it does not provide very useful information. On the other hand, the

INDWTARD node appears most often in the IDRs. This node seems to be useful since it directly

supplies the information about the weighted tardiness of a job in the previously constructed

schedule. The LATE function node also appears very often, meaning that allowing for parts

of the DR to specialise for tardy jobs, while others to specialise for jobs which are not tardy,

provides to be beneficial for the performance of the IDRs. The NLATE node is also frequently

used, thus the IDRs also seem to benefit from the information on how many jobs were tardy in

the previous schedule. The INDLATE and INDTARD nodes are used to a certain extent less than

the three previously mentioned nodes. The reason for this seems to be the absence of the job

weight in their calculation, which is also the reason why the INDWTARD appears more often

than these two nodes. Finally, the TARDINESS node appears in even less occasions, meaning

that the information about the total weighted tardiness of the previously constructed schedule

does not provide useful information to the IDRs. Based on the previous observations and the

number of occurrences of individual nodes, the INDWTARD, INDTARD, INDLATE, NLATE,

and LATE nodes seem to contain the most useful information for the IDRs.

For the IDRs it is also interesting to analyse the number of times the rules recreate the

396

8.4. Analysis of the static scheduling methods

FL
O

W
T

IM
E

IN
D

L
A

T
E

IN
D

TA
R

D

IN
D

W
TA

R
D

JO
B

FI
N

IS
H

L
A

T
E

L
A

T
E

N
E

SS

N
L

A
T

E

TA
R

D
IN

E
SS

0

5

10

15

20

25

30

35

40

IDR node

N
um

be
ro

fo
cc

ur
en

ce
s

of
ID

R
no

de
s

Figure 8.32: The frequency of IDR nodes in the generated IDRs

397

8. Design of DRs for static scheduling conditions

schedule. This analysis will use the same 30 best IDRs which were used for the previous

analysis. On average, when all problem instances and all IDRs are considered, the IDRs created

the schedule 2.465 times. The last schedule which is created by the IDR, but not returned as

the results, was also included in the calculations. The value shows that, on average, the IDRs

create the schedule two or three times. By analysing the number of created schedules for each

problem instance independently, it was shown that for the easier instances the IDRs can find the

best schedule immediately in the first iteration. However, the IDRs still need to validate that

they can not improve the schedule, which in the end means that for the easier problem instances

they will create the schedule two times. For the more difficult problem instances, the schedule

is usually created three or four times, with the maximum number of created schedules being

seven. This shows that the IDRs do not have the tendency to recreate the schedule many times,

but that they are rather capable of performing all improvements in only a few iterations. Also,

during the analysis it was observed that a few of the better IDRs usually recreated the schedule

only a few times. Therefore it was tested whether there is a correlation between the fitness of

the IDRs and the number of times they recreate the schedule. To test the correlation between

those two variables, the Spearman’s rho test was performed, and the values of ρ =−0.097 and

p = 0.612 were obtained. Based on these two values it can be concluded that there exists no

correlation between the two variables.

To further illustrate the behaviour of the different methods, and outline their strengths and

weaknesses, the schedules they created for a simple scheduling problem instance will be shortly

analysed. The details about the problem instance which will be used for the analysis are pre-

sented in Table 8.32.

The schedules created by the dynamic DR and various static DR methods are presented in

Figure 8.33. Subfigure 8.33a represents the schedule which is created by the best DR which

was created by GP for dynamic scheduling conditions. From the schedule it can immediately

be seen that the DR performs two bad decisions, which lead to an increased value of the total

weighted tardiness criterion. The first bad decision is that job j11 was scheduled before job j10.

Since the execution time of job j10 would be only one time unit, it would be more beneficial to

first execute this job and delay the execution of job j11 until job j10 is finished. Unfortunately,

job j11 is released prior to job j10, and the DR has no means of detecting that very soon a new

job will be released, which should have a higher priority of being scheduled. Therefore, job

j10 will have to wait until job j11 finishes with its execution, so that it can execute on machine

M0. This will consequentially lead to a larger tardiness value. The second bad decision can be

observed at the end of the schedule, where the DR scheduled job j4 on machine M2. This job

could have been scheduled at a much earlier time on M0 to reduce the tardiness. However, the

DR chose to rather schedule job j4 on the machine for which it has the minimum processing

time, and keep the machine M0 free in case that other jobs, which prefer this machine, would

398

8.4. Analysis of the static scheduling methods

Table 8.32: Properties of the problem instance used for analysis

Job index j r j d j w j p0 j p1 j p2 j

0 15 15 0.9 73 35 45

1 98 104 0.07 62 64 5

2 1 43 0.87 47 89 9

3 25 76 0.06 58 31 24

4 47 96 0.06 65 75 47

5 31 70 0.26 38 82 19

6 59 84 0.78 12 93 92

7 42 78 0.94 33 24 62

8 56 102 0.63 92 62 31

9 3 64 0.33 99 70 92

10 21 27 0.49 1 80 18

11 19 43 0.95 18 15 96

arrive into the system. In the end, the schedule generated by the dynamic DR achieves the total

weighted tardiness value of 0.596.

Subfigure 8.33b represents the schedule created by a selected DR with static terminal nodes.

The figure illustrates that the DR with static terminal nodes was able to fix only one of the bad

decisions which were performed by the dynamic DR. This DR performed a better decision

at the end of the schedule, by scheduling job j4 on machine M0 rather than on machine M2.

Therefore, the static terminal nodes provide useful information which the DR uses to determine

that by scheduling job j4 on machine M0 there would be no consequences for the future. The

total weighted tardiness of this schedule is 0.590. Therefore, the DR with static terminal nodes

achieved a slight improvement over the dynamic DR.

The IDR which was selected created the schedule three times. The first schedule it created

is presented in Subfigure 8.33c. The figure shows that the schedule created by this IDR is the

same as the one created by the dynamic DR. It is expected that in the first iteration the IDR will

perform equally well or worse than the dynamic DR, since the IDR did not yet have access to

any additional static information. Subfigure 8.33d denotes the schedule which was created in

the second iteration by the IDR. The figure shows that the IDR created the same schedule as

the DR with static terminal nodes. It seems that the IDR was able to capture the tardiness of

this job in the last schedule, and use this information to schedule it to another machine in the

second iteration. In the third iteration the IDR obtained a schedule of the same fitness value,

399

8. Design of DRs for static scheduling conditions

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

M0 11 10 7 6

M1 9 3

M2 2 0 5 8 1 4

(a) Schedule generated by the best dynamic DR

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

M0 11 10 7 6 4

M1 9 3

M2 2 0 5 8 1

(b) Schedule generated by a DR with static terminal nodes

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

M0 11 10 7 6

M1 9 3

M2 2 0 5 8 1 4

(c) Schedule generated by an IDR in the first iteration

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

M0 11 10 7 6 4

M1 9 3

M2 2 0 5 8 1

(d) Schedule generated by an IDR in the second iteration

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

M0 10 11 6 4

M1 0 7 9

M2 2 5 3 8 1

(e) Schedule generated by a DR with look-ahead

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

M0 10 11 7 6

M1 0 9

M2 2 3 5 8 1 4

(f) Schedule generated by the rollout algorithm

Figure 8.33: Schedules generated by the static DR methods

400

8.4. Analysis of the static scheduling methods

and therefore the procedure was terminated. In the end the IDR obtained the same schedule as

the DR with static terminal nodes. This leads to the conclusion that both of the methods are

similarly expressive. In the end, the IDR created a schedule with a Twt value of 0.590.

Subfigure 8.33e shows the schedule which was created by a DR which uses look-ahead.

The figure shows that the DR was able to correct both bad decisions which the dynamic DR

made. First, it was able to determine that job j11 should not be scheduled on machine M0 at

the very moment it arrives into the system, but with the help of look-ahead it determined that a

job which has a higher priority will very soon arrive into the system, and therefore it delayed

the scheduling of job j11. When job j10 arrives into the system, it is immediately scheduled

on machine M0, and after it has finished with its execution, job j11 is executed. At the end of

the schedule, the DR also determined that it would be better to schedule job j4 immediately

on machine M0. Look-ahead can also be helpful in this situation, since the DR will have a

clear oversight of the look-ahead horizon and will be aware that no new jobs will be released

during it, which means that it can prioritise the available jobs and schedule them without any

drawbacks. Furthermore, from the figure it is evident that the DR did some other changes to

the schedule. The schedule shows that the DR introduced several idle times into the schedule

to keep the machines free for high priority jobs which arrive in the near future. Therefore, the

DR kept machine M1 free until job j0 arrives into the system, since this job has a high weight

and executes the fastest on machine M1. The same happens for machine M0, where the DR does

not schedule job j7, but rather waits for job j6, and schedules job j7 on machine M1 on which

it achieves the fastest processing time. For machine M2 the same thing can be observed when

scheduling jobs j3 and j5. Based on these observations, it can be concluded that the look-ahead

provides DRs with more information than the previous two methods, and therefore allows them

to create better schedules. Even though the DR introduced a lot of idle times into the system, it

nevertheless achieved a better performance than the previous two methods, with the Twt value

being 0.574.

Finally, Subfigure 8.33f represents the schedule created by the rollout algorithm. The sched-

ule is very similar to the one obtained by the DR with look-ahead, however the rollout algorithm

tries to reduce the amount of idle times which are introduced in the schedule. Once again for

machine M0 it is preferred if job j10 is executed prior to job j11. The rollout algorithm also

determined that a certain amount of idle time should be introduced on machine M1 so that job

j0 can start immediately with its execution, to minimise the tardiness caused by it. However,

the rollout algorithm determined that it was better to execute job j7 on machine M0 as soon as

it arrives, since this will allow for job j9 to be executed immediately on machine M1. This will

lead to a very small increase in the tardiness value for job j6, but will allow for job j9 to finish

significantly earlier, and thus greatly reduce its tardiness value. For machine M2 the algorithm

determined that it is better to immediately start executing job j3, since it will not only prevent

401

8. Design of DRs for static scheduling conditions

job j5 of being late, but will additionally reduce the the tardiness of jobs j8 and j1. In this

schedule, job j4 finishes at a later moment in time with its execution than it was in the case

when a DR with look-ahead was used. However, since the job has a very small weight, it will

not have a large effect on the Twt value of the entire schedule. In the end, the Twt value of this

schedule amounts to 0.510, which is the best value achieved by any of the methods.

Based on all the previous observations, it can be concluded that the rollout algorithm has

the best overlook on the problem, and is thus able to achieve the best results. This can best be

seen in the comparison with look-ahead, which has a more limited overview on the problem.

The DR with look-ahead tried to give higher priority to jobs which had a shorter execution time

on the current machine, and therefore introduced several idle times to keep the machines free

for those job. Unfortunately, this had a negative effect on the later parts of the schedule, where

these decisions lead to an increased tardiness for some other jobs. Naturally, even with look-

ahead it is quite hard for the DR to predict all the effects a scheduling decision could have on

the future of the system. However, the rollout algorithm can try out various decisions at each

moment when a scheduling decision needs to be performed, and approximate the influence of

this decision on the rest of the schedule with a good DR. This gives the rollout algorithm an

unparalleled overview of the problem, and allows it perform decisions at the beginning of the

schedule, which will not have a negative influence on the latter parts of the schedule.

For the rollout algorithm it is additionally interesting to analyse whether there is a connec-

tion between the quality of the results produced by the rollout algorithm and the quality of the

DR which was used by it for the approximations. In order to test this, the rollout algorithm

with dynamic DRs was used. By performing the Spearman’s rho test, the values ρ = 0.487 and

p = 0.00034 were obtained. Therefore it can be seen that there is a positive correlation between

the quality of the rollout algorithm and the DR it uses. However, the correlation is not quite

strong to accept it as a general rule. This can be also seen from the results, since several better

results for the rollout algorithm are achieved when better DRs are being used, however there

are also cases where the rollout algorithm achieves quite good results even if the DR it uses

performs poorly by itself. The best performance in this case was nevertheless achieved when

using the DR which also individually achieved the best result.

8.5 Conclusion

Even though DRs are mostly applied for scheduling problems under dynamic conditions, they

can nevertheless be used to solve static scheduling problems as well. They offer several benefits

over metaheuristic methods, which are commonly used for solving scheduling problems under

static conditions. The first benefit is that DRs create good solutions much faster than the dif-

ferent metaheuristic methods. Therefore, if it is required to obtain a relatively good solution in

402

8.5. Conclusion

a small amount of time, DRs represent a better option. The second benefit of DRs is that they

create schedules incrementally, meaning that it is possible to start executing the beginning of the

schedule while the rest is still being constructed by the DR. Naturally, to achieve better results

with DRs, they need to be adapted for solving scheduling problems under static conditions.

The purpose of this chapter was to analyse different ways of adapting automatically gen-

erated DRs to improve their performance for the static scheduling problem. In the chapter it

was analysed how additional static terminal nodes, look-ahead, IDRs, and the rollout algorithm

improve the performance of DRs for solving scheduling problems under static conditions. For

each of the tested methods an in depth analysis on the influence of different parameters was

additionally performed. The obtained results were compared to those achieved by DRs evolved

for scheduling under dynamic conditions, and also to results achieved by a GA. Finally, an

analysis of the execution times of the different methods was also performed.

The results have shown that the various methods offer different levels of improvement over

the dynamic DRs, and also obtain vastly different execution times. The rollout algorithm

achieved the overall best results and even significantly outperformed the results achieved by

the GA. However, this procedure also had the highest execution time out of the tested meth-

ods. Nevertheless, in most cases it obtained better results than the GA, and required less time

to construct the schedule. The other methods did not achieve better results than the GA. On

the other hand, their execution time is almost negligible when compared to that of the GA, and

in most cases they achieved better results than the dynamic DRs. Out of the remaining three

methods, look-ahead has proven to achieve the best results. Through additional tests it was also

demonstrated that combining different methods, in most cases, leads to even better performance

of the DRs.

Based on the previously outlined observations, it can be concluded that the tested static

methods achieved improved results over the DRs generated for solving scheduling problem un-

der dynamic conditions. The proposed rollout algorithm outperformed even the results achieved

by the GA. Since the tested methods have different execution times, it is possible to select the

one which offers the best trade-off between the quality of the obtained results and the time

needed to create the schedule. As the tested methods obtained a quite good performance, there

is a lot of motivation for further extending this research to additionally improve the execution

times and the obtained results. One possibility for further research would be to develop novel

methods of adapting DRs for static scheduling problems, and compare them with the results

obtained in this chapter. The second line of research would be to improve the applied methods

to obtain better results in less time. For example, it would be interesting that in each step the

rollout algorithm does not create the entire schedule by using a DR, but rather a part of the

schedule, so that the scheduling decision is based only on that partially created schedule. This

should improve the execution time of the method, however, the question is how it would effect

403

8. Design of DRs for static scheduling conditions

the performance of the method.

404

Chapter 9

Conclusion

Scheduling is a decision-making process which can be observed in many real world situations.

Because it is widely used in different areas, it has become an extensively researched field of

science. However, since scheduling problems are so widespread, many different types, condi-

tions, and criteria exist for those problems. This hinders the possibility of developing a single

method which could be used and would perform well for all problems. Because of that reason,

a great deal of research has focused on applying different metaheuristic methods for solving

scheduling problems. These methods have the benefit that they can be applied for various op-

timisation problems, with only small adjustments needed to be performed on the core method.

On the other hand, these methods additionally have a serious drawback, which is that all the

information about the scheduling problem needs to be available, for them to be able to con-

struct solutions. However, for many scheduling problems this will not be the case, but rather

the information about the system will become known during its execution.

Dispatching rules, on the other hand, are simple problem specific heuristics which can be

used for solving dynamic scheduling problems. However, since they are problem specific, new

dispatching rules need to be designed for different scheduling environments, conditions and cri-

teria. The process of manually designing new dispatching rules is a tedious and time consuming

process. For that reason, an increasing amount of research is performed to develop methods for

automatically generating dispatching rules. Among the most commonly applied methods for

that purpose are genetic programming, and similar evolutionary computation methods. Genetic

programming is an evolutionary computation method which has the ability to design complex

expressions, which can be applied as dispatching rules. Because of its great potential for de-

signing new dispatching rules, a great number of studies applied genetic programming to auto-

matically generate new dispatching rules for various scheduling environments and criteria.

405

9. Conclusion

9.1 Achieved contributions and main conclusions

This thesis focused on developing new dispatching rules for the unrelated machines scheduling

environment, by using genetic programming. The main objective of the thesis was to enhance

the performance of dispatching rules generated by genetic programming. This objective was

achieved by combining genetic programming with various other methods, but also by introduc-

ing certain changes into dispatching rules. It should be stressed out that, although this thesis

dealt only with scheduling problems in the unrelated machines environment, most of the meth-

ods and approaches used in this thesis can be applied not only for other scheduling environments

as well, but also for problems which can be solved in a similar manner by using a priority func-

tion. The rest of this section will list the major contributions achieved in the thesis, and give

conclusions about each of the achieved contributions.

9.1.1 Design of dispatching rules for simultaneous optimisation of multi-
ple criteria

In the thesis, four different multi-objective and many-objective genetic programming algorithms

were used to design dispatching rules for optimising several criteria simultaneously. The se-

lected methods were applied on various multi-objective and many-objective scheduling prob-

lems, in which the number of optimised criteria ranged from three to nine. Dispatching rules

which were generated by the applied methods were compared with several manually designed

dispatching rules from the literature. The obtained results demonstrate that the applied genetic

programming algorithms generated dispatching rules which in most cases perform better than

manually designed dispatching rules. Therefore, the multi-objective and many-objective meth-

ods are capable of obtaining good dispatching rules for various combinations of scheduling

criteria.

Based on the obtained results, it can be concluded that, by using genetic programming, it

is possible to create dispatching rules which perform well on several criteria simultaneously.

Although the methods have shown to be sensitive to the number of objectives which were op-

timised, they were much more sensitive to the combination of criteria which was optimised.

Nevertheless, even for larger criteria combinations the methods obtain good dispatching rules.

Although this thesis demonstrated the possibility of obtaining dispatching rules for optimising

various combinations of scheduling criteria, there is still much potential to further improve the

performance of the applied algorithms.

406

9.1. Achieved contributions and main conclusions

9.1.2 Designing ensembles of dispatching rules

In order to improve the performance of dispatching rules designed by genetic programming, the

thesis proposed the application of several ensemble learning approaches for solving scheduling

problems under dynamic conditions. In addition to the two proposed ensemble learning ap-

proaches, three prominent approaches were selected from the literature and additionally used to

create ensembles of dispatching rules. To evaluate the performance of the tested ensemble learn-

ing methods, they were used to construct ensembles for four scheduling criteria. The obtained

results demonstrate that the constructed ensembles of dispatching rules outperformed individual

rules designed by genetic programming. Out of the tested ensemble learning approaches, the

proposed SEC approach achieved the best performance. On the other hand, the proposed ESS

method improved the performance of ensembles obtained by the other approaches in several

occasions.

The results obtained by ensembles of dispatching rules significantly outperform those achi-

eved by individual manually or automatically designed dispatching rules, on all four scheduling

criteria. These results demonstrate the potential which ensemble learning approaches provide

in obtaining better results. Another benefit of ensembles is that they can be constructed in

various ways, which allows for new methods of creating ensembles to be defined quite easily.

This is especially true for the proposed ensemble learning approach, which allows for much

flexibility in defining how the ensembles are constructed. Therefore, by defining novel ways of

creating the ensembles, it is possible that the performance of the approach could be increased

even further.

9.1.3 Procedure for the selection of dispatching rules based on problem
instance characteristics

By using genetic programming it is possible to obtain a large number of new dispatching rules.

However, it is not known in advance which of these rules are best suitable for solving unseen

scheduling problems. Even though genetic programming is used to create high quality dispatch-

ing rules, there will still be certain problem instances and situations for which these rules will

perform poorly. To solve this problem, a procedure for the selection of automatically generated

dispatching rules based on the characteristics of problem instances was proposed in this thesis.

The proposed procedure can be applied both in situations when all problem instance charac-

teristics are known in advance, or if they need to be approximated during the execution of the

system. In both cases the proposed method has demonstrated that it can select appropriate dis-

patching rules for different problem instances, and therefore achieve a better performance than

if only a single dispatching rule would be used.

Selecting dispatching rules based on problem characteristics has shown to be a viable method

407

9. Conclusion

to adapt for different problems which could occur during the execution of the system. Although

the proposed procedure can select the appropriate dispatching rules for different problem in-

stances, it consists of a wide range of parameters which need to be fine tuned in order for the

procedure to achieve good performance. Nevertheless, selecting the appropriate dispatching

rules for the currently considered problem instance is an important issue in dynamic scheduling

environments which needs to be dealt with. Therefore, further research should be conducted

in this area to design more robust methods, and possibly combine them with genetic program-

ming simultaneously evolve dispatching rules, and the decision functions which determine the

dispatching rule that should be applied for the current problem instance.

9.1.4 Developing dispatching rules for the static scheduling environment

Since dispatching rules are mostly used in dynamic scheduling environments, they are designed

in a way that they use only dynamic information of the problem. The thesis proposed various

ways to adapt automatically generated dispatching rules for the static scheduling environment.

In addition, the thesis also proposed the use of the rollout algorithm in combination with auto-

matically generated dispatching rules, to obtain results which are comparable or even better than

those of genetic algorithms. Various combinations of the proposed methods were also tested in

the thesis to further improve the results. The obtained results demonstrate that the various meth-

ods provide different trade-offs between the quality of the results, and the time needed to create

the schedule. In addition, results obtained by the proposed methods are compared to the results

achieved by a genetic algorithm. This comparison determined that certain procedures achieved

equally good or better results than genetic algorithms, in a smaller or similar time frame. Other

methods obtained results which are to a certain extent worse than those obtained by the genetic

algorithm. However, those methods can obtain the results in a considerable smaller amount of

time than the genetic algorithm.

The obtained results show that dispatching rules have a lot of potential of being applied for

the static scheduling environment. The results demonstrated that the adapted dispatching rules

achieved similar or even better performance than the genetic algorithm, but additionally offer

several benefits like faster execution times and incremental construction of the schedules. Be-

cause of these reasons, the adapted dispatching rules could have potential to become a preferred

method for solving scheduling problems under static conditions. Therefore, it is important to

continue the research of adapting dispatching rules for static scheduling conditions, to obtain

methods which can achieve even better performance in a smaller amount of time.

408

9.2. Future research

9.2 Future research

This thesis has dealt with several open issues in the field of automatic generation of dispatching

rules. Regardless of this, there are still many open research areas which need further con-

sideration. This section will outline several possible future research topics. Some research

possibilities have already been mentioned in the conclusions of individual chapters, therefore

they will not be repeated in this section.

One possible research direction is concerned with testing different schedule generation

schemes which are used by the dispatching rules. Throughout this thesis one main schedule

generation scheme was used, however it would be interesting to analyse how different sched-

ule generation schemes would influence not only the quality of the generated dispatching rules,

but also the interpretability of the generated dispatching rules. A possible schedule generation

scheme could use two priority functions, one to determine the job that should be scheduled, and

the other to determine the machine on which it should be scheduled. Another schedule gen-

eration scheme could, for example, only select the job which should be scheduled, but the job

would always be scheduled on the machine on which it achieves its minimum execution time.

The interpretability of dispatching rules is another important topic which is also quite often

in the focus of many studies, since genetic programming usually produces rules which are quite

hard to interpret. Interpretability of dispatching rules is important since it is easier to extract

information from dispatching rules which are easier to interpret. In addition, dispatching rules

which are easier to interpret are more likely to be applied in real world environments, since it

is easier to deduce the way in which they perform scheduling decisions. Therefore, obtaining

simpler dispatching rules is certainly another field in which a lot of research will be focused in

the future.

The scheduling problem which was considered in this thesis did not contain any additional

constraints or conditions, aside for the release times of the jobs. However, scheduling prob-

lems usually contain several additional constraints, like setup times or precedence constraints.

Some research was already concerned with scheduling problems which included additional con-

straints, however, the studies usually focused on problems with only one constraint. Therefore,

it would be interesting to investigate the creation of dispatching rules for scheduling problems

which include several constraints. Here it would also be interesting to put more emphasis on

solving the unrelated machines environment scheduling problem with batch processing.

In real scheduling environments it is often possible that not all parameters of the system

are deterministic. For example, it is possible that processing times of jobs are not known in

advance, but that rather only an approximation of the real processing times is available. The real

processing time would become available only when the job finishes with its execution. Most of

the research on the automatic design of dispatching rules does not deal with such uncertainties,

409

9. Conclusion

and only a few recent studies began researching this problem into more depth.

Genetic programming uses a predefined set of terminal nodes to construct the priority func-

tion used by the dispatching rule. However, providing either a too large or a too small number

of terminal nodes can have a negative effect on the performance of genetic programming. In

order to determine which terminal nodes are important, a great deal of experiments would need

to be performed. Therefore, it would be beneficial if genetic programming could perform a se-

lection of useful terminals during the evolution process, and thus eliminate all the unnecessary

terminal nodes. In addition, it could also prove useful if genetic programming could determine

which expressions appear most commonly in dispatching rules, and replace those expressions

with new terminal nodes. This could improve the performance of genetic programming since it

would not need to create entire expressions each time, but could rather use them as a terminal

node.

410

Bibliography

[1] Pinedo, M. L., Scheduling: Theory, algorithms, and systems: Fourth edition.

Boston, MA: Springer US, 2012, Vol. 9781461423614, available at: http:

//link.springer.com/10.1007/978-1-4614-2361-4

[2] Cheng, V., Crawford, L., Menon, P., “Air traffic control using genetic search

techniques”, in Proceedings of the 1999 IEEE International Conference on Control

Applications (Cat. No.99CH36328), Vol. 1. IEEE, 1999, pp. 249–254, available at:

http://ieeexplore.ieee.org/document/806209/

[3] Hansen, J. V., “Genetic search methods in air traffic control”, Computers &

Operations Research, Vol. 31, No. 3, Mar. 2004, pp. 445–459, available at:

http://linkinghub.elsevier.com/retrieve/pii/S0305054802002289

[4] Dimopoulos, C., Zalzala, A., “Recent developments in evolutionary computation for

manufacturing optimization: problems, solutions, and comparisons”, IEEE Transactions

on Evolutionary Computation, Vol. 4, No. 2, Jul. 2000, pp. 93–113, available at:

http://ieeexplore.ieee.org/document/850651/

[5] Ouelhadj, D., Petrovic, S., “A survey of dynamic scheduling in manufacturing

systems”, Journal of Scheduling, Vol. 12, No. 4, Aug. 2009, pp. 417–431, available at:

http://link.springer.com/10.1007/s10951-008-0090-8

[6] Sarin, S. C., Varadarajan, A., Wang, L., “A survey of dispatching rules for operational

control in wafer fabrication”, Production Planning & Control, Vol. 22, No. 1, Jan.

2011, pp. 4–24, available at: http://www.tandfonline.com/doi/abs/10.1080/09537287.

2010.490014

[7] Kofler, M., Wagner, S., Beham, A., Kronberger, G., Affenzeller, M., “Priority

Rule Generation with a Genetic Algorithm to Minimize Sequence Dependent Setup

Costs”, in Computer Aided Systems Theory - EUROCAST 2009: 12th International

Conference, Las Palmas de Gran Canaria, Spain, February 15-20, 2009, Revised

Selected Papers, Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A., (ed.).

411

http://link.springer.com/10.1007/978-1-4614-2361-4
http://link.springer.com/10.1007/978-1-4614-2361-4
http://ieeexplore.ieee.org/document/806209/
http://linkinghub.elsevier.com/retrieve/pii/S0305054802002289
http://ieeexplore.ieee.org/document/850651/
http://link.springer.com/10.1007/s10951-008-0090-8
http://www.tandfonline.com/doi/abs/ 10.1080/09537287.2010.490014
http://www.tandfonline.com/doi/abs/ 10.1080/09537287.2010.490014

Bibliography

Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 817–824, available at:

http://link.springer.com/10.1007/978-3-642-04772-5_105

[8] Petrovic, S., Castro, E., “A genetic algorithm for radiotherapy pre-treatment scheduling”,

in Applications of Evolutionary Computation: EvoApplications 2011: EvoCOMNET,

EvoFIN, EvoHOT, EvoMUSART, EvoSTIM, and EvoTRANSLOG, Torino, Italy,

April 27-29, 2011, Proceedings, Part II, Di Chio, C., Brabazon, A., Di Caro,

G. A., Drechsler, R., Farooq, M., Grahl, J., Greenfield, G., Prins, C., Romero, J.,

Squillero, G., Tarantino, E., Tettamanzi, A. G. B., Urquhart, N., Uyar, A. Ş., (ed.).

Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 454–463, available at:

https://doi.org/10.1007/978-3-642-20520-0_46

[9] Hart, E., Ross, P., Corne, D., “Evolutionary Scheduling: A Review”, Genetic

Programming and Evolvable Machines, Vol. 6, No. 2, Jun. 2005, pp. 191–220, available

at: http://link.springer.com/10.1007/s10710-005-7580-7

[10] Sels, V., Gheysen, N., Vanhoucke, M., “A comparison of priority rules for the job shop

scheduling problem under different flow time- and tardiness-related objective functions”,

International Journal of Production Research, Vol. 50, No. 15, Aug. 2012, pp. 4255–

4270, available at: http://www.tandfonline.com/doi/abs/10.1080/00207543.2011.611539

[11] Kaban, A., Othman, Z., Rohmah, D., “Comparison of dispatching rules in job-shop

scheduling problem using simulation: A case study”, International Journal of Simula-

tion Modelling, Vol. 11, No. 3, 2012, pp. 129–140.

[12] Tseng, L.-Y., Chin, Y.-H., Wang, S.-C., “A minimized makespan scheduler with multiple

factors for Grid computing systems”, Expert Systems with Applications, Vol. 36, No. 8,

Oct. 2009, pp. 11 118–11 130, available at: http://linkinghub.elsevier.com/retrieve/pii/

S0957417409002401

[13] Maheswaran, M., Ali, S., Siegel, H. J., Hensgen, D., Freund, R. F., “Dynamic Mapping

of a Class of Independent Tasks onto Heterogeneous Computing Systems”, Journal of

Parallel and Distributed Computing, Vol. 59, No. 2, Nov. 1999, pp. 107–131, available

at: http://linkinghub.elsevier.com/retrieve/pii/S0743731599915812

[14] Branke, J., Nguyen, S., Pickardt, C. W., Zhang, M., “Automated Design of

Production Scheduling Heuristics: A Review”, IEEE Transactions on Evolutionary

Computation, Vol. 20, No. 1, Feb. 2016, pp. 110–124, available at: http:

//ieeexplore.ieee.org/document/7101236/

412

http://link.springer.com/10.1007/978-3-642-04772-5_105
https://doi.org/10.1007/978-3-642-20520-0_46
http://link.springer.com/10.1007/s10710-005-7580-7
http://www.tandfonline.com/doi/abs/10.1080/00207543.2011.611539
http://linkinghub.elsevier.com/retrieve/pii/S0957417409002401
http://linkinghub.elsevier.com/retrieve/pii/S0957417409002401
http://linkinghub.elsevier.com/retrieve/pii/S0743731599915812
http://ieeexplore.ieee.org/document/7101236/
http://ieeexplore.ieee.org/document/7101236/

Bibliography

[15] Nguyen, S., Mei, Y., Zhang, M., “Genetic programming for production scheduling: a

survey with a unified framework”, Complex & Intelligent Systems, Vol. 3, No. 1, Mar.

2017, pp. 41–66, available at: http://link.springer.com/10.1007/s40747-017-0036-x

[16] Koza, J. R., “Genetic programming: A paradigm for genetically breeding populations of

computer programs to solve problems”, Stanford, CA, USA, Tech. Rep., 1990.

[17] Jakobović, D., “Raspored̄ivanje zasnovano na prilagodljivim pravilima”, 2005.

[18] Nguyen, S., “Automatic design of dispatching rules for job shop scheduling with genetic

programming”, 2013.

[19] Hunt, R. J., “Genetic programming hyper-heuristics for job shop scheduling”, 2016.

[20] Li, B., Li, J., Tang, K., Yao, X., “Many-objective evolutionary algorithms: A

survey”, ACM Comput. Surv., Vol. 48, No. 1, Sep. 2015, pp. 13:1–13:35, available at:

http://doi.acm.org/10.1145/2792984

[21] Bagchi, T. P., Multiobjective Scheduling by Genetic Algorithms. Boston, MA: Springer

US, 1999, available at: http://link.springer.com/10.1007/978-1-4615-5237-6

[22] Minella, G., Ruiz, R., Ciavotta, M., “A Review and Evaluation of Multiobjective

Algorithms for the Flowshop Scheduling Problem”, INFORMS Journal on Computing,

Vol. 20, No. 3, Aug. 2008, pp. 451–471, available at: http://pubsonline.informs.org/doi/

10.1287/ijoc.1070.0258

[23] Wang, X.-J., Zhang, C.-Y., Gao, L., Li, P.-G., “A Survey and Future Trend of

Study on Multi-Objective Scheduling”, in 2008 Fourth International Conference on

Natural Computation. IEEE, 2008, pp. 382–391, available at: http://ieeexplore.ieee.org/

document/4667864/

[24] Sun, Y., Zhang, C., Gao, L., Wang, X., “Multi-objective optimization algorithms for

flow shop scheduling problem: a review and prospects”, The International Journal

of Advanced Manufacturing Technology, Vol. 55, No. 5-8, Jul. 2011, pp. 723–739,

available at: http://link.springer.com/10.1007/s00170-010-3094-4

[25] Yenisey, M. M., Yagmahan, B., “Multi-objective permutation flow shop scheduling

problem: Literature review, classification and current trends”, Omega, Vol. 45,

Jun. 2014, pp. 119–135, available at: http://linkinghub.elsevier.com/retrieve/pii/

S0305048313000832

[26] Tay, J. C., Ho, N. B., “Evolving dispatching rules using genetic programming

for solving multi-objective flexible job-shop problems”, Computers & Industrial

413

http://link.springer.com/10.1007/s40747-017-0036-x
http://doi.acm.org/10.1145/2792984
http://link.springer.com/10.1007/978-1-4615-5237-6
http://pubsonline.informs.org/doi/10.1287/ijoc.1070.0258
http://pubsonline.informs.org/doi/10.1287/ijoc.1070.0258
http://ieeexplore.ieee.org/document/4667864/
http://ieeexplore.ieee.org/document/4667864/
http://link.springer.com/10.1007/s00170-010-3094-4
http://linkinghub.elsevier.com/retrieve/pii/S0305048313000832
http://linkinghub.elsevier.com/retrieve/pii/S0305048313000832

Bibliography

Engineering, Vol. 54, No. 3, Apr. 2008, pp. 453–473, available at: http:

//linkinghub.elsevier.com/retrieve/pii/S0360835207002008

[27] Nie, L., Gao, L., Li, P., Wang, X., “Multi-Objective Optimization for Dynamic

Single-Machine Scheduling”, in Advances in Swarm Intelligence: Second International

Conference, ICSI 2011, Chongqing, China, June 12-15, 2011, Proceedings, Part II, Tan,

Y., Shi, Y., Chai, Y., Wang, G., (ed.). Berlin, Heidelberg: Springer Berlin Heidelberg,

2011, pp. 1–9, available at: http://link.springer.com/10.1007/978-3-642-21524-7_1

[28] Nguyen, S., Zhang, M., Johnston, M., Tan, K. C., “Dynamic multi-objective job

shop scheduling: A genetic programming approach”, in Automated Scheduling and

Planning: From Theory to Practice, Uyar, A. S., Ozcan, E., Urquhart, N., (ed.).

Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 251–282, available at:

https://doi.org/10.1007/978-3-642-39304-4_10

[29] Nguyen, S., Zhang, M., Tan, K. C., “Enhancing genetic programming based

hyper-heuristics for dynamic multi-objective job shop scheduling problems”, in 2015

IEEE Congress on Evolutionary Computation (CEC). IEEE, May 2015, pp. 2781–2788,

available at: http://ieeexplore.ieee.org/document/7257234/

[30] Freitag, M., Hildebrandt, T., “Automatic design of scheduling rules for complex

manufacturing systems by multi-objective simulation-based optimization”, CIRP Annals

- Manufacturing Technology, Vol. 65, No. 1, 2016, pp. 433–436, available at:

http://linkinghub.elsevier.com/retrieve/pii/S000785061630066X

[31] Masood, A., Mei, Y., Chen, G., Zhang, M., “Many-objective genetic programming

for job-shop scheduling”, in 2016 IEEE Congress on Evolutionary Computation

(CEC). IEEE, Jul. 2016, pp. 209–216, available at: http://ieeexplore.ieee.org/document/

7743797/

[32] Karunakaran, D., Chen, G., Zhang, M., “Parallel Multi-objective Job Shop Scheduling

Using Genetic Programming”, in Artificial Life and Computational Intelligence: Second

Australasian Conference, ACALCI 2016, Canberra, ACT, Australia, February 2-5, 2016,

Proceedings, Ray, T., Sarker, R., Li, X., (ed.). Springer International Publishing, 2016,

pp. 234–245, available at: http://link.springer.com/10.1007/978-3-319-28270-1_20

[33] Hunt, R., Johnston, M., Zhang, M., “Evolving "less-myopic" scheduling rules

for dynamic job shop scheduling with genetic programming”, in Proceedings of

the 2014 conference on Genetic and evolutionary computation - GECCO ’14.

New York, New York, USA: ACM Press, 2014, pp. 927–934, available at:

http://dl.acm.org/citation.cfm?doid=2576768.2598224

414

http://linkinghub.elsevier.com/retrieve/pii/S0360835207002008
http://linkinghub.elsevier.com/retrieve/pii/S0360835207002008
http://link.springer.com/10.1007/978-3-642-21524-7_1
https://doi.org/10.1007/978-3-642-39304-4_10
http://ieeexplore.ieee.org/document/7257234/
http://linkinghub.elsevier.com/retrieve/pii/S000785061630066X
http://ieeexplore.ieee.org/document/7743797/
http://ieeexplore.ieee.org/document/7743797/
http://link.springer.com/10.1007/978-3-319-28270-1_20
http://dl.acm.org/citation.cfm?doid=2576768.2598224

Bibliography

[34] Nguyen, S., Zhang, M., Johnston, M., Tan, K. C., “A Computational Study of

Representations in Genetic Programming to Evolve Dispatching Rules for the Job Shop

Scheduling Problem”, IEEE Transactions on Evolutionary Computation, Vol. 17, No. 5,

Oct. 2013, pp. 621–639, available at: http://ieeexplore.ieee.org/document/6353198/

[35] Park, J., Nguyen, S., Zhang, M., Johnston, M., “Evolving ensembles of dispatching

rules using genetic programming for job shop scheduling”, in Genetic Programming:

18th European Conference, EuroGP 2015, Copenhagen, Denmark, April 8-10, 2015,

Proceedings, Machado, P., Heywood, M. I., McDermott, J., Castelli, M., García-

Sánchez, P., Burelli, P., Risi, S., Sim, K., (ed.). Cham: Springer International Publishing,

2015, pp. 92–104, available at: https://doi.org/10.1007/978-3-319-16501-1_8

[36] Hart, E., Sim, K., “A Hyper-Heuristic Ensemble Method for Static Job-Shop

Scheduling”, Evolutionary Computation, Vol. 24, No. 4, Dec. 2016, pp. 609–635,

available at: http://www.mitpressjournals.org/doi/10.1162/EVCO_a_00183

[37] Park, J., Mei, Y., Chen, G., Zhang, M., “Niching Genetic Programming based

Hyper-heuristic Approach to Dynamic Job Shop Scheduling”, in Proceedings of the

2016 on Genetic and Evolutionary Computation Conference Companion - GECCO ’16

Companion. New York, New York, USA: ACM Press, 2016, pp. 109–110, available at:

http://dl.acm.org/citation.cfm?doid=2908961.2908985

[38] Park, J., Mei, Y., Nguyen, S., Chen, G., Johnston, M., Zhang, M., “Genetic Programming

Based Hyper-heuristics for Dynamic Job Shop Scheduling: Cooperative Coevolutionary

Approaches”, in Genetic Programming: 19th European Conference, EuroGP 2016,

Porto, Portugal, March 30 - April 1, 2016, Proceedings, Heywood, M. I., McDermott, J.,

Castelli, M., Costa, E., Sim, K., (ed.). Cham: Springer International Publishing, 2016,

pp. 115–132, available at: http://link.springer.com/10.1007/978-3-319-30668-1_8

[39] El-Bouri, A., Shah, P., “A neural network for dispatching rule selection in a job shop”,

The International Journal of Advanced Manufacturing Technology, Vol. 31, No. 3-4, Nov.

2006, pp. 342–349, available at: http://link.springer.com/10.1007/s00170-005-0190-y

[40] Mouelhi-Chibani, W., Pierreval, H., “Training a neural network to select dispatching

rules in real time”, Computers & Industrial Engineering, Vol. 58, No. 2, Mar. 2010, pp.

249–256, available at: http://linkinghub.elsevier.com/retrieve/pii/S0360835209000953

[41] Heger, J., Hildebrandt, T., Scholz-Reiter, B., “Dispatching rule selection with Gaussian

processes”, Central European Journal of Operations Research, Vol. 23, No. 1, Mar.

2015, pp. 235–249, available at: http://link.springer.com/10.1007/s10100-013-0322-7

415

http://ieeexplore.ieee.org/document/6353198/
https://doi.org/10.1007/978-3-319-16501-1_8
http://www.mitpressjournals.org/doi/10.1162/EVCO_a_00183
http://dl.acm.org/citation.cfm?doid=2908961.2908985
http://link.springer.com/10.1007/978-3-319-30668-1_8
http://link.springer.com/10.1007/s00170-005-0190-y
http://linkinghub.elsevier.com/retrieve/pii/S0360835209000953
http://link.springer.com/10.1007/s10100-013-0322-7

Bibliography

[42] Hildebrandt, T., Heger, J., Scholz-Reiter, B., “Towards improved dispatching rules for

complex shop floor scenarios”, in Proceedings of the 12th annual conference on Genetic

and evolutionary computation - GECCO ’10. New York, New York, USA: ACM Press,

2010, pp. 257, available at: http://portal.acm.org/citation.cfm?doid=1830483.1830530

[43] Nguyen, S., Zhang, M., Johnston, M., Tan, K. C., “Learning iterative dispatching

rules for job shop scheduling with genetic programming”, The International Journal of

Advanced Manufacturing Technology, Vol. 67, No. 1-4, Jul. 2013, pp. 85–100, available

at: http://link.springer.com/10.1007/s00170-013-4756-9

[44] Pfund, M. E., Mason, S. J., Fowler, J. W., “Semiconductor Manufacturing

Scheduling and Dispatching”, in Handbook of Production Scheduling. Boston: Kluwer

Academic Publishers, 2006, pp. 213–241, available at: http://link.springer.com/10.1007/

0-387-33117-4_9

[45] Chiang, T. C., Shen, Y. S., Fu, L. C., “A new paradigm for rule-based scheduling in the

wafer probe centre”, International Journal of Production Research, Vol. 46, No. 15, aug

2008, pp. 4111–4133, available at: https://doi.org/10.1080/00207540601137199

[46] Zhan, Z.-H., Liu, X.-F., Gong, Y.-J., Zhang, J., Chung, H. S.-H., Li, Y.,

“Cloud computing resource scheduling and a survey of its evolutionary approaches”,

ACM Computing Surveys, Vol. 47, No. 4, jul 2015, pp. 1–33, available at:

https://doi.org/10.1145/2788397

[47] Singh, S., Chana, I., “A survey on resource scheduling in cloud computing: Issues

and challenges”, Journal of Grid Computing, Vol. 14, No. 2, feb 2016, pp. 217–264,

available at: https://doi.org/10.1007/s10723-015-9359-2

[48] Ernst, A., Jiang, H., Krishnamoorthy, M., Sier, D., “Staff scheduling and

rostering: A review of applications, methods and models”, European Journal

of Operational Research, Vol. 153, No. 1, feb 2004, pp. 3–27, available at:

https://doi.org/10.1016/s0377-2217(03)00095-x

[49] Hou, E., Ansari, N., Ren, H., “A genetic algorithm for multiprocessor scheduling”, IEEE

Transactions on Parallel and Distributed Systems, Vol. 5, No. 2, 1994, pp. 113–120,

available at: https://doi.org/10.1109/71.265940

[50] Leung, J. Y.-T., Handbook of scheduling : algorithms, models, and performance

analysis. Boca Raton, Fla.: Chapman & Hall/CRC, 2004, available at: http:

//www.worldcat.org/search?qt=worldcat_org_all&q=1584883979

416

http://portal.acm.org/citation.cfm?doid=1830483.1830530
http://link.springer.com/10.1007/s00170-013-4756-9
http://link.springer.com/10.1007/0-387-33117-4_9
http://link.springer.com/10.1007/0-387-33117-4_9
https://doi.org/10.1080/00207540601137199
https://doi.org/10.1145/2788397
https://doi.org/10.1007/s10723-015-9359-2
https://doi.org/10.1016/s0377-2217(03)00095-x
https://doi.org/10.1109/71.265940
http://www.worldcat.org/search?qt=worldcat_org_all&q=1584883979
http://www.worldcat.org/search?qt=worldcat_org_all&q=1584883979

Bibliography

[51] Allahverdi, A., Gupta, J. N., Aldowaisan, T., “A review of scheduling research involving

setup considerations”, Omega, Vol. 27, No. 2, Apr. 1999, pp. 219–239, available at:

http://linkinghub.elsevier.com/retrieve/pii/S0305048398000425

[52] Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M. Y., “A survey of scheduling problems

with setup times or costs”, European Journal of Operational Research, Vol. 187,

No. 3, Jun. 2008, pp. 985–1032, available at: http://linkinghub.elsevier.com/retrieve/pii/

S0377221706008174

[53] Baker, K. R., Trietsch, D., Principles of Sequencing and

Scheduling. Wiley, 2013, available at: https://www.amazon.com/

Principles-Sequencing-Scheduling-Kenneth-Baker-ebook/dp/B00D8Y5C1C?

SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&

camp=2025&creative=165953&creativeASIN=B00D8Y5C1C

[54] Jain, A. S., Meeran, S., “A state-of-the-art review of job-shop scheduling techniques”,

1998.

[55] Błażewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., Węglarz, J., Scheduling

Computer and Manufacturing Processes. Springer Berlin Heidelberg, 2001, available at:

https://doi.org/10.1007/978-3-662-04363-9

[56] Land, A. H., Doig, A. G., “An Automatic Method of Solving Discrete Programming

Problems”, Econometrica, Vol. 28, No. 3, 1960, pp. 497–520.

[57] Graham, R. L., Lawler, E. L., Lenstra, J. K., Kan, A. H. G. R., “Optimization and Ap-

proximation in Deterministic Sequencing and Scheduling: a Survey”, Annals of Discrete

Mathematics, Vol. 5, No. C, 1979, pp. 287–326.

[58] Rocha, P. L., Ravetti, M. G., Mateus, G. R., Pardalos, P. M., “Exact algorithms for

a scheduling problem with unrelated parallel machines and sequence and machine-

dependent setup times”, Computers & Operations Research, Vol. 35, No. 4, Apr. 2008,

pp. 1250–1264.

[59] Wotzlaw, A., Scheduling Unrelated Parallel Machines: Algorithms, Complexity, and Per-

formance. AV Akademikerverlag, 2012.

[60] Lenstra, J. K., Shmoys, D. B., Tardos, E., “Approximation algorithms for scheduling

unrelated parallel machines”, Mathematical Programming, Vol. 46, No. 1-3, Jan. 1990,

pp. 259–271, available at: http://link.springer.com/10.1007/BF01585745

417

http://linkinghub.elsevier.com/retrieve/pii/S0305048398000425
http://linkinghub.elsevier.com/retrieve/pii/S0377221706008174
http://linkinghub.elsevier.com/retrieve/pii/S0377221706008174
https://www.amazon.com/Principles-Sequencing-Scheduling-Kenneth-Baker-ebook/dp/B00D8Y5C1C?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B00D8Y5C1C
https://www.amazon.com/Principles-Sequencing-Scheduling-Kenneth-Baker-ebook/dp/B00D8Y5C1C?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B00D8Y5C1C
https://www.amazon.com/Principles-Sequencing-Scheduling-Kenneth-Baker-ebook/dp/B00D8Y5C1C?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B00D8Y5C1C
https://www.amazon.com/Principles-Sequencing-Scheduling-Kenneth-Baker-ebook/dp/B00D8Y5C1C?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B00D8Y5C1C
https://doi.org/10.1007/978-3-662-04363-9
http://link.springer.com/10.1007/BF01585745

Bibliography

[61] Chen, B., Potts, C. N., Woeginger, G. J., “A review of machine scheduling: Complexity,

algorithms and approximability”, in Handbook of Combinatorial Optimization. Springer

US, 1998, pp. 1493–1641, available at: https://doi.org/10.1007/978-1-4613-0303-9_25

[62] Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning,

1st ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989.

[63] Mitchell, M., An Introduction to Genetic Algorithms. Cambridge, MA, USA: MIT Press,

1998.

[64] Eiben, A., Smith, J., Introduction to Evolutionary Computing, ser. Natural

Computing Series. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, available at:

http://link.springer.com/10.1007/978-3-662-44874-8

[65] Kennedy, J., Eberhart, R., “Particle swarm optimization”, in Proceedings of ICNN’95

- International Conference on Neural Networks, Vol. 4. IEEE, 1995, pp. 1942–1948,

available at: http://ieeexplore.ieee.org/document/488968/

[66] Engelbrecht, A. P., Computational Intelligence. John Wiley & Sons, Ltd, oct 2007,

available at: https://doi.org/10.1002/9780470512517

[67] Dorigo, M., Maniezzo, V., Colorni, A., “Ant system: optimization by a colony

of cooperating agents”, IEEE Transactions on Systems, Man and Cybernetics,

Part B (Cybernetics), Vol. 26, No. 1, 1996, pp. 29–41, available at: http:

//ieeexplore.ieee.org/document/484436/

[68] Glover, F., “Future paths for integer programming and links to artificial intelligence”,

Computers & Operations Research, Vol. 13, No. 5, Jan. 1986, pp. 533–549, available at:

http://linkinghub.elsevier.com/retrieve/pii/0305054886900481

[69] Glover, F., “Tabu Search—Part I”, ORSA Journal on Computing, Vol. 1, No. 3, Aug.

1989, pp. 190–206, available at: http://pubsonline.informs.org/doi/abs/10.1287/ijoc.1.3.

190

[70] Glover, F., “Tabu Search—Part II”, ORSA Journal on Computing, Vol. 2, No. 1, Feb.

1990, pp. 4–32, available at: http://pubsonline.informs.org/doi/abs/10.1287/ijoc.2.1.4

[71] Khachaturyan, A., Semenovsovskaya, S., Vainshtein, B., “The thermodynamic approach

to the structure analysis of crystals”, Acta Crystallographica Section A, Vol. 37,

No. 5, Sep. 1981, pp. 742–754, available at: http://scripts.iucr.org/cgi-bin/paper?

S0567739481001630

418

https://doi.org/10.1007/978-1-4613-0303-9_25
http://link.springer.com/10.1007/978-3-662-44874-8
http://ieeexplore.ieee.org/document/488968/
https://doi.org/10.1002/9780470512517
http://ieeexplore.ieee.org/document/484436/
http://ieeexplore.ieee.org/document/484436/
http://linkinghub.elsevier.com/retrieve/pii/0305054886900481
http://pubsonline.informs.org/doi/abs/10.1287/ijoc.1.3.190
http://pubsonline.informs.org/doi/abs/10.1287/ijoc.1.3.190
http://pubsonline.informs.org/doi/abs/10.1287/ijoc.2.1.4
http://scripts.iucr.org/cgi-bin/paper?S0567739481001630
http://scripts.iucr.org/cgi-bin/paper?S0567739481001630

Bibliography

[72] Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., “Optimization by Simulated

Annealing”, Science, Vol. 220, No. 4598, May 1983, pp. 671–680, available at:

http://www.sciencemag.org/cgi/doi/10.1126/science.220.4598.671

[73] Talbi, E.-G., Metaheuristics. John Wiley & Sons, Inc., jun 2009, available at:

https://doi.org/10.1002/9780470496916

[74] Cheng, R., Gen, M., Tsujimura, Y., “A tutorial survey of job-shop scheduling

problems using genetic algorithms—i. representation”, Computers & Industrial

Engineering, Vol. 30, No. 4, sep 1996, pp. 983–997, available at: https:

//doi.org/10.1016/0360-8352(96)00047-2

[75] Wang, L., Siegel, H. J., Roychowdhury, V. P., Maciejewski, A. A., “Task matching and

scheduling in heterogeneous computing environments using a genetic-algorithm-based

approach”, Journal of Parallel and Distributed Computing, Vol. 47, No. 1, nov 1997, pp.

8–22, available at: https://doi.org/10.1006/jpdc.1997.1392

[76] Cheng, R., Gen, M., Tsujimura, Y., “A tutorial survey of job-shop scheduling

problems using genetic algorithms, part II: hybrid genetic search strategies”, Computers

& Industrial Engineering, Vol. 36, No. 2, apr 1999, pp. 343–364, available at:

https://doi.org/10.1016/s0360-8352(99)00136-9

[77] Zhou, H., Feng, Y., Han, L., “The hybrid heuristic genetic algorithm for job shop

scheduling”, Computers & Industrial Engineering, Vol. 40, No. 3, jul 2001, pp. 191–200,

available at: https://doi.org/10.1016/s0360-8352(01)00017-1

[78] Ishibuchi, H., Yoshida, T., Murata, T., “Balance between genetic search and local

search in memetic algorithms for multiobjective permutation flowshop scheduling”,

IEEE Transactions on Evolutionary Computation, Vol. 7, No. 2, apr 2003, pp. 204–223,

available at: https://doi.org/10.1109/tevc.2003.810752

[79] Gao, J., Gen, M., Sun, L., Zhao, X., “A hybrid of genetic algorithm and bottleneck

shifting for multiobjective flexible job shop scheduling problems”, Computers &

Industrial Engineering, Vol. 53, No. 1, aug 2007, pp. 149–162, available at:

https://doi.org/10.1016/j.cie.2007.04.010

[80] Otto, A., Otto, C., “How to design effective priority rules: Example of simple assembly

line balancing”, Computers & Industrial Engineering, Vol. 69, mar 2014, pp. 43–52,

available at: https://doi.org/10.1016/j.cie.2013.12.013

419

http://www.sciencemag.org/cgi/doi/10.1126/science.220.4598.671
https://doi.org/10.1002/9780470496916
https://doi.org/10.1016/0360-8352(96)00047-2
https://doi.org/10.1016/0360-8352(96)00047-2
https://doi.org/10.1006/jpdc.1997.1392
https://doi.org/10.1016/s0360-8352(99)00136-9
https://doi.org/10.1016/s0360-8352(01)00017-1
https://doi.org/10.1109/tevc.2003.810752
https://doi.org/10.1016/j.cie.2007.04.010
https://doi.org/10.1016/j.cie.2013.12.013

Bibliography

[81] Holthaus, O., Rajendran, C., “Efficient jobshop dispatching rules: Further

developments”, Production Planning & Control, Vol. 11, No. 2, jan 2000, pp. 171–178,

available at: https://doi.org/10.1080/095372800232379

[82] Rajendran, C., Holthaus, O., “A comparative study of dispatching rules in dynamic

flowshops and jobshops”, European Journal of Operational Research, Vol. 116, No. 1,

jul 1999, pp. 156–170, available at: https://doi.org/10.1016/s0377-2217(98)00023-x

[83] Fanjul-Peyro, L., Ruiz, R., “Scheduling unrelated parallel machines with optional

machines and jobs selection”, Computers & Operations Research, Vol. 39, No. 7,

Jul. 2012, pp. 1745–1753, available at: http://linkinghub.elsevier.com/retrieve/pii/

S0305054811003005

[84] Lee, J.-H., Yu, J.-M., Lee, D.-H., “A tabu search algorithm for unrelated parallel

machine scheduling with sequence- and machine-dependent setups: minimizing total

tardiness”, The International Journal of Advanced Manufacturing Technology, Vol. 69,

No. 9-12, Dec. 2013, pp. 2081–2089, available at: http://link.springer.com/10.1007/

s00170-013-5192-6

[85] Wang, I.-L., Wang, Y.-C., Chen, C.-W., “Scheduling unrelated parallel machines

in semiconductor manufacturing by problem reduction and local search heuristics”,

Flexible Services and Manufacturing Journal, Vol. 25, No. 3, Sep. 2013, pp. 343–366,

available at: http://link.springer.com/10.1007/s10696-012-9150-7

[86] Fanjul-Peyro, L., Ruiz, R., “Iterated greedy local search methods for unrelated

parallel machine scheduling”, European Journal of Operational Research, Vol. 207,

No. 1, Nov. 2010, pp. 55–69, available at: http://linkinghub.elsevier.com/retrieve/pii/

S0377221710002572

[87] Fanjul-Peyro, L., Ruiz, R., “Size-reduction heuristics for the unrelated parallel machines

scheduling problem”, Computers & Operations Research, Vol. 38, No. 1, Jan. 2011, pp.

301–309, available at: http://linkinghub.elsevier.com/retrieve/pii/S0305054810001188

[88] Cota, L. P., Haddad, M. N., Souza, M. J. F., Coelho, V. N., “AIRP: A heuristic algorithm

for solving the unrelated parallel machine scheduling problem”, in 2014 IEEE Congress

on Evolutionary Computation (CEC). IEEE, Jul. 2014, pp. 1855–1862, available at:

http://ieeexplore.ieee.org/document/6900245/

[89] de C. M. Nogueira, J. P., Arroyo, J. E. C., Villadiego, H. M. M., Goncalves,

L. B., “Hybrid GRASP Heuristics to Solve an Unrelated Parallel Machine

Scheduling Problem with Earliness and Tardiness Penalties”, Electronic Notes in

420

https://doi.org/10.1080/095372800232379
https://doi.org/10.1016/s0377-2217(98)00023-x
http://linkinghub.elsevier.com/retrieve/pii/S0305054811003005
http://linkinghub.elsevier.com/retrieve/pii/S0305054811003005
http://link.springer.com/10.1007/s00170-013-5192-6
http://link.springer.com/10.1007/s00170-013-5192-6
http://link.springer.com/10.1007/s10696-012-9150-7
http://linkinghub.elsevier.com/retrieve/pii/S0377221710002572
http://linkinghub.elsevier.com/retrieve/pii/S0377221710002572
http://linkinghub.elsevier.com/retrieve/pii/S0305054810001188
http://ieeexplore.ieee.org/document/6900245/

Bibliography

Theoretical Computer Science, Vol. 302, Feb. 2014, pp. 53–72, available at:

http://linkinghub.elsevier.com/retrieve/pii/S1571066114000218

[90] Logendran, R., McDonell, B., Smucker, B., “Scheduling unrelated parallel machines

with sequence-dependent setups”, Computers & Operations Research, Vol. 34, No. 11,

Nov. 2007, pp. 3420–3438, available at: http://linkinghub.elsevier.com/retrieve/pii/

S0305054806000438

[91] Ying, K.-C., Lee, Z.-J., Lin, S.-W., “Makespan minimization for scheduling unrelated

parallel machines with setup times”, Journal of Intelligent Manufacturing, Vol. 23, No. 5,

nov 2010, pp. 1795–1803, available at: https://doi.org/10.1007/s10845-010-0483-3

[92] Behnamian, J., Zandieh, M., Fatemi Ghomi, S., “Parallel-machine scheduling problems

with sequence-dependent setup times using an ACO, SA and VNS hybrid algorithm”,

Expert Systems with Applications, Vol. 36, No. 6, Aug. 2009, pp. 9637–9644, available

at: http://linkinghub.elsevier.com/retrieve/pii/S0957417408007252

[93] Lin, C.-W., Lin, Y.-K., Hsieh, H.-T., “Ant colony optimization for unrelated

parallel machine scheduling”, The International Journal of Advanced Manufacturing

Technology, Vol. 67, No. 1-4, Jul. 2013, pp. 35–45, available at: http:

//link.springer.com/10.1007/s00170-013-4766-7

[94] Glass, C., Potts, C., Shade, P., “Unrelated parallel machine scheduling using local

search”, Mathematical and Computer Modelling, Vol. 20, No. 2, jul 1994, pp. 41–52,

available at: https://doi.org/10.1016/0895-7177(94)90205-4

[95] Mönch, L., Balasubramanian, H., Fowler, J. W., Pfund, M. E., “Heuristic scheduling

of jobs on parallel batch machines with incompatible job families and unequal ready

times”, Computers & Operations Research, Vol. 32, No. 11, Nov. 2005, pp. 2731–2750,

available at: http://linkinghub.elsevier.com/retrieve/pii/S0305054804000759

[96] Chyu, C.-C., Chang, W.-S., “A competitive evolution strategy memetic algorithm for

unrelated parallel machine scheduling to minimize total weighted tardiness and flow

time”, in The 40th International Conference on Computers & Indutrial Engineering.

IEEE, Jul. 2010, pp. 1–6, available at: http://ieeexplore.ieee.org/document/5668388/

[97] Vallada, E., Ruiz, R., “A genetic algorithm for the unrelated parallel machine

scheduling problem with sequence dependent setup times”, European Journal of

Operational Research, Vol. 211, No. 3, Jun. 2011, pp. 612–622, available at:

http://linkinghub.elsevier.com/retrieve/pii/S0377221711000142

421

http://linkinghub.elsevier.com/retrieve/pii/S1571066114000218
http://linkinghub.elsevier.com/retrieve/pii/S0305054806000438
http://linkinghub.elsevier.com/retrieve/pii/S0305054806000438
https://doi.org/10.1007/s10845-010-0483-3
http://linkinghub.elsevier.com/retrieve/pii/S0957417408007252
http://link.springer.com/10.1007/s00170-013-4766-7
http://link.springer.com/10.1007/s00170-013-4766-7
https://doi.org/10.1016/0895-7177(94)90205-4
http://linkinghub.elsevier.com/retrieve/pii/S0305054804000759
http://ieeexplore.ieee.org/document/5668388/
http://linkinghub.elsevier.com/retrieve/pii/S0377221711000142

Bibliography

[98] Balin, S., “Non-identical parallel machine scheduling using genetic algorithm”, Expert

Systems with Applications, Vol. 38, No. 6, Jun. 2011, pp. 6814–6821, available at:

http://linkinghub.elsevier.com/retrieve/pii/S0957417410014272

[99] Haddad, M. N., Coelho, I. M., Souza, M. J. F., Ochi, L. S., Santos, H. G.,

Martins, A. X., “GARP: A New Genetic Algorithm for the Unrelated Parallel Machine

Scheduling Problem with Setup Times”, in 2012 31st International Conference of

the Chilean Computer Science Society. IEEE, Nov. 2012, pp. 152–160, available at:

http://ieeexplore.ieee.org/document/6694085/

[100] Costa, A., Cappadonna, F. A., Fichera, S., “A hybrid genetic algorithm for job

sequencing and worker allocation in parallel unrelated machines with sequence-

dependent setup times”, The International Journal of Advanced Manufacturing

Technology, Vol. 69, No. 9-12, Dec. 2013, pp. 2799–2817, available at: http:

//link.springer.com/10.1007/s00170-013-5221-5

[101] Ðurasević, M., Jakobović, D., “Comparison of solution representations for scheduling

in the unrelated machines environment”, in 2016 39th International Convention

on Information and Communication Technology, Electronics and Microelectronics

(MIPRO). IEEE, May 2016, pp. 1336–1342, available at: http://ieeexplore.ieee.org/

document/7522347/

[102] Braun, T. D., Siegel, H. J., Beck, N., Bölöni, L. L., Maheswaran, M., Reuther,

A. I., Robertson, J. P., Theys, M. D., Yao, B., Hensgen, D., Freund, R. F.,

“A Comparison of Eleven Static Heuristics for Mapping a Class of Independent

Tasks onto Heterogeneous Distributed Computing Systems”, Journal of Parallel and

Distributed Computing, Vol. 61, No. 6, Jun. 2001, pp. 810–837, available at:

http://linkinghub.elsevier.com/retrieve/pii/S0743731500917143

[103] Lee, Y. H., Bhaskaran, K., Pinedo, M., “A heuristic to minimize the total

weighted tardiness with sequence-dependent setups”, IIE Transactions, Vol. 29,

No. 1, Jan. 1997, pp. 45–52, available at: http://www.tandfonline.com/doi/abs/10.1080/

07408179708966311

[104] Munir, E. U., Li, J., Shi, S., Zou, Z., Yang, D., “Maxstd: A task scheduling heuristic for

heterogeneous computing environment”, Information Technology Journal, Vol. 7, No. 4,

2008, pp. 679–683.

[105] e Santos, A. S., Madureira, A. M., “Ordered minimum completion time heuristic

for unrelated parallel-machines problems”, in 2014 9th Iberian Conference on

422

http://linkinghub.elsevier.com/retrieve/pii/S0957417410014272
http://ieeexplore.ieee.org/document/6694085/
http://link.springer.com/10.1007/s00170-013-5221-5
http://link.springer.com/10.1007/s00170-013-5221-5
http://ieeexplore.ieee.org/document/7522347/
http://ieeexplore.ieee.org/document/7522347/
http://linkinghub.elsevier.com/retrieve/pii/S0743731500917143
http://www.tandfonline.com/doi/abs/10.1080/07408179708966311
http://www.tandfonline.com/doi/abs/10.1080/07408179708966311

Bibliography

Information Systems and Technologies (CISTI). IEEE, Jun. 2014, pp. 1–6, available at:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6876939

[106] Izakian, H., Abraham, A., Snasel, V., “Comparison of Heuristics for Scheduling

Independent Tasks on Heterogeneous Distributed Environments”, in 2009 International

Joint Conference on Computational Sciences and Optimization. IEEE, Apr. 2009, pp.

8–12, available at: http://ieeexplore.ieee.org/document/5193632/

[107] Pfund, M., Fowler, J. W., Gadkari, A., Chen, Y., “Scheduling jobs on

parallel machines with setup times and ready times”, Computers & Industrial

Engineering, Vol. 54, No. 4, May 2008, pp. 764–782, available at: http:

//linkinghub.elsevier.com/retrieve/pii/S036083520700229X

[108] Morton, T. E., Pentico, D. W., Heuristic Scheduling Systems. John Wiley And Sons, Inc.,

1993.

[109] Morton, T. E., Rachamadugu, R. M. V., “Myopic heuristics for the single machine

weighted tardiness problem.”, DTIC Document, Tech. Rep., 1982.

[110] Vepsalainen, A. P. J., Morton, T. E., “Priority Rules for Job Shops with Weighted

Tardiness Costs”, Management Science, Vol. 33, No. 8, Aug. 1987, pp. 1035–1047,

available at: http://pubsonline.informs.org/doi/abs/10.1287/mnsc.33.8.1035

[111] Yang-Kuei, L., Chi-Wei, L., “Dispatching rules for unrelated parallel machine

scheduling with release dates”, The International Journal of Advanced Manufacturing

Technology, Vol. 67, No. 1-4, Jul. 2013, pp. 269–279, available at: http:

//link.springer.com/10.1007/s00170-013-4773-8

[112] Rafsanjani, M. K., Bardsiri, A. K., “A new heuristic approach for scheduling independent

tasks on heterogeneous computing systems”, International Journal of Machine Learning

and Computing, Vol. 2, No. 4, 2012, pp. 371.

[113] Xhafa, F., Barolli, L., Durresi, A., “Batch mode scheduling in grid systems”, Interna-

tional Journal of Web and Grid Services, Vol. 3, No. 1, 2007, pp. 19-37.

[114] Du Kim, H., Kim, J. S., An Online Scheduling Algorithm for Grid Computing

Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 34–39, available at:

https://doi.org/10.1007/978-3-540-24680-0_5

[115] Koza, J. R., Genetic Programming: On the Programming of Computers by Means of

Natural Selection. Cambridge, MA, USA: MIT Press, 1992.

423

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6876939
http://ieeexplore.ieee.org/document/5193632/
http://linkinghub.elsevier.com/retrieve/pii/S036083520700229X
http://linkinghub.elsevier.com/retrieve/pii/S036083520700229X
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.33.8.1035
http://link.springer.com/10.1007/s00170-013-4773-8
http://link.springer.com/10.1007/s00170-013-4773-8
https://doi.org/10.1007/978-3-540-24680-0_5

Bibliography

[116] Koza, J. R., Genetic Programming II: Automatic Discovery of Reusable Programs. Cam-

bridge, MA, USA: MIT Press, 1994.

[117] Koza, J. R., Andre, D., Bennett, F. H., Keane, M. A., Genetic Programming III: Dar-

winian Invention & Problem Solving, 1st ed. San Francisco, CA, USA: Morgan Kauf-

mann Publishers Inc., 1999.

[118] Koza, J. R., Genetic Programming IV: Routine Human-Competitive Machine Intelli-

gence. Norwell, MA, USA: Kluwer Academic Publishers, 2003.

[119] Banzhaf, W., Francone, F. D., Keller, R. E., Nordin, P., Genetic Programming: An Intro-

duction: on the Automatic Evolution of Computer Programs and Its Applications. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998.

[120] Poli, R., Langdon, W. B., McPhee, N. F., A field guide to genetic programming.

Published via http://lulu.com and freely available at http://www.gp-field-

guide.org.uk, 2008, (With contributions by J. R. Koza), available at: http:

//www.gp-field-guide.org.uk

[121] Koza, J., “Genetically breeding populations of computer programs to solve problems in

artificial intelligence”, in [1990] Proceedings of the 2nd International IEEE Conference

on Tools for Artificial Intelligence. IEEE Comput. Soc. Press, 1990, pp. 819–827,

available at: http://ieeexplore.ieee.org/document/130444/

[122] Espejo, P. G., Ventura, S., Herrera, F., “A Survey on the Application of Genetic Pro-

gramming to Classifcation”, Ieee Transactions on Systems, Man, and Cybernetics Part

C: Applications and Reviews, Vol. 40, No. 2, 2010, pp. 121–144.

[123] Koza, J. R., “Human-competitive results produced by genetic programming”, Genetic

Programming and Evolvable Machines, Vol. 11, No. 3-4, Sep. 2010, pp. 251–284,

available at: http://link.springer.com/10.1007/s10710-010-9112-3

[124] Burke, E. K., Hyde, M. R., Kendall, G., Woodward, J., “Automatic heuristic generation

with genetic programming”, in Proceedings of the 9th annual conference on Genetic

and evolutionary computation - GECCO ’07. New York, New York, USA: ACM Press,

2007, pp. 1559, available at: http://portal.acm.org/citation.cfm?doid=1276958.1277273

[125] Burke, E. K., Hyde, M. R., Kendall, G., Ochoa, G., Ozcan, E., Woodward,

J. R., “Exploring Hyper-heuristic Methodologies with Genetic Programming”,

Computational Intelligence, Vol. 1, 2009, pp. 177–201, available at: http:

//www.cs.nott.ac.uk/~gxo/papers/ChapterGPasHH09.pdf

424

http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://ieeexplore.ieee.org/document/130444/
http://link.springer.com/10.1007/s10710-010-9112-3
http://portal.acm.org/citation.cfm?doid=1276958.1277273
http://www.cs.nott.ac.uk/~gxo/papers/ChapterGPasHH09.pdf
http://www.cs.nott.ac.uk/~gxo/papers/ChapterGPasHH09.pdf

Bibliography

[126] Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J. R., “A

Classification of Hyper-heuristic Approaches”, in Handbook of Metaheuristics, 2010,

pp. 449–468, available at: http://dx.doi.org/10.1007/978-1-4419-1665-5_15

[127] Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu,

R., “Hyper-heuristics: a survey of the state of the art”, Journal of the Operational

Research Society, Vol. 64, No. 12, Dec. 2013, pp. 1695–1724, available at:

http://link.springer.com/10.1057/jors.2013.71

[128] Kumar, R., Joshi, A. H., Banka, K. K., Rockett, P. I., “Evolution of hyperheuristics

for the biobjective 0/1 knapsack problem by multiobjective genetic programming”, in

Proceedings of the 10th annual conference on Genetic and evolutionary computation -

GECCO ’08. New York, New York, USA: ACM Press, 2008, pp. 1227, available at:

http://portal.acm.org/citation.cfm?doid=1389095.1389335

[129] Özcan, E., Parkes, A. J., “Policy matrix evolution for generation of heuristics”, in

Proceedings of the 13th annual conference on Genetic and evolutionary computation -

GECCO ’11. New York, New York, USA: ACM Press, 2011, pp. 2011, available at:

http://portal.acm.org/citation.cfm?doid=2001576.2001846

[130] Burke, E. K., Hyde, M. R., Kendall, G., Woodward, J., “Automating the Packing

Heuristic Design Process with Genetic Programming”, Evolutionary Computation,

Vol. 20, No. 1, Mar. 2012, pp. 63–89, available at: http://www.mitpressjournals.org/doi/

10.1162/EVCO_a_00044

[131] Oltean, M., Dumitrescu, D., “Evolving TSP Heuristics Using Multi Expression

Programming”, in Computational Science - ICCS 2004: 4th International Conference,

Bubak, M., van Albada, G. D., Sloot, P. M. A., Dongarra, J., (ed.). Berlin,

Heidelberg: Springer Berlin Heidelberg, 2004, pp. 670–673, available at: http:

//link.springer.com/10.1007/978-3-540-24687-9_99

[132] Beham, A., Kofler, M., Wagner, S., Affenzeller, M., “Agent-Based Simulation

of Dispatching Rules in Dynamic Pickup and Delivery Problems”, in 2009 2nd

International Symposium on Logistics and Industrial Informatics. IEEE, Sep. 2009, pp.

1–6, available at: http://ieeexplore.ieee.org/document/5258763/

[133] Vonolfen, S., Beham, A., Kommenda, M., Affenzeller, M., “Structural Synthesis of

Dispatching Rules for Dynamic Dial-a-Ride Problems”, in Computer Aided Systems

Theory - EUROCAST 2013: 14th International Conference, Moreno-Díaz, R., Pichler,

F., Quesada-Arencibia, A., (ed.). Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,

pp. 276–283, available at: http://link.springer.com/10.1007/978-3-642-53856-8_35

425

http://dx.doi.org/10.1007/978-1-4419-1665-5_15
http://link.springer.com/10.1057/jors.2013.71
http://portal.acm.org/citation.cfm?doid=1389095.1389335
http://portal.acm.org/citation.cfm?doid=2001576.2001846
http://www.mitpressjournals.org/doi/10.1162/EVCO_a_00044
http://www.mitpressjournals.org/doi/10.1162/EVCO_a_00044
http://link.springer.com/10.1007/978-3-540-24687-9_99
http://link.springer.com/10.1007/978-3-540-24687-9_99
http://ieeexplore.ieee.org/document/5258763/
http://link.springer.com/10.1007/978-3-642-53856-8_35

Bibliography

[134] Bader-El-Den, M., Poli, R., Fatima, S., “Evolving timetabling heuristics using a

grammar-based genetic programming hyper-heuristic framework”, Memetic Computing,

Vol. 1, No. 3, Nov. 2009, pp. 205–219, available at: http://link.springer.com/10.1007/

s12293-009-0022-y

[135] Pillay, N., “Evolving hyper-heuristics for the uncapacitated examination timetabling

problem”, Journal of the Operational Research Society, Vol. 63, No. 1, Jan. 2012, pp.

47–58, available at: http://link.springer.com/10.1057/jors.2011.12

[136] Frankola, T., Golub, M., Jakobovic, D., “Evolutionary algorithms for the resource

constrained scheduling problem”, in ITI 2008 - 30th International Conference on

Information Technology Interfaces. IEEE, Jun. 2008, pp. 715–722, available at:

http://ieeexplore.ieee.org/document/4588499/

[137] Keijzer, M., “Improving Symbolic Regression with Interval Arithmetic and Linear

Scaling”, Genetic Programming Proceedings of EuroGP2003, Vol. 2610, 2003,

pp. 70–82, available at: http://www.springerlink.com/openurl.asp?genre=article&issn=

0302-9743&volume=2610&spage=70

[138] Langdon, W. B., Poli, R., Foundations of Genetic Programming. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2002, available at: http://link.springer.com/10.1007/

978-3-662-04726-2

[139] Luke, S., Panait, L., “A comparison of bloat control methods for genetic programming”,

Evolutionary Computation, Vol. 14, No. 3, sep 2006, pp. 309–344, available at:

https://doi.org/10.1162/evco.2006.14.3.309

[140] Whigham, P., Dick, G., “Implicitly controlling bloat in genetic programming”, IEEE

Transactions on Evolutionary Computation, Vol. 14, No. 2, apr 2010, pp. 173–190,

available at: https://doi.org/10.1109/tevc.2009.2027314

[141] Poli, R., McPhee, N. F., “Parsimony pressure made easy: Solving the problem of

bloat in GP”, in Theory and Principled Methods for the Design of Metaheuristics.

Springer Berlin Heidelberg, nov 2013, pp. 181–204, available at: https://doi.org/10.

1007/978-3-642-33206-7_9

[142] Poli, R., “Parallel distributed genetic programming”, The University of Birmingham,

Tech. Rep., 1996.

[143] Brameier, M. F., Banzhaf, W., Linear Genetic Programming, 1st ed. Springer Publishing

Company, Incorporated, 2010.

426

http://link.springer.com/10.1007/s12293-009-0022-y
http://link.springer.com/10.1007/s12293-009-0022-y
http://link.springer.com/10.1057/jors.2011.12
http://ieeexplore.ieee.org/document/4588499/
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2610&spage=70
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2610&spage=70
http://link.springer.com/10.1007/978-3-662-04726-2
http://link.springer.com/10.1007/978-3-662-04726-2
https://doi.org/10.1162/evco.2006.14.3.309
https://doi.org/10.1109/tevc.2009.2027314
https://doi.org/10.1007/978-3-642-33206-7_9
https://doi.org/10.1007/978-3-642-33206-7_9

Bibliography

[144] Whigham, P., Science, D. O. C., “Grammatically-based genetic programming”, 1995.

[145] McKay, R. I., Hoai, N. X., Whigham, P. A., Shan, Y., O’neill, M., “Grammar-based Ge-

netic programming: A survey”, Genetic Programming and Evolvable Machines, Vol. 11,

No. 3-4, 2010, pp. 365–396.

[146] Miller, J. F., Thomson, P., “Cartesian genetic programming”, in Lecture Notes in Com-

puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), Vol. 1802, 2000, pp. 121–132.

[147] PD’haeseleer, P., “Context preserving crossover in genetic programming”, in Proceed-

ings of the 1994 IEEE World Congress on Computational Intelligence, 1994, pp. 256—

-261, available at: http://scholar.google.es/scholar?hl=es&q=D’haeseleer,+1994]+D’

haeseleer,+P.+(1994).+Context+preserving+&btnG=Buscar&lr=&as_ylo=&as_vis=0#0

[148] Langdon, W. B., “Size fair and homologous tree crossovers for tree genetic

programming”, Genetic Programming and Evolvable Machines, Vol. 1, No. 1, 2000, pp.

95–119, available at: http://dx.doi.org/10.1023/A:1010024515191

[149] Keijzer, M., Babovic, V., “Dimensionally Aware Genetic Programming”, Proceedings of

the Genetic and Evolutionary Computation Conference, Vol. 2, 1999, pp. 1069–1076,

available at: http://www.cs.bham.ac.uk/~wbl/biblio/gecco1999/GP-420.pdf

[150] Ferreira, C., “Gene expression programming: a new adaptive algorithm for solving

problems”, Complex Systems, Vol. 13, No. 2, 2001, pp. 87-129, available at:

http://arxiv.org/abs/cs/0102027

[151] Ðurasević, M., Jakobović, D., Knežević, K., “Adaptive scheduling on unrelated

machines with genetic programming”, Applied Soft Computing, Vol. 48, Nov. 2016, pp.

419–430, available at: http://linkinghub.elsevier.com/retrieve/pii/S1568494616303519

[152] Zhang, M., Wong, P., “Genetic programming for medical classification: a program

simplification approach”, Genetic Programming and Evolvable Machines, Vol. 9, No. 3,

2008, pp. 229–255, available at: http://dx.doi.org/10.1007/s10710-008-9059-9

[153] Kinzett, D., Johnston, M., Zhang, M., “Numerical simplification for bloat control and

analysis of building blocks in genetic programming”, Evolutionary Intelligence, Vol. 2,

No. 4, 2009, pp. 151, available at: http://dx.doi.org/10.1007/s12065-009-0029-9

[154] Zhang, M., Smart, W., “Learning weights in genetic programs using gradient descent

for object recognition”, in Proceedings of the 3rd European Conference on Applications

of Evolutionary Computing, ser. EC’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp.

417–427.

427

http://scholar.google.es/scholar?hl=es&q=D'haeseleer,+1994]+D'haeseleer,+P.+(1994).+Context+preserving+&btnG=Buscar&lr=&as_ylo=&as_vis=0#0
http://scholar.google.es/scholar?hl=es&q=D'haeseleer,+1994]+D'haeseleer,+P.+(1994).+Context+preserving+&btnG=Buscar&lr=&as_ylo=&as_vis=0#0
http://dx.doi.org/10.1023/A:1010024515191
http://www.cs.bham.ac.uk/~wbl/biblio/gecco1999/GP-420.pdf
http://arxiv.org/abs/cs/0102027
http://linkinghub.elsevier.com/retrieve/pii/S1568494616303519
http://dx.doi.org/10.1007/s10710-008-9059-9
http://dx.doi.org/10.1007/s12065-009-0029-9

Bibliography

[155] Johnston, M., Liddle, T., Zhang, M., A Relaxed Approach to Simplification in Genetic

Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 110–121.

[156] Dimopoulos, C., Zalzala, A., “Investigating the use of genetic programming for a

classic one-machine scheduling problem”, ARRAY(0x7f0faa5322f0), Research Report,

December 1998, available at: http://eprints.whiterose.ac.uk/82572/

[157] Dimopoulos, C., Zalzala, A., “A genetic programming heuristic for the one-machine

total tardiness problem”, in Proceedings of the 1999 Congress on Evolutionary

Computation-CEC99 (Cat. No. 99TH8406). IEEE, 1999, pp. 2207–2214, available at:

http://ieeexplore.ieee.org/document/785549/

[158] Dimopoulos, C., Zalzala, A., “Investigating the use of genetic programming for a

classic one-machine scheduling problem”, Advances in Engineering Software, Vol. 32,

No. 6, Jun. 2001, pp. 489–498, available at: http://linkinghub.elsevier.com/retrieve/pii/

S0965997800001095

[159] Miyashita, K., “Job-shop scheduling with genetic programming”, in Proceedings of the

2Nd Annual Conference on Genetic and Evolutionary Computation, ser. GECCO’00.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000, pp. 505–512,

available at: http://dl.acm.org/citation.cfm?id=2933718.2933809

[160] Adams, T. P., “Creation of simple, deadline, and priority scheduling algorithms using

genetic programming. in: Genetic algorithms and genetic programming at stanford”,

in in Genetic Algorithms and Genetic Programming at Stanford 2002, 2002. [Online].

Available: http://www.genetic-programming.org/sp2002/Adams.pdf, 2002.

[161] Wen-Jun Yin, Min Liu, Cheng Wu, “Learning single-machine scheduling heuristics

subject to machine breakdowns with genetic programming”, in The 2003 Congress

on Evolutionary Computation, 2003. CEC ’03., Vol. 2. IEEE, 2003, pp. 1050–1055,

available at: http://ieeexplore.ieee.org/document/1299784/

[162] Nhu Binh Ho, Joc Cing Tay, “Evolving Dispatching Rules for solving the Flexible

Job-Shop Problem”, in 2005 IEEE Congress on Evolutionary Computation, Vol. 3.

IEEE, 2005, pp. 2848–2855, available at: http://ieeexplore.ieee.org/document/1555052/

[163] Geiger, C. D., Uzsoy, R., Aytuğ, H., “Rapid Modeling and Discovery of Priority

Dispatching Rules: An Autonomous Learning Approach”, Journal of Scheduling,

Vol. 9, No. 1, Feb. 2006, pp. 7–34, available at: http://link.springer.com/10.1007/

s10951-006-5591-8

428

http://eprints.whiterose.ac.uk/82572/
http://ieeexplore.ieee.org/document/785549/
http://linkinghub.elsevier.com/retrieve/pii/S0965997800001095
http://linkinghub.elsevier.com/retrieve/pii/S0965997800001095
http://dl.acm.org/citation.cfm?id=2933718.2933809
http://ieeexplore.ieee.org/document/1299784/
http://ieeexplore.ieee.org/document/1555052/
http://link.springer.com/10.1007/s10951-006-5591-8
http://link.springer.com/10.1007/s10951-006-5591-8

Bibliography

[164] Geiger, C. D., Uzsoy, R., “Learning effective dispatching rules for batch processor

scheduling”, International Journal of Production Research, Vol. 46, No. 6, Mar.

2008, pp. 1431–1454, available at: http://www.tandfonline.com/doi/abs/10.1080/

00207540600993360

[165] Jakobović, D., Budin, L., “Dynamic scheduling with genetic programming”, in Genetic

Programming: 9th European Conference, EuroGP 2006, Budapest, Hungary, April

10-12, 2006. Proceedings, Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A.,

(ed.). Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 73–84, available at:

https://doi.org/10.1007/11729976_7

[166] Jakobović, D., Jelenković, L., Budin, L., “Genetic Programming Heuristics for

Multiple Machine Scheduling”, in Genetic Programming. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2007, pp. 321–330, available at: http://link.springer.com/10.1007/

978-3-540-71605-1_30

[167] Tay, J. C., Ho, N. B., “Designing Dispatching Rules to Minimize Total Tardiness”,

in Evolutionary Scheduling, Dahal, K. P., Tan, K. C., Cowling, P. I., (ed.).

Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 101–124, available at:

http://link.springer.com/10.1007/978-3-540-48584-1_4

[168] Beham, A., Winkler, S., Wagner, S., Affenzeller, M., “A genetic programming approach

to solve scheduling problems with parallel simulation”, in 2008 IEEE International

Symposium on Parallel and Distributed Processing. IEEE, Apr. 2008, pp. 1–5, available

at: http://ieeexplore.ieee.org/document/4536362/

[169] Jia-Wei Yang, Hsueh-Chien Cheng, Tsung-Che Chiang, Li-Chen Fu, “Multiobjective

lot scheduling and dynamic OHT routing in a 300-mm wafer fab”, in 2008 IEEE

International Conference on Systems, Man and Cybernetics. IEEE, Oct. 2008, pp.

1608–1613, available at: http://ieeexplore.ieee.org/document/4811517/

[170] Baykasoglu, A., Gocken, M., “Gene expression programming based due date

assignment in a simulated job shop”, Expert Systems with Applications, Vol. 36, No. 10,

Dec. 2009, pp. 12 143–12 150, available at: http://linkinghub.elsevier.com/retrieve/pii/

S095741740900311X

[171] Baykasoglu, A., Gocken, M., Ozbakir, L., “Genetic programming based data mining

approach to dispatching rule selection in a simulated job shop”, SIMULATION, Vol. 86,

No. 12, 2010, pp. 715-728.

[172] Furuholmen, M., Glette, K., Hovin, M., Torresen, J., “Coevolving heuristics

for the Distributor’s Pallet Packing Problem”, in 2009 IEEE Congress on

429

http://www.tandfonline.com/doi/abs/10.1080/00207540600993360
http://www.tandfonline.com/doi/abs/10.1080/00207540600993360
https://doi.org/10.1007/11729976_7
http://link.springer.com/10.1007/978-3-540-71605-1_30
http://link.springer.com/10.1007/978-3-540-71605-1_30
http://link.springer.com/10.1007/978-3-540-48584-1_4
http://ieeexplore.ieee.org/document/4536362/
http://ieeexplore.ieee.org/document/4811517/
http://linkinghub.elsevier.com/retrieve/pii/S095741740900311X
http://linkinghub.elsevier.com/retrieve/pii/S095741740900311X

Bibliography

Evolutionary Computation. IEEE, May 2009, pp. 2810–2817, available at: http:

//ieeexplore.ieee.org/document/4983295/

[173] Kofler, M., Beham, A., Wagner, S., Affenzeller, M., “Evaluation of dispatching strategies

for the optimization of a real-world production plant”, in 2009 2nd International

Symposium on Logistics and Industrial Informatics. IEEE, sep 2009, available at:

https://doi.org/10.1109/lindi.2009.5258765

[174] Pickardt, C., Branke, J., Hildebrandt, T., Heger, J., Scholz-Reiter, B., “Generating

dispatching rules for semiconductor manufacturing to minimize weighted tardiness”,

in Proceedings of the 2010 Winter Simulation Conference. IEEE, Dec. 2010, pp.

2504–2515, available at: http://ieeexplore.ieee.org/document/5678946/

[175] Vázquez-Rodríguez, J. A., Ochoa, G., “On the automatic discovery of variants of the

NEH procedure for flow shop scheduling using genetic programming”, Journal of the

Operational Research Society, Vol. 62, No. 2, Feb. 2011, pp. 381–396, available at:

http://link.springer.com/10.1057/jors.2010.132

[176] Nie, L., Shao, X., Gao, L., Li, W., “Evolving scheduling rules with gene expression

programming for dynamic single-machine scheduling problems”, The International

Journal of Advanced Manufacturing Technology, Vol. 50, No. 5-8, Sep. 2010, pp.

729–747, available at: http://link.springer.com/10.1007/s00170-010-2518-5

[177] Nie, L., Gao, L., Li, P., Zhang, L., “Application of gene expression programming on

dynamic job shop scheduling problem”, in Proceedings of the 2011 15th International

Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE, Jun.

2011, pp. 291–295, available at: http://ieeexplore.ieee.org/document/5960088/

[178] Nie, L., Gao, L., Li, P., Li, X., “A GEP-based reactive scheduling policies constructing

approach for dynamic flexible job shop scheduling problem with job release dates”,

Journal of Intelligent Manufacturing, Vol. 24, No. 4, Aug. 2013, pp. 763–774, available

at: http://link.springer.com/10.1007/s10845-012-0626-9

[179] Wang, X., Nie, L., Bai, Y., “Discovering scheduling rules with a machine learning

approach based on GEP and PSO for dynamic scheduling problems in shop floor”,

in Computational Intelligence in Industrial Application. CRC Press, Jun. 2015, pp.

365–370, available at: http://www.crcnetbase.com/doi/10.1201/b18590-71

[180] Pitzer, E., Beham, A., Affenzeller, M., Heiss, H., Vorderwinkler, M., “Production

fine planning using a solution archive of priority rules”, in 3rd IEEE International

Symposium on Logistics and Industrial Informatics. IEEE, Aug. 2011, pp. 111–116,

available at: http://ieeexplore.ieee.org/document/6031130/

430

http://ieeexplore.ieee.org/document/4983295/
http://ieeexplore.ieee.org/document/4983295/
https://doi.org/10.1109/lindi.2009.5258765
http://ieeexplore.ieee.org/document/5678946/
http://link.springer.com/10.1057/jors.2010.132
http://link.springer.com/10.1007/s00170-010-2518-5
http://ieeexplore.ieee.org/document/5960088/
http://link.springer.com/10.1007/s10845-012-0626-9
http://www.crcnetbase.com/doi/10.1201/b18590-71
http://ieeexplore.ieee.org/document/6031130/

Bibliography

[181] Nie, L., Bai, Y., Wang, X., Liu, K., “Discover Scheduling Strategies with Gene

Expression Programming for Dynamic Flexible Job Shop Scheduling Problem”, in

Advances in Swarm Intelligence: Third International Conference, ICSI 2012, Shenzhen,

China, June 17-20, 2012 Proceedings, Part II, Tan, Y., Shi, Y., Ji, Z., (ed.).

Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 383–390, available at:

http://link.springer.com/10.1007/978-3-642-31020-1_45

[182] Nie, L., Gao, L., Li, P., Shao, X., “Reactive scheduling in a job shop where jobs

arrive over time”, Computers & Industrial Engineering, Vol. 66, No. 2, Oct. 2013, pp.

389–405, available at: http://linkinghub.elsevier.com/retrieve/pii/S0360835213002209

[183] Nguyen, S., Zhang, M., Johnston, M., “A genetic programming based hyper-

heuristic approach for combinatorial optimisation”, in Proceedings of the 13th

annual conference on Genetic and evolutionary computation - GECCO ’11.

New York, New York, USA: ACM Press, 2011, pp. 1299, available at:

http://portal.acm.org/citation.cfm?doid=2001576.2001752

[184] Nguyen, S., Zhang, M., Johnston, M., Tan, K. C., “Evolving reusable operation-based

due-date assignment models for job shop scheduling with genetic programming”, in

Genetic Programming: 15th European Conference, EuroGP 2012, Málaga, Spain, April

11-13, 2012. Proceedings, Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C.,

(ed.). Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 121–133, available at:

https://doi.org/10.1007/978-3-642-29139-5_11

[185] Nguyen, S., Zhang, M., Johnston, M., Tan, K. C., “Genetic Programming for

Evolving Due-Date Assignment Models in Job Shop Environments”, Evolutionary

Computation, Vol. 22, No. 1, Mar. 2014, pp. 105–138, available at: http:

//www.mitpressjournals.org/doi/10.1162/EVCO_a_00105

[186] Nguyen, S., Zhang, M., Johnston, M., Tan, K. C., “Automatic Programming

via Iterated Local Search for Dynamic Job Shop Scheduling”, IEEE Transactions

on Cybernetics, Vol. 45, No. 1, Jan. 2015, pp. 1–14, available at: http:

//ieeexplore.ieee.org/document/6807725/

[187] Jakobović, D., Marasović, K., “Evolving priority scheduling heuristics with genetic

programming”, Applied Soft Computing, Vol. 12, No. 9, Sep. 2012, pp. 2781–2789,

available at: http://linkinghub.elsevier.com/retrieve/pii/S1568494612001780

[188] Abednego, L., Hendratmo, D., “Genetic programming hyper-heuristic for solving

dynamic production scheduling problem”, in Proceedings of the 2011 International

431

http://link.springer.com/10.1007/978-3-642-31020-1_45
http://linkinghub.elsevier.com/retrieve/pii/S0360835213002209
http://portal.acm.org/citation.cfm?doid=2001576.2001752
https://doi.org/10.1007/978-3-642-29139-5_11
http://www.mitpressjournals.org/doi/10.1162/EVCO_a_00105
http://www.mitpressjournals.org/doi/10.1162/EVCO_a_00105
http://ieeexplore.ieee.org/document/6807725/
http://ieeexplore.ieee.org/document/6807725/
http://linkinghub.elsevier.com/retrieve/pii/S1568494612001780

Bibliography

Conference on Electrical Engineering and Informatics. IEEE, Jul. 2011, pp. 1–4,

available at: http://ieeexplore.ieee.org/document/6021768/

[189] Nguyen, S., Zhang, M., Johnston, M., Tan, K. C., “A coevolution genetic programming

method to evolve scheduling policies for dynamic multi-objective job shop scheduling

problems”, in 2012 IEEE Congress on Evolutionary Computation. IEEE, Jun. 2012, pp.

1–8, available at: http://ieeexplore.ieee.org/document/6252968/

[190] Nguyen, S., Zhang, M., Johnston, M., Tan, K. C., “Automatic Design of Scheduling

Policies for Dynamic Multi-objective Job Shop Scheduling via Cooperative Coevolution

Genetic Programming”, IEEE Transactions on Evolutionary Computation, Vol. 18, No. 2,

Apr. 2014, pp. 193–208, available at: http://ieeexplore.ieee.org/document/6468087/

[191] Hansen, P., Mladenović, N., “Variable neighborhood search: Principles and

applications”, European Journal of Operational Research, Vol. 130, No. 3, May 2001, pp.

449–467, available at: http://linkinghub.elsevier.com/retrieve/pii/S0377221700001004

[192] Hansen, P., Mladenović, N., Pérez, J. A. M., “Variable neighbourhood search: methods

and applications”, Annals of Operations Research, Vol. 175, No. 1, oct 2009, pp.

367–407, available at: https://doi.org/10.1007/s10479-009-0657-6

[193] Hunt, R., Johnston, M., Zhang, M., “Evolving machine-specific dispatching rules

for a two-machine job shop using genetic programming”, in 2014 IEEE Congress

on Evolutionary Computation (CEC). IEEE, Jul. 2014, pp. 618–625, available at:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6900655

[194] Branke, J., Hildebrandt, T., Scholz-Reiter, B., “Hyper-heuristic Evolution of Dispatching

Rules: A Comparison of Rule Representations”, Evolutionary Computation, Vol. 23,

No. 2, Jun. 2015, pp. 249–277, available at: http://www.mitpressjournals.org/doi/10.

1162/EVCO_a_00131

[195] Park, J., Nguyen, S., Zhang, M., Johnston, M., “Genetic programming for order

acceptance and scheduling”, in 2013 IEEE Congress on Evolutionary Computation.

IEEE, Jun. 2013, pp. 1005–1012, available at: http://ieeexplore.ieee.org/document/

6557677/

[196] Nguyen, S., Zhang, M., Johnston, M., Tan, K. C., “Learning Reusable Initial

Solutions for Multi-objective Order Acceptance and Scheduling Problems with Genetic

Programming”, in Genetic Programming: 16th European Conference, EuroGP 2013,

Vienna, Austria, April 3-5, 2013. Proceedings, Krawiec, K., Moraglio, A., Hu, T.,

Etaner-Uyar, A. Ş., Hu, B., (ed.). Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,

pp. 157–168, available at: http://link.springer.com/10.1007/978-3-642-37207-0_14

432

http://ieeexplore.ieee.org/document/6021768/
http://ieeexplore.ieee.org/document/6252968/
http://ieeexplore.ieee.org/document/6468087/
http://linkinghub.elsevier.com/retrieve/pii/S0377221700001004
https://doi.org/10.1007/s10479-009-0657-6
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6900655
http://www.mitpressjournals.org/doi/10.1162/EVCO_a_00131
http://www.mitpressjournals.org/doi/10.1162/EVCO_a_00131
http://ieeexplore.ieee.org/document/6557677/
http://ieeexplore.ieee.org/document/6557677/
http://link.springer.com/10.1007/978-3-642-37207-0_14

Bibliography

[197] Park, J., Nguyen, S., Johnston, M., Zhang, M., “Evolving Stochastic Dispatching

Rules for Order Acceptance and Scheduling via Genetic Programming”, in AI

2013: Advances in Artificial Intelligence: 26th Australasian Joint Conference,

Dunedin, New Zealand, December 1-6, 2013. Proceedings, Cranefield, S., Nayak,

A., (ed.). Cham: Springer International Publishing, 2013, pp. 478–489, available at:

http://link.springer.com/10.1007/978-3-319-03680-9_48

[198] Park, J., Nguyen, S., Zhang, M., Johnston, M., “Enhancing Heuristics for Order

Acceptance and Scheduling Using Genetic Programming”, in Simulated Evolution

and Learning: 10th International Conference, SEAL 2014, Dunedin, New Zealand,

December 15-18, 2014. Proceedings, Dick, G., Browne, W. N., Whigham, P., Zhang,

M., Bui, L. T., Ishibuchi, H., Jin, Y., Li, X., Shi, Y., Singh, P., Tan, K. C., Tang,

K., (ed.). Cham: Springer International Publishing, 2014, pp. 723–734, available at:

http://link.springer.com/10.1007/978-3-319-13563-2_61

[199] Nguyen, S., Zhang, M., Johnston, M., “A sequential genetic programming method to

learn forward construction heuristics for order acceptance and scheduling”, in 2014

IEEE Congress on Evolutionary Computation (CEC). IEEE, Jul. 2014, pp. 1824–1831,

available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6900347

[200] Nguyen, S., “A learning and optimizing system for order acceptance and scheduling”,

The International Journal of Advanced Manufacturing Technology, Vol. 86, No. 5-8, Sep.

2016, pp. 2021–2036, available at: http://link.springer.com/10.1007/s00170-015-8321-6

[201] Nguyen, S., Zhang, M., Johnston, M., “Enhancing Branch-and-Bound Algorithms

for Order Acceptance and Scheduling with Genetic Programming”, in Genetic

Programming: 17th European Conference, EuroGP 2014, Granada, Spain, April

23-25, 2014, Revised Selected Papers, Nicolau, M., Krawiec, K., Heywood, M. I.,

Castelli, M., García-Sánchez, P., Merelo, J. J., Rivas Santos, V. M., Sim, K., (ed.).

Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 124–136, available at:

http://link.springer.com/10.1007/978-3-662-44303-3_11

[202] Han, S., Seo, J., Park, J., “Designing an Effective Scheduling Scheme Considering Multi-

level BOM in Hybrid Job Shop”, in Proceedings of the International Conference on In-

dustrial Engine, 2012, pp. 1302–1310.

[203] Hildebrandt, T., Goswami, D., Freitag, M., “Large-scale simulation-based optimization

of semiconductor dispatching rules”, in Proceedings of the Winter Simulation

Conference 2014. IEEE, Dec. 2014, pp. 2580–2590, available at: http://ieeexplore.ieee.

org/document/7020102/

433

http://link.springer.com/10.1007/978-3-319-03680-9_48
http://link.springer.com/10.1007/978-3-319-13563-2_61
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6900347
http://link.springer.com/10.1007/s00170-015-8321-6
http://link.springer.com/10.1007/978-3-662-44303-3_11
http://ieeexplore.ieee.org/document/7020102/
http://ieeexplore.ieee.org/document/7020102/

Bibliography

[204] Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., “From Grammars to

Parameters: Automatic Iterated Greedy Design for the Permutation Flow-Shop Problem

with Weighted Tardiness”, in Learning and Intelligent Optimization: 7th International

Conference, LION 7, Catania, Italy, January 7-11, 2013, Revised Selected Papers,

Nicosia, G., Pardalos, P., (ed.). Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,

pp. 321–334, available at: http://link.springer.com/10.1007/978-3-642-44973-4_36

[205] Pickardt, C. W., Hildebrandt, T., Branke, J., Heger, J., Scholz-Reiter, B., “Evolutionary

generation of dispatching rule sets for complex dynamic scheduling problems”,

International Journal of Production Economics, Vol. 145, No. 1, Sep. 2013, pp. 67–77,

available at: http://linkinghub.elsevier.com/retrieve/pii/S0925527312004574

[206] Qin, W., Zhang, J., Sun, Y., “Multiple-objective scheduling for interbay AMHS by

using genetic-programming-based composite dispatching rules generator”, Computers

in Industry, Vol. 64, No. 6, Aug. 2013, pp. 694–707, available at: http:

//linkinghub.elsevier.com/retrieve/pii/S0166361513000626

[207] Masood, A., Mei, Y., Chen, G., Zhang, M., “A PSO-Based Reference Point

Adaption Method for Genetic Programming Hyper-Heuristic in Many-Objective

Job Shop Scheduling”, in Artificial Life and Computational Intelligence: Third

Australasian Conference, ACALCI 2017, Geelong, VIC, Australia, January 31

– February 2, 2017, Proceedings, Wagner, M., Li, X., Hendtlass, T., (ed.).

Cham: Springer International Publishing, 2017, pp. 326–338, available at:

http://link.springer.com/10.1007/978-3-319-51691-2_28

[208] Sim, K., Hart, E., “A Novel Heuristic Generator for JSSP Using a Tree-Based

Representation of Dispatching Rules”, in Proceedings of the Companion Publication of

the 2015 on Genetic and Evolutionary Computation Conference - GECCO Companion

’15. New York, New York, USA: ACM Press, 2015, pp. 1485–1486, available at:

http://dl.acm.org/citation.cfm?doid=2739482.2764697

[209] Riley, M., Mei, Y., Zhang, M., “Improving job shop dispatching rules via terminal

weighting and adaptive mutation in genetic programming”, in 2016 IEEE Congress

on Evolutionary Computation (CEC). IEEE, Jul. 2016, pp. 3362–3369, available at:

http://ieeexplore.ieee.org/document/7744215/

[210] Shi, W., Song, X., Sun, J., “Automatic Heuristic Generation with Scatter

Programming to Solve the Hybrid Flow Shop Problem”, Advances in Mechanical

Engineering, Vol. 7, No. 2, Feb. 2015, pp. 587038, available at: http:

//journals.sagepub.com/doi/10.1155/2014/587038

434

http://link.springer.com/10.1007/978-3-642-44973-4_36
http://linkinghub.elsevier.com/retrieve/pii/S0925527312004574
http://linkinghub.elsevier.com/retrieve/pii/S0166361513000626
http://linkinghub.elsevier.com/retrieve/pii/S0166361513000626
http://link.springer.com/10.1007/978-3-319-51691-2_28
http://dl.acm.org/citation.cfm?doid=2739482.2764697
http://ieeexplore.ieee.org/document/7744215/
http://journals.sagepub.com/doi/10.1155/2014/587038
http://journals.sagepub.com/doi/10.1155/2014/587038

Bibliography

[211] Hedar, A.-R., Osman, M. K., “Scatter programming”, in 2010 2nd International

Conference on Computer Technology and Development. IEEE, Nov. 2010, pp. 451–455,

available at: http://ieeexplore.ieee.org/document/5645839/

[212] Park, J., Nguyen, S., Zhang, M., Johnston, M., “A Single Population Genetic

Programming based Ensemble Learning Approach to Job Shop Scheduling”,

in Proceedings of the Companion Publication of the 2015 on Genetic and

Evolutionary Computation Conference - GECCO Companion ’15. New York,

New York, USA: ACM Press, 2015, pp. 1451–1452, available at: http:

//dl.acm.org/citation.cfm?doid=2739482.2764651

[213] Branke, J., Groves, M. J., Hildebrandt, T., “Evolving control rules for a dual-constrained

job scheduling scenario”, in Proceedings of the 2016 Winter Simulation Conference,

ser. WSC ’16. Piscataway, NJ, USA: IEEE Press, 2016, pp. 2568–2579, available at:

http://dl.acm.org/citation.cfm?id=3042094.3042415

[214] Chen, L., Zheng, H., Zheng, D., Li, D., “An ant colony optimization-based

hyper-heuristic with genetic programming approach for a hybrid flow shop scheduling

problem”, in 2015 IEEE Congress on Evolutionary Computation (CEC). IEEE, May

2015, pp. 814–821, available at: http://ieeexplore.ieee.org/document/7256975/

[215] Hunt, R., Johnston, M., Zhang, M., “Using local search to evaluate dispatching

rules in dynamic job shop scheduling”, in Evolutionary Computation in Combinatorial

Optimization: 15th European Conference, EvoCOP 2015, Copenhagen, Denmark,

April 8-10, 2015, Proceedings, Ochoa, G., Chicano, F., (ed.). Cham: Springer

International Publishing, 2015, pp. 222–233, available at: https://doi.org/10.1007/

978-3-319-16468-7_19

[216] Hunt, R., Johnston, M., Zhang, M., Hunt, R., Johnston, M., Zhang, M., “Evolving dis-

patching rules with greater understandability for dynamic job shop scheduling”, 2015.

[217] Montana, D. J., “Strongly Typed Genetic Programming”, Evolutionary Computation,

Vol. 3, No. 2, Jun. 1995, pp. 199–230, available at: http://www.mitpressjournals.org/doi/

10.1162/evco.1995.3.2.199

[218] Karunakaran, D., Mei, Y., Chen, G., Zhang, M., “Dynamic Job Shop Scheduling

Under Uncertainty Using Genetic Programming”, in Intelligent and Evolutionary

Systems: The 20th Asia Pacific Symposium, IES 2016, Canberra, Australia,

November 2016, Proceedings, Leu, G., Singh, H. K., Elsayed, S., (ed.).

Cham: Springer International Publishing, 2017, pp. 195–210, available at:

http://link.springer.com/10.1007/978-3-319-49049-6_14

435

http://ieeexplore.ieee.org/document/5645839/
http://dl.acm.org/citation.cfm?doid=2739482.2764651
http://dl.acm.org/citation.cfm?doid=2739482.2764651
http://dl.acm.org/citation.cfm?id=3042094.3042415
http://ieeexplore.ieee.org/document/7256975/
https://doi.org/10.1007/978-3-319-16468-7_19
https://doi.org/10.1007/978-3-319-16468-7_19
http://www.mitpressjournals.org/doi/10.1162/evco.1995.3.2.199
http://www.mitpressjournals.org/doi/10.1162/evco.1995.3.2.199
http://link.springer.com/10.1007/978-3-319-49049-6_14

Bibliography

[219] Li, D., Zhan, R., Zheng, D., Li, M., Kaku, I., “A Hybrid Evolutionary Hyper-

Heuristic Approach for Intercell Scheduling Considering Transportation Capacity”,

IEEE Transactions on Automation Science and Engineering, Vol. 13, No. 2, Apr. 2016,

pp. 1072–1089, available at: http://ieeexplore.ieee.org/document/7270346/

[220] Mei, Y., Zhang, M., “A comprehensive analysis on reusability of GP-evolved job shop

dispatching rules”, in 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE,

Jul. 2016, pp. 3590–3597, available at: http://ieeexplore.ieee.org/document/7744244/

[221] Mei, Y., Zhang, M., Nyugen, S., “Feature Selection in Evolving Job Shop

Dispatching Rules with Genetic Programming”, in Proceedings of the 2016

on Genetic and Evolutionary Computation Conference - GECCO ’16. New

York, New York, USA: ACM Press, 2016, pp. 365–372, available at: http:

//dl.acm.org/citation.cfm?doid=2908812.2908822

[222] Nguyen, S., Zhang, M., Johnston, M., Tan, K. C., “Selection Schemes in Surrogate-

Assisted Genetic Programming for Job Shop Scheduling”, in Simulated Evolution

and Learning: 10th International Conference, SEAL 2014, Dunedin, New Zealand,

December 15-18, 2014. Proceedings, Dick, G., Browne, W. N., Whigham, P., Zhang,

M., Bui, L. T., Ishibuchi, H., Jin, Y., Li, X., Shi, Y., Singh, P., Tan, K. C., Tang,

K., (ed.). Cham: Springer International Publishing, 2014, pp. 656–667, available at:

http://link.springer.com/10.1007/978-3-319-13563-2_55

[223] Nguyen, S., Zhang, M., Tan, K. C., “Surrogate-Assisted Genetic Programming With

Simplified Models for Automated Design of Dispatching Rules”, IEEE Transactions on

Cybernetics, 2016, pp. 1–15, available at: http://ieeexplore.ieee.org/document/7473913/

[224] Ingimundardottir, H., Runarsson, T. P., “Evolutionary Learning of Linear Composite

Dispatching Rules for Scheduling”, in Computational Intelligence: International Joint

Conference, Merelo, J. J., Rosa, A., Cadenas, J. M., Dourado, A., Madani, K., Filipe,

J., (ed.). Cham: Springer International Publishing, 2016, pp. 49–62, available at:

http://link.springer.com/10.1007/978-3-319-26393-9_4

[225] Park, J., Mei, Y., Nguyen, S., Chen, G., Zhang, M., “Investigating the

generality of genetic programming based hyper-heuristic approach to dynamic job

shop scheduling with machine breakdown”, in Artificial Life and Computational

Intelligence: Third Australasian Conference, ACALCI 2017, Geelong, VIC, Australia,

January 31 – February 2, 2017, Proceedings, Wagner, M., Li, X., Hendtlass, T.,

(ed.). Cham: Springer International Publishing, 2017, pp. 301–313, available at:

https://doi.org/10.1007/978-3-319-51691-2_26

436

http://ieeexplore.ieee.org/document/7270346/
http://ieeexplore.ieee.org/document/7744244/
http://dl.acm.org/citation.cfm?doid=2908812.2908822
http://dl.acm.org/citation.cfm?doid=2908812.2908822
http://link.springer.com/10.1007/978-3-319-13563-2_55
http://ieeexplore.ieee.org/document/7473913/
http://link.springer.com/10.1007/978-3-319-26393-9_4
https://doi.org/10.1007/978-3-319-51691-2_26

Bibliography

[226] Mei, Y., Nguyen, S., Zhang, M., “Evolving time-invariant dispatching rules in

job shop scheduling with genetic programming”, in Genetic Programming: 20th

European Conference, EuroGP 2017, Amsterdam, The Netherlands, April 19-21, 2017,

Proceedings, McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez,

P., (ed.). Cham: Springer International Publishing, 2017, pp. 147–163, available at:

https://doi.org/10.1007/978-3-319-55696-3_10

[227] Karunakaran, D., Yi Mei, Gang Chen, Mengjie Zhang, “Evolving dispatching rules for

dynamic Job shop scheduling with uncertain processing times”, in 2017 IEEE Congress

on Evolutionary Computation (CEC). IEEE, Jun. 2017, pp. 364–371, available at:

http://ieeexplore.ieee.org/document/7969335/

[228] Karunakaran, D., Mei, Y., Chen, G., Zhang, M., “Toward evolving dispatching

rules for dynamic job shop scheduling under uncertainty”, in Proceedings of

the Genetic and Evolutionary Computation Conference on - GECCO ’17. New

York, New York, USA: ACM Press, 2017, pp. 282–289, available at: http:

//dl.acm.org/citation.cfm?doid=3071178.3071202

[229] Lee, C.-Y., Piramuthu, S., Tsai, Y.-K., “Job shop scheduling with a genetic algorithm

and machine learning”, International Journal of Production Research, Vol. 35, No. 4,

Apr. 1997, pp. 1171–1191, available at: http://www.tandfonline.com/doi/abs/10.1080/

002075497195605

[230] Koonce, D., Tsai, S.-C., “Using data mining to find patterns in genetic algorithm

solutions to a job shop schedule”, Computers & Industrial Engineering, Vol. 38, No. 3,

oct 2000, pp. 361–374, available at: https://doi.org/10.1016/s0360-8352(00)00050-4

[231] Li, X., Olafsson, S., “Discovering Dispatching Rules Using Data Mining”,

Journal of Scheduling, Vol. 8, No. 6, Dec. 2005, pp. 515–527, available at:

http://link.springer.com/10.1007/s10951-005-4781-0

[232] Olafsson, S., Li, X., “Learning effective new single machine dispatching rules from

optimal scheduling data”, International Journal of Production Economics, Vol. 128,

No. 1, Nov. 2010, pp. 118–126, available at: http://linkinghub.elsevier.com/retrieve/pii/

S0925527310002124

[233] Ingimundardottir, H., Runarsson, T. P., “Supervised learning linear priority dispatch rules

for job-shop scheduling”, in Learning and Intelligent Optimization: 5th International

Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected Papers, Coello, C.

A. C., (ed.). Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 263–277,

available at: https://doi.org/10.1007/978-3-642-25566-3_20

437

https://doi.org/10.1007/978-3-319-55696-3_10
http://ieeexplore.ieee.org/document/7969335/
http://dl.acm.org/citation.cfm?doid=3071178.3071202
http://dl.acm.org/citation.cfm?doid=3071178.3071202
http://www.tandfonline.com/doi/abs/10.1080/002075497195605
http://www.tandfonline.com/doi/abs/10.1080/002075497195605
https://doi.org/10.1016/s0360-8352(00)00050-4
http://link.springer.com/10.1007/s10951-005-4781-0
http://linkinghub.elsevier.com/retrieve/pii/S0925527310002124
http://linkinghub.elsevier.com/retrieve/pii/S0925527310002124
https://doi.org/10.1007/978-3-642-25566-3_20

Bibliography

[234] El-Bouri, A., Balakrishnan, S., Popplewell, N., “Sequencing jobs on a single machine:

A neural network approach”, European Journal of Operational Research, Vol. 126,

No. 3, Nov. 2000, pp. 474–490, available at: http://linkinghub.elsevier.com/retrieve/pii/

S0377221799003021

[235] Weckman, G. R., Ganduri, C. V., Koonce, D. A., “A neural network job-shop scheduler”,

Journal of Intelligent Manufacturing, Vol. 19, No. 2, Apr. 2008, pp. 191–201, available

at: http://link.springer.com/10.1007/s10845-008-0073-9

[236] Eguchi, T., Oba, F., Toyooka, S., “A robust scheduling rule using a Neural

Network in dynamically changing job-shop environments”, International Journal of

Manufacturing Technology and Management, Vol. 14, No. 3/4, 2008, pp. 266, available

at: http://www.inderscience.com/link.php?id=17727

[237] Petrovic, S., Fayad, C., Petrovic, D., Burke, E., Kendall, G., “Fuzzy job shop scheduling

with lot-sizing”, Annals of Operations Research, Vol. 159, No. 1, dec 2007, pp.

275–292, available at: https://doi.org/10.1007/s10479-007-0287-9

[238] Kapanoglu, M., Alikalfa, M., “Learning IF–THEN priority rules for dynamic job shops

using genetic algorithms”, Robotics and Computer-Integrated Manufacturing, Vol. 27,

No. 1, feb 2011, pp. 47–55, available at: https://doi.org/10.1016/j.rcim.2010.06.001

[239] PRIORE, P., DE LA FUENTE, D., GOMEZ, A., PUENTE, J., “A review of machine

learning in dynamic scheduling of flexible manufacturing systems”, Artificial Intelli-

gence for Engineering Design, Analysis and Manufacturing, Vol. 15, No. 3, 2001, pp.

251–263.

[240] Shahzad, A., Mebarki, N., “Learning dispatching rules for scheduling: A synergistic

view comprising decision trees, tabu search and simulation”, Computers, Vol. 5, No. 1,

2016, available at: http://www.mdpi.com/2073-431X/5/1/3

[241] Nguyen, S., Mei, Y., Ma, H., Chen, A., Zhang, M., “Evolutionary scheduling and

combinatorial optimisation: Applications, challenges, and future directions”, in 2016

IEEE Congress on Evolutionary Computation (CEC). IEEE, Jul. 2016, pp. 3053–3060,

available at: http://ieeexplore.ieee.org/document/7744175/

[242] Mann, H. B., Whitney, D. R., “On a test of whether one of two random variables is

stochastically larger than the other”, The Annals of Mathematical Statistics, Vol. 18,

No. 1, mar 1947, pp. 50–60, available at: https://doi.org/10.1214/aoms/1177730491

[243] McGill, R., Tukey, J. W., Larsen, W. a., “Variations of Box Plots”, The American Statis-

tician, Vol. 32, No. 1, 1978, pp. 12–16.

438

http://linkinghub.elsevier.com/retrieve/pii/S0377221799003021
http://linkinghub.elsevier.com/retrieve/pii/S0377221799003021
http://link.springer.com/10.1007/s10845-008-0073-9
http://www.inderscience.com/link.php?id=17727
https://doi.org/10.1007/s10479-007-0287-9
https://doi.org/10.1016/j.rcim.2010.06.001
http://www.mdpi.com/2073-431X/5/1/3
http://ieeexplore.ieee.org/document/7744175/
https://doi.org/10.1214/aoms/1177730491

Bibliography

[244] Frigge, M., Hoaglin, D. C., Iglewicz, B., “Some Implementations of the Boxplot”,

The American Statistician, Vol. 43, No. 1, 1989, pp. 50–54, available at:

http://links.jstor.org/sici?sici=0003-1305(198902)43:1<50:SIOTB>2.0.CO;2-E

[245] Fowler, L., Pfund, M., Yu, L., Fowler, J. W., Carlyle, W. M., “Development of a robust

scheduling rule for a printed wiring board drilling operation with multiple scheduling

objectives and fixed order release/pickup times”, in IIE Annual Conference. Proceedings.

Institute of Industrial and Systems Engineers (IISE), 2002, pp. 1.

[246] YU, L., SHIH, H. M., PFUND, M., MATTHEW CARLYLE, W., FOWLER, J. W.,

“Scheduling of unrelated parallel machines: an application to PWB manufacturing”,

IIE Transactions, Vol. 34, No. 11, Nov. 2002, pp. 921–931, available at:

http://www.tandfonline.com/doi/abs/10.1080/07408170208928923

[247] Kolahan, F., Kayvanfar, V., “A heuristic algorithm approach for scheduling of multi-

criteria unrelated parallel machines”, in World Academy of Science, Engineering and

Technology, 2009.

[248] Lin, Y.-K., Fowler, J. W., Pfund, M. E., “Multiple-objective heuristics for scheduling

unrelated parallel machines”, European Journal of Operational Research, Vol. 227,

No. 2, Jun. 2013, pp. 239–253, available at: http://linkinghub.elsevier.com/retrieve/pii/

S0377221712007357

[249] Pfund, M., Fowler, J. W., Gupta, J. N. D., “A SURVEY OF ALGORITHMS

FOR SINGLE AND MULTI-OBJECTIVE UNRELATED PARALLEL-MACHINE

DETERMINISTIC SCHEDULING PROBLEMS”, Journal of the Chinese Institute

of Industrial Engineers, Vol. 21, No. 3, Jan. 2004, pp. 230–241, available at:

http://www.tandfonline.com/doi/abs/10.1080/10170660409509404

[250] Tian, Y., Cheng, R., Zhang, X., Jin, Y., “Platemo: A matlab platform for

evolutionary multi-objective optimization.”, Vol. abs/1701.00879, 2017, available at:

http://dblp.uni-trier.de/db/journals/corr/corr1701.html#TianCZJ17

[251] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., “A fast and elitist multiobjective genetic

algorithm: NSGA-II”, IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2,

Apr. 2002, pp. 182–197, available at: http://ieeexplore.ieee.org/document/996017/

[252] Okabe, T., Yaochu Jin, Sendhoff, B., “A critical survey of performance indices for

multi-objective optimisation”, in The 2003 Congress on Evolutionary Computation,

2003. CEC ’03., Vol. 2. IEEE, 2003, pp. 878–885, available at: http://ieeexplore.ieee.

org/document/1299759/

439

http://links.jstor.org/sici?sici=0003-1305(198902)43:1<50:SIOTB>2.0.CO;2-E
http://www.tandfonline.com/doi/abs/10.1080/07408170208928923
http://linkinghub.elsevier.com/retrieve/pii/S0377221712007357
http://linkinghub.elsevier.com/retrieve/pii/S0377221712007357
http://www.tandfonline.com/doi/abs/10.1080/10170660409509404
http://dblp.uni-trier.de/db/journals/corr/corr1701.html#TianCZJ17
http://ieeexplore.ieee.org/document/996017/
http://ieeexplore.ieee.org/document/1299759/
http://ieeexplore.ieee.org/document/1299759/

Bibliography

[253] Siwei Jiang, Yew-Soon Ong, Jie Zhang, Liang Feng, “Consistencies and Contradictions

of Performance Metrics in Multiobjective Optimization”, IEEE Transactions on

Cybernetics, Vol. 44, No. 12, Dec. 2014, pp. 2391–2404, available at: http:

//ieeexplore.ieee.org/document/6766232/

[254] Zitzler, E., Thiele, L., “Multiobjective evolutionary algorithms: a comparative case study

and the strength Pareto approach”, IEEE Transactions on Evolutionary Computation,

Vol. 3, No. 4, 1999, pp. 257–271, available at: http://ieeexplore.ieee.org/document/

797969/

[255] van Veldhuizen, D. A., Lamont, G. B., “Multiobjective evolutionary algorithm test

suites”, in Proceedings of the 1999 ACM symposium on Applied computing - SAC

’99. New York, New York, USA: ACM Press, 1999, pp. 351–357, available at:

http://portal.acm.org/citation.cfm?doid=298151.298382

[256] Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., da Fonseca, V., “Performance

assessment of multiobjective optimizers: an analysis and review”, IEEE Transactions

on Evolutionary Computation, Vol. 7, No. 2, Apr. 2003, pp. 117–132, available at:

http://ieeexplore.ieee.org/document/1197687/

[257] Coello Coello, Carlos, Lamont, Gary B., van Veldhuizen, D. A., Evolutionary

Algorithms for Solving Multi-Objective Problems, ser. Genetic and Evolutionary

Computation Series. Boston, MA: Springer US, 2007, available at: http://link.springer.

com/10.1007/978-0-387-36797-2

[258] Wang, Z., Tang, K., Yao, X., “Multi-Objective Approaches to Optimal Testing Resource

Allocation in Modular Software Systems”, IEEE Transactions on Reliability, Vol. 59,

No. 3, Sep. 2010, pp. 563–575, available at: http://ieeexplore.ieee.org/document/

5549979/

[259] Qingfu Zhang, Hui Li, “MOEA/D: A Multiobjective Evolutionary Algorithm Based on

Decomposition”, IEEE Transactions on Evolutionary Computation, Vol. 11, No. 6, Dec.

2007, pp. 712–731, available at: http://ieeexplore.ieee.org/document/4358754/

[260] Deb, K., Jain, H., “An Evolutionary Many-Objective Optimization Algorithm Using

Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With

Box Constraints”, IEEE Transactions on Evolutionary Computation, Vol. 18, No. 4,

Aug. 2014, pp. 577–601, available at: http://ieeexplore.ieee.org/document/6600851/

[261] Ishibuchi, H., Setoguchi, Y., Masuda, H., Nojima, Y., “Performance of Decomposition-

Based Many-Objective Algorithms Strongly Depends on Pareto Front Shapes”, IEEE

440

http://ieeexplore.ieee.org/document/6766232/
http://ieeexplore.ieee.org/document/6766232/
http://ieeexplore.ieee.org/document/797969/
http://ieeexplore.ieee.org/document/797969/
http://portal.acm.org/citation.cfm?doid=298151.298382
http://ieeexplore.ieee.org/document/1197687/
http://link.springer.com/10.1007/978-0-387-36797-2
http://link.springer.com/10.1007/978-0-387-36797-2
http://ieeexplore.ieee.org/document/5549979/
http://ieeexplore.ieee.org/document/5549979/
http://ieeexplore.ieee.org/document/4358754/
http://ieeexplore.ieee.org/document/6600851/

Bibliography

Transactions on Evolutionary Computation, Vol. 21, No. 2, Apr. 2017, pp. 169–190,

available at: http://ieeexplore.ieee.org/document/7509682/

[262] Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y., “Performance comparison of

NSGA-II and NSGA-III on various many-objective test problems”, in 2016 IEEE

Congress on Evolutionary Computation (CEC). IEEE, Jul. 2016, pp. 3045–3052,

available at: http://ieeexplore.ieee.org/document/7744174/

[263] Zitzler, E., Laumanns, M., Thiele, L., “SPEA2: Improving the Strength Pareto Evolu-

tionary Algorithm”, Evolutionary Methods for Design Optimization and Control with

Applications to Industrial Problems, 2001, pp. 95–100.

[264] Gomez, R. H., Coello, C. A., “MOMBI: A new metaheuristic for many-objective opti-

mization based on the R2 indicator”, in 2013 IEEE Congress on Evolutionary Computa-

tion, CEC 2013, 2013, pp. 2488–2495.

[265] Jain, H., Deb, K., “An evolutionary many-objective optimization algorithm using

reference-point based nondominated sorting approach, Part II: Handling constraints and

extending to an adaptive approach”, IEEE Transactions on Evolutionary Computation,

Vol. 18, No. 4, 2014, pp. 602–622.

[266] Polikar, R., “Ensemble learning”, Scholarpedia, Vol. 4, No. 1, 2009, pp. 2776, revision

#91224.

[267] Breiman, L., “Bagging Predictors”, Machine Learning, Vol. 24, No. 2, 1996, pp.

123–140, available at: http://link.springer.com/10.1023/A:1018054314350

[268] Freund, Y., Schapire, R. E., “A Decision-Theoretic Generalization of On-

Line Learning and an Application to Boosting”, Journal of Computer and

System Sciences, Vol. 55, No. 1, Aug. 1997, pp. 119–139, available at:

http://linkinghub.elsevier.com/retrieve/pii/S002200009791504X

[269] Bhowan, U., Johnston, M., Zhang, M., Yao, X., “Evolving Diverse Ensembles Using

Genetic Programming for Classification With Unbalanced Data”, IEEE Transactions

on Evolutionary Computation, Vol. 17, No. 3, Jun. 2013, pp. 368–386, available at:

http://ieeexplore.ieee.org/document/6198882/

[270] Bhowan, U., Johnston, M., Mengjie Zhang, Xin Yao, “Reusing Genetic Programming

for Ensemble Selection in Classification of Unbalanced Data”, IEEE Transactions on

Evolutionary Computation, Vol. 18, No. 6, Dec. 2014, pp. 893–908, available at:

http://ieeexplore.ieee.org/document/6677603/

441

http://ieeexplore.ieee.org/document/7509682/
http://ieeexplore.ieee.org/document/7744174/
http://link.springer.com/10.1023/A:1018054314350
http://linkinghub.elsevier.com/retrieve/pii/S002200009791504X
http://ieeexplore.ieee.org/document/6198882/
http://ieeexplore.ieee.org/document/6677603/

Bibliography

[271] Folino, G., Pizzuti, C., Spezzano, G., “Training Distributed GP Ensemble With a

Selective Algorithm Based on Clustering and Pruning for Pattern Classification”, IEEE

Transactions on Evolutionary Computation, Vol. 12, No. 4, Aug. 2008, pp. 458–468,

available at: http://ieeexplore.ieee.org/document/4439200/

[272] Folino, G., Pizzuti, C., Spezzano, G., “Gp ensemble for distributed intrusion detection

systems”, in Proceedings of the Third International Conference on Advances in Pattern

Recognition - Volume Part I, ser. ICAPR’05. Berlin, Heidelberg: Springer-Verlag, 2005,

pp. 54–62, available at: http://dx.doi.org/10.1007/11551188_6

[273] Iba, H., “Bagging, boosting, and bloating in genetic programming”, in Proceedings of

the 1st Annual Conference on Genetic and Evolutionary Computation - Volume 2, ser.

GECCO’99. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999, pp.

1053–1060, available at: http://dl.acm.org/citation.cfm?id=2934046.2934063

[274] Paris, G., Robilliard, D., Fonlupt, C., “Applying boosting techniques to genetic

programming”, in Artificial Evolution: 5th International Conference, Evolution

Artificielle, EA 2001 Le Creusot, France, October 29–31, 2001 Selected Papers,

Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M., (ed.). Berlin,

Heidelberg: Springer Berlin Heidelberg, 2002, pp. 267–278, available at: https:

//doi.org/10.1007/3-540-46033-0_22

[275] de Souza, L. V., R. Pozo, A. T., C., A., da Ros, J.

M. C., “Genetic Programming and Boosting Technique to Improve

Time Series Forecasting”, in Evolutionary Computation. InTech, Oct.

2009, available at: http://www.intechopen.com/books/evolutionary-computation/

genetic-programming-and-boosting-technique-to-improve-time-series-forecasting

[276] Potter, M. A., Jong, K. A. D., “A cooperative coevolutionary approach to function

optimization”, in Proceedings of the International Conference on Evolutionary

Computation. The Third Conference on Parallel Problem Solving from Nature: Parallel

Problem Solving from Nature, ser. PPSN III. London, UK, UK: Springer-Verlag, 1994,

pp. 249–257, available at: http://dl.acm.org/citation.cfm?id=645822.670374

[277] Branke, J., Pickardt, C. W., “Evolutionary search for difficult problem instances

to support the design of job shop dispatching rules”, European Journal of

Operational Research, Vol. 212, No. 1, Jul. 2011, pp. 22–32, available at:

http://linkinghub.elsevier.com/retrieve/pii/S0377221711000981

[278] PIERREVAL, H., “Expert system for selecting priority rules in flexible manufacturing

442

http://ieeexplore.ieee.org/document/4439200/
http://dx.doi.org/10.1007/11551188_6
http://dl.acm.org/citation.cfm?id=2934046.2934063
https://doi.org/10.1007/3-540-46033-0_22
https://doi.org/10.1007/3-540-46033-0_22
http://www.intechopen.com/books/evolutionary-computation/genetic-programming-and-boosting-technique-to-improve-time-series-forecasting
http://www.intechopen.com/books/evolutionary-computation/genetic-programming-and-boosting-technique-to-improve-time-series-forecasting
http://dl.acm.org/citation.cfm?id=645822.670374
http://linkinghub.elsevier.com/retrieve/pii/S0377221711000981

Bibliography

systems”, Expert Systems with Applications, Vol. 5, No. 1-2, 1992, pp. 51–57, available

at: http://linkinghub.elsevier.com/retrieve/pii/0957417492900949

[279] Sun, Y.-L., Yih, Y., “An intelligent controller for manufacturing cells”, International

Journal of Production Research, Vol. 34, No. 8, Aug. 1996, pp. 2353–2373, available at:

http://www.tandfonline.com/doi/abs/10.1080/00207549608905029

[280] Pierreval, H., “Neural Network to Select Dynamic Scheduling Heuristics”, Journal

of Decision Systems, Vol. 2, No. 2, Jan. 1993, pp. 173–190, available at:

http://www.tandfonline.com/doi/abs/10.1080/12460125.1993.10511572

[281] Liu, H., Dong, J. J., “Dispatching rule selection using artificial neural networks for

dynamic planning and scheduling”, Journal of Intelligent Manufacturing, Vol. 7, No. 3,

Jun. 1996, pp. 243–250, available at: http://link.springer.com/10.1007/BF00118083

[282] Pierreval, H., Mebarki, N., “Dynamic scheduling selection of dispatching rules for

manufacturing system”, International Journal of Production Research, Vol. 35, No. 6,

Jun. 1997, pp. 1575–1591, available at: http://www.tandfonline.com/doi/abs/10.1080/

002075497195137

[283] Lian Yu, Shih, H., Sekiguchi, T., “Dynamic selection of dispatching rules by fuzzy

inference”, in 1998 IEEE International Conference on Fuzzy Systems Proceedings.

IEEE World Congress on Computational Intelligence (Cat. No.98CH36228), Vol. 2.

IEEE, 1998, pp. 979–984, available at: http://ieeexplore.ieee.org/document/686251/

[284] Subramaniam, V., Ramesh, T., Lee, G. K., Wong, Y. S., Hong, G. S., “Job Shop

Scheduling with Dynamic Fuzzy Selection of Dispatching Rules”, The International

Journal of Advanced Manufacturing Technology, Vol. 16, No. 10, Aug. 2000, pp.

759–764, available at: http://link.springer.com/10.1007/s001700070029

[285] Subramaniam, V., Lee, G. K., Hong, G. S., Wong, Y. S., Ramesh, T.,

“Dynamic selection of dispatching rules for job shop scheduling”, Production

Planning & Control, Vol. 11, No. 1, Jan. 2000, pp. 73–81, available at:

http://www.tandfonline.com/doi/abs/10.1080/095372800232504

[286] Shiue, Y.-R., Guh, R.-S., “Learning-based multi-pass adaptive scheduling for

a dynamic manufacturing cell environment”, Robotics and Computer-Integrated

Manufacturing, Vol. 22, No. 3, Jul. 2006, pp. 203–216, available at: http:

//linkinghub.elsevier.com/retrieve/pii/S0736584505000402

[287] Zahmani, M. H., Atmani, B., Bekrar, A., Aissani, N., “Multiple priority dispatching

rules for the job shop scheduling problem”, in 2015 3rd International Conference on

443

http://linkinghub.elsevier.com/retrieve/pii/0957417492900949
http://www.tandfonline.com/doi/abs/10.1080/00207549608905029
http://www.tandfonline.com/doi/abs/10.1080/12460125.1993.10511572
http://link.springer.com/10.1007/BF00118083
http://www.tandfonline.com/doi/abs/10.1080/002075497195137
http://www.tandfonline.com/doi/abs/10.1080/002075497195137
http://ieeexplore.ieee.org/document/686251/
http://link.springer.com/10.1007/s001700070029
http://www.tandfonline.com/doi/abs/10.1080/095372800232504
http://linkinghub.elsevier.com/retrieve/pii/S0736584505000402
http://linkinghub.elsevier.com/retrieve/pii/S0736584505000402

Bibliography

Control, Engineering & Information Technology (CEIT). IEEE, May 2015, pp. 1–6,

available at: http://ieeexplore.ieee.org/document/7232991/

[288] Priore, P., Gómez, A., Pino, R., Rosillo, R., “Dynamic scheduling of manufacturing

systems using machine learning: An updated review”, Artificial Intelligence for

Engineering Design, Analysis and Manufacturing: AIEDAM, Vol. 28, No. 1,

2014, pp. 83–97, available at: http://www.scopus.com/inward/record.url?eid=2-s2.

0-84896442633&partnerID=40&md5=c6d5b3ad421a09adf167cf12f86aa134

[289] Fix, E., Hodges, J. L., “Discriminatory analysis, nonparametric discrimination: Consis-

tency properties”, US Air Force School of Aviation Medicine, Vol. Technical Report 4,

1951.

[290] Alpaydin, E., Introduction to Machine Learning. The MIT Press, 2014.

[291] Cox, D. R., “The regression analysis of binary sequences (with discussion)”, J Roy Stat

Soc B, Vol. 20, 1958, pp. 215–242.

[292] Cortes, C., Vapnik, V., “Support-vector networks”, Machine Learning, Vol. 20, No. 3,

Sep. 1995, pp. 273–297, available at: http://link.springer.com/10.1007/BF00994018

[293] Werbos, P. J., “Beyond regression: New tools for prediction and analysis in the behavioral

sciences”, Phd thesis, Harvard University, 1974.

[294] Quinlan, J. R., C4.5: Programs for Machine Learning. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 1993.

[295] Souza, C. The accord.net framework, available at: http://accord-framework.net

[296] Bertsekas, D., Castanon, D., “Rollout algorithms for stochastic scheduling problems”,

in Proceedings of the 37th IEEE Conference on Decision and Control (Cat.

No.98CH36171), Vol. 2. IEEE, 1998, pp. 2143–2148, available at: http://ieeexplore.

ieee.org/document/758655/

[297] Bertsekas, D., Castanon, D., “Rollout algorithms for stochastic scheduling problems”,

MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR INFORMATION AND

DECISION SYSTEMS, Tech. Rep., 1998.

[298] Bertsekas, D. P., Castanon, D. A., “Rollout Algorithms for Stochastic Scheduling

Problems”, Journal of Heuristics, Vol. 5, No. 1, 1999, pp. 89–108, available at:

http://link.springer.com/10.1023/A:1009634810396

[299] Geirsson, E., “Rollout algorithms for job-shop scheduling”.

444

http://ieeexplore.ieee.org/document/7232991/
http://www.scopus.com/inward/record.url?eid=2-s2.0-84896442633&partnerID=40&md5=c6d5b3ad421a09adf167cf12f86aa134
http://www.scopus.com/inward/record.url?eid=2-s2.0-84896442633&partnerID=40&md5=c6d5b3ad421a09adf167cf12f86aa134
http://link.springer.com/10.1007/BF00994018
http://accord-framework.net
http://ieeexplore.ieee.org/document/758655/
http://ieeexplore.ieee.org/document/758655/
http://link.springer.com/10.1023/A:1009634810396

Bibliography

[300] Bertsekas, D. P., Rollout Algorithms for Discrete Optimization: A Survey.

New York, NY: Springer New York, 2013, pp. 2989–3013, available at: http:

//dx.doi.org/10.1007/978-1-4419-7997-1_8

445

http://dx.doi.org/10.1007/978-1-4419-7997-1_8
http://dx.doi.org/10.1007/978-1-4419-7997-1_8

List of Figures

2.1. The permutation solution representation . 19

2.2. The floating point solution representation . 20

3.1. Tree representation of an individual . 31

3.2. Example of the full generation method . 33

3.3. Example of the grow generation method . 33

3.4. Example of the tournament selection . 34

3.5. Example of the roulette wheel selection . 35

3.6. Subtree crossover . 36

3.7. One-point crossover . 37

3.8. Uniform crossover . 37

3.9. Context-preserving crossover . 38

3.10. Size-fair crossover . 39

3.11. Subtree mutation . 39

3.12. Gauss mutation . 40

3.13. Hoist mutation . 40

3.14. Node replacement mutation . 41

3.15. Node complement mutation . 41

3.16. Permutation mutation . 42

3.17. Shrink mutation . 42

3.18. Example of a semantically incorrect and correct solution 45

3.19. Example of a GEP individual . 46

3.20. Expression tree representation of a GEP individual 46

3.21. Example of the one point crossover in GEP 47

3.22. Example of the replacement mutation in GEP 47

3.23. Example of the IS transposition . 48

3.24. Example of the RIS transposition . 48

3.25. Example of gene transposition in GEP . 48

4.1. Example of a priority function evolved by GP 53

447

List of Figures

4.2. Influence of the number of iterations on the performance of GP 70

4.3. Comparison between GP, DAGP, and GEP . 80

5.1. Example of a Pareto front . 84

5.2. Influence of the number of evaluations on the multi-objective metrics 92

5.3. Box plot representation of the results obtained when optimising three objectives

simultaneously . 102

5.4. Box plot representation of the results obtained when optimising five objectives

simultaneously . 107

5.5. Box plot representation of the results obtained when optimising six objectives

simultaneously . 109

5.6. Box plot representation of the results obtained when optimising seven objec-

tives simultaneously . 115

5.7. Box plot representation of the results obtained when optimising nine objectives

simultaneously . 117

5.8. Box plot representation of multi-objective metrics obtained when optimising

three objectives simultaneously . 124

5.9. Box plot representation of multi-objective metrics obtained when optimising

five objectives simultaneously . 127

5.10. Box plot representation of multi-objective metrics obtained when optimising

six objectives simultaneously . 129

5.11. Box plot representation of multi-objective metrics obtained when optimising

seven objectives simultaneously . 133

5.12. Box plot representation of multi-objective metrics obtained when optimising

nine objectives simultaneously . 134

5.13. Correlation of the Cmax criterion with the other criteria 148

5.14. Correlation of the Cw criterion with the other criteria 149

5.15. Correlation of the Etwt criterion with the other criteria 150

5.16. Correlation of the Fmax criterion with the other criteria 152

5.17. Correlation of the Ft criterion with the other criteria 153

5.18. Correlation of the Mut criterion with the other criteria 154

5.19. Correlation of the Nwt criterion with the other criteria 155

5.20. Correlation of the Tmax criterion with the other criteria 156

5.21. Correlation of the Twt criterion with the other criteria 158

6.1. Box plot representation of the results obtained by SEC with the sum combina-

tion method, when using different ensemble construction methods 176

448

List of Figures

6.2. Box plot representation of the results obtained by SEC with the vote combina-

tion method, when using different ensemble construction methods 180

6.3. Box plot representation of the results obtained by SEC, when using DRs evolved

by different GP approaches for constructing the ensembles 186

6.4. Box plot representation of the results obtained by SEC, when using DRs evolved

by varius maximum tree depths to construct the ensembles 191

6.5. Box plot representation of the results obtained by the SEC approach 193

6.6. Box plot representation of the results obtained by ESS when applied on ensem-

bles of size five generated by SEC . 195

6.7. Box plot representation of the results obtained by ESS when applied on ensem-

bles of size ten generated by SEC . 195

6.8. Box plot representation of the results obtained by the BagGP approach 200

6.9. Box plot representation of the results obtained by ESS when using ensembles

of size ten generated by the BagGP approach 204

6.10. Box plot representation of the results obtained by the unweighted BoostGP ap-

proach . 205

6.11. Box plot representation of the results obtained by ESS when using ensembles

of size ten generated by the unweighted BoostGP approach 207

6.12. Box plot representation of the results obtained by the weighted BoostGP approach209

6.13. Box plot representation of the results obtained by ESS when using ensembles

generated by the weighted BoostGP approach 210

6.14. Box plot representation of the results obtained by the cooperative coevolution

approach . 211

6.15. Box plot representation of the results obtained by ESS when using ensembles

of size ten evolved by the cooperative coevolution approach 213

6.16. Box plot representation of the results obtained by the cooperative coevolution

approach with a larger number of iterations 213

6.17. Box plot representation of the results obtained by ESS when using ensembles of

size ten generated by the cooperative coevolution approach with a larger number

of iterations . 215

6.18. Box plot representation of the results obtained by the ensemble learning ap-

proaches when optimising the Twt criterion 218

6.19. Box plot representation of the results obtained by the ensemble learning ap-

proaches when optimising the Nwt criterion 219

6.20. Box plot representation of the results obtained by the ensemble learning meth-

ods when optimising the Ft criterion . 221

449

List of Figures

6.21. Box plot representation of the results obtained by the ensemble learning ap-

proaches when optimising the Cmax criterion 225

6.22. Performance of the best ensemble constructed by SEC and combined by using

the sum combination method compared to the performance of individual DRs

out of which it was constructed . 234

6.23. Performance of the best ensemble constructed by SEC and combined by using

the vote combination method compared to the performance of individual DRs

out of which it was constructed . 236

6.24. Performance of the best ensemble constructed by SEC with ESS and combined

by using the sum combination method compared to the performance of individ-

ual DRs out of which it was constructed . 237

6.25. Performance of the best ensemble constructed by SEC with ESS and combined

by using the vote combination method compared to the performance of individ-

ual DRs out of which it was constructed . 239

6.26. Performance of the best ensemble constructed by BagGP and combined by us-

ing the sum combination method compared to the performance of individual

DRs out of which it was constructed . 241

6.27. Performance of the best ensemble constructed by BagGP and combined by us-

ing the vote combination method compared to the performance of individual

DRs out of which it was constructed . 242

6.28. Performance of the best ensemble constructed by BagGP with ESS and com-

bined by using the sum combination method compared to the performance of

individual DRs out of which it was constructed 245

6.29. Performance of the best ensemble constructed by BagGP with ESS and com-

bined by using the vote combination method compared to the performance of

individual DRs out of which it was constructed 245

6.30. Performance of the best ensemble constructed by unweighted BoostGP and

combined by using the sum combination method compared to the performance

of individual DRs out of which it was constructed 247

6.31. Performance of the best ensemble constructed by unweighted BoostGP and

combined by using the vote combination method compared to the performance

of individual DRs out of which it was constructed 249

6.32. Performance of the best ensemble constructed by unweighted BoostGP with

ESS and combined by using the sum combination method compared to the per-

formance of individual DRs out of which it was constructed 250

450

List of Figures

6.33. Performance of the best ensemble constructed by unweighted BoostGP with

ESS and combined by using the vote combination method compared to the per-

formance of individual DRs out of which it was constructed 252

6.34. Performance of the best ensemble constructed by weighted BoostGP and com-

bined by using the sum combination method compared to the performance of

individual DRs out of which it was constructed 253

6.35. Performance of the best ensemble constructed by weighted BoostGP and com-

bined by using the vote combination method compared to the performance of

individual DRs out of which it was constructed 255

6.36. Performance of the best ensemble constructed by weighted BoostGP with ESS

and combined by using the sum combination method compared to the perfor-

mance of individual DRs out of which it was constructed 257

6.37. Performance of the best ensemble constructed by weighted BoostGP with ESS

and combined by using the vote combination method compared to the perfor-

mance of individual DRs out of which it was constructed 259

6.38. Performance of the best ensemble constructed by cooperative coevolution and

combined by using the sum combination method compared to the performance

of individual DRs out of which it was constructed 261

6.39. Performance of the best ensemble constructed by cooperative coevolution and

combined by using the vote combination method compared to the performance

of individual DRs out of which it was constructed 261

7.1. Influence of the feature set combination on the results obtained by the DR se-

lection procedure . 277

7.2. Influence of the classification methods on the results obtained by the DR selec-

tion procedure . 278

7.3. Influence of the learning set size on the results obtained by the DR selection

procedure . 279

7.4. Influence of the number of DRs on the results obtained by the DR selection

procedure . 280

7.5. Performance of the DR selection procedure depending on the classification

methods, for problems with constant characteristics 285

7.6. Performance of the DR selection procedure depending on the methods used for

determining when the procedure should be used, for problems with constant

characteristics . 285

7.7. Performance of the DR selection procedure depending on the frequency of per-

forming the selection, for problems with constant characteristics 286

451

List of Figures

7.8. Performance of the DR selection procedure depending on the applied feature

set, for problems with constant characteristics 287

7.9. Performance of the DR selection procedure depending on the number of DRs

used to construct the learning set, for problems with constant characteristics . . 287

7.10. Performance of the DR selection procedure depending on the number of re-

leased or scheduled jobs used to calculate the features, for problems with con-

stant characteristics . 288

7.11. Performance of the DR selection procedure depending on the interval length

between performing the selection, for problems with constant characteristics . . 288

7.12. Performance of the DR selection procedure depending on the classification

methods, for problems with changing due date characteristics 291

7.13. Performance of the DR selection procedure depending on the methods used for

determining when the procedure should be used, for problems with changing

due date characteristics . 291

7.14. Performance of the DR selection procedure depending on the frequency of per-

forming the selection, for problems with changing due date characteristics . . . 292

7.15. Performance of the DR selection procedure depending on the applied feature

set, for problems with changing due date characteristics 293

7.16. Performance of the DR selection procedure depending on the number of DRs

used to construct the learning set, for problems with changing due date charac-

teristics . 293

7.17. Performance of the DR selection procedure depending on the number of re-

leased or scheduled jobs used to calculate the features, for problems with chang-

ing due date characteristics . 294

7.18. Performance of the DR selection procedure depending on the interval length

between performing the selection, for problems with changing due date charac-

teristics . 294

7.19. Performance of the DR selection procedure depending on the classification

methods, for problems with changing due date and release time characteristics . 297

7.20. Performance of the DR selection procedure depending on the methods used for

determining when the procedure should be used, for problems with changing

due date and release time characteristics . 298

7.21. Performance of the DR selection procedure depending on the frequency of per-

forming the selection, for problems with changing due date and release time

characteristics . 298

7.22. Performance of the DR selection procedure depending on the applied feature

set, for problems with changing due date and release time characteristics 299

452

List of Figures

7.23. Performance of the DR selection procedure depending on the number of DRs

used to construct the learning set, for problems with changing due date and

release time characteristics . 299

7.24. Performance of the DR selection procedure depending on the number of re-

leased or scheduled jobs used to calculate the features, for problems with and

release time changing due date characteristics 300

7.25. Performance of the DR selection procedure depending on the interval length

between performing the selection, for problems with changing due date and

release time characteristics . 300

7.26. Histogram of the frequency of applying the DRs on the test set 305

7.27. Association of DRs to samples in the learning sample space 308

8.1. Box plot representation of the results obtained by using different static node

combinations . 335

8.2. Box plot representation of the results obtained by using DRs with look-ahead . 337

8.3. Box plot representation of the results obtained by DRs with look-ahead and

static terminal nodes calculated based on all unreleased jobs 339

8.4. Box plot representation of the results obtained by DRs with look-ahead and

static terminal nodes calculated based on unreleased jobs outside the look-ahead

horizon . 341

8.5. Box plot representation of the results obtained by DRs with look-ahead and

different static node combinations . 343

8.6. Box plot representation of the results obtained by IDRs for various combina-

tions of IDR nodes . 346

8.7. Box plot representation of the results obtained by IDRs with static terminal

nodes and different combinations of IDR nodes 348

8.8. Box plot representation of the results obtained by IDRs and different combina-

tions of static terminal nodes . 350

8.9. Box plot representation of the results obtained by IDRs with look-ahead when

using different look-ahead parameter values 353

8.10. Box plot representation of the results obtained by IDRs with look-ahead when

using different IDR node combinations . 354

8.11. Box plot representation of the results obtained by IDRs with look-ahead and

static terminals when using various look-ahead parameter values 355

8.12. Box plot representation of the results obtained by look-ahead with IDRs, when

using different IDR node combinations . 357

8.13. Box plot representation of the results obtained by IDRs with static terminal

nodes and look-ahead, when using various combinations of static terminal nodes 359

453

List of Figures

8.14. Box plot representation of the results obtained by the rollout algorithm, when

using different rollout parameter values and DRs generated by DGP 360

8.15. Box plot representation of the results obtained by the rollout algorithm, when

using different rollout parameter values and DRs generated by using the best

static terminal node combination . 362

8.16. Box plot representation of the results obtained by the rollout algorithm, when

using different rollout parameter values and DRs generated by using different

static node combinations . 364

8.17. Box plot representation of the results obtained by the rollout algorithm with

static terminal nodes, when using DRs generated by different combinations of

static terminal nodes . 367

8.18. Box plot representation of the results obtained by the rollout algorithm with

look-ahead, when using different rollout parameter values 368

8.19. Box plot representation of the results obtained by the rollout algorithm with

look-ahead, when using different look-ahead parameter values 370

8.20. Box plot representation of the results obtained by the rollout algorithm with

look-ahead and static terminal nodes calculated based on all unreleased jobs,

when using different rollout parameter values 372

8.21. Box plot representation of the results obtained by the rollout algorithm with

look-ahead and static terminal nodes calculated based on all unreleased jobs

outside the look-ahead horizon, when using different rollout parameters 373

8.22. Box plot representation of the results obtained by the rollout algorithm with

look-ahead and static terminal nodes calculated based on all unreleased jobs,

when using different look-ahead parameter values 374

8.23. Box plot representation of the results obtained by the rollout algorithm with

look-ahead and static terminal nodes calculated based on all unreleased jobs

outside the look-ahead horizon, when using different look-ahead parameter values376

8.24. Box plot representation of the results obtained by the rollout algorithm with

look-ahead and static terminal nodes calculated based on all unreleased jobs,

when using different static node combinations 378

8.25. Box plot representation of the results obtained by the rollout algorithm with

look-ahead and static terminal nodes calculated based on all unreleased jobs

outside the look-ahead horizon, when using different static node combinations . 381

8.26. Box plot representation of the results obtained by the different static scheduling

methods . 385

8.27. Graphical representation of the influence of the look-ahead parameter values on

the execution time of the DRs . 387

454

List of Figures

8.28. Graphical representation of the influence of the rollout parameter values on the

execution time of DRs . 388

8.29. The relation between the execution times and minimum values obtained by the

tested methods . 392

8.30. The relation between the execution times and median values obtained by the

tested methods . 394

8.31. The frequency of static terminal nodes in the generated DRs 396

8.32. The frequency of IDR nodes in the generated IDRs 397

8.33. Schedules generated by the static DR methods 400

455

List of Tables

4.1. Terminal nodes used by GP . 51

4.2. Function nodes used by GP . 52

4.3. Parameter values used by GP . 71

4.4. Semantic rules defined for DAGP . 72

4.5. Comparison of automatically designed DRs with manually designed DRs . . . 77

4.6. Results for the automatically designed DRs across all the criteria 79

4.7. Comparison of the GP approaches . 80

5.1. Influence of the population size on the multi-objective metrics 94

5.2. Influence of the mutation probability on the multi-objective metrics 95

5.3. Influence of the neighbourhood size on the multi-objective metrics 96

5.4. Influence of the decomposition methods on the multi-objective metrics 97

5.5. Results obtained when optimising three objectives simultaneously 99

5.6. Results obtained when optimising five objectives simultaneously 103

5.7. Results obtained when optimising six objectives simultaneously 108

5.8. Results obtained when optimising seven objectives simultaneously 111

5.9. Results obtained when optimising nine objectives simultaneously 116

5.10. Multi-objective metric values obtained when optimising three objectives simul-

taneously . 120

5.11. Multi-objective metric values obtained when optimising five objectives simul-

taneously . 125

5.12. Multi-objective metric values obtained when optimising six objectives simulta-

neously . 128

5.13. Multi-objective metric values obtained when optimising seven objectives simul-

taneously . 131

5.14. Multi-objective metric values obtained when optimising nine objectives simul-

taneously . 134

5.15. Comparison of automatically generated multi-objective DRs with the MCT rule 139

5.16. Comparison of automatically generated multi-objective DRs with the ATC rule 140

457

List of Tables

5.17. Comparison of automatically generated multi-objective DRs with the RC rule . 142

5.18. Comparison of automatically generated multi-objective DRs with the COVERT

rule . 144

5.19. Comparison of automatically generated multi-objective DRs with the sufferage

rule . 146

6.1. Influence of the ensemble construction methods on the results obtained by SEC

with the sum combination method . 175

6.2. Influence of the ensemble construction methods on the results obtained by SEC

with the vote combination method . 178

6.3. Influence of the different GP methods on the results obtained by SEC 183

6.4. Influence of the maximum tree depth used to generate DRs on the results ob-

tained by SEC . 188

6.5. Results obtained by the SEC approach . 193

6.6. Results obtained by ESS when applied on ensembles of size five generated by

SEC . 194

6.7. Results obtained by ESS when applied on ensembles of size ten generated by

SEC . 196

6.8. Results obtained by the BagGP approach . 197

6.9. Results obtained by ESS when applied on ensembles of size ten generated by

the BagGP approach . 201

6.10. Results obtained by the unweighted BoostGP approach 205

6.11. Results obtained by ESS when using ensembles of size ten generated by the

unweighted BoostGP approach . 206

6.12. Results obtained by the weighted BoostGP approach 208

6.13. Results obtained by ESS when using ensembles generated by the weighted

BoostGP approach . 209

6.14. Results obtained by the cooperative coevolution approach 211

6.15. Results obtained by ESS when using ensembles of size ten generated by the

cooperative coevolution approach . 212

6.16. Results obtained by the cooperative coevolution approach with a larger number

of iterations . 214

6.17. Results obtained by ESS when using ensembles of size ten generated by the

cooperative coevolution approach with a larger number of iterations 215

6.18. Performance comparison of the ensemble learning approaches when optimising

the Twt criterion . 217

6.19. Performance comparison of the ensemble learning approaches when optimising

the Nwt criterion . 220

458

List of Tables

6.20. Performance comparison of the ensemble learning approaches when optimising

the Ft criterion . 222

6.21. Performance comparison of the ensemble learning methods when optimising

the Cmax criterion . 224

6.22. Most commonly contained DRs in the best ensembles constructed by SEC and

combined by the sum combination method . 231

6.23. Most commonly contained DRs in the best ensembles constructed by SEC and

combined by the vote combination method . 233

6.24. Performance analysis of the best ensemble generated by SEC and combined

with the sum combination method . 235

6.25. Performance analysis of the best ensemble generated by SEC and combined

with the vote combination method . 236

6.26. Performance analysis of the best ensemble generated by SEC with ESS and

combined by using the sum combination method 238

6.27. Performance analysis of the best ensemble generated by SEC with ESS and

combined by using the vote combination method 240

6.28. Performance analysis of the best ensemble generated by BagGP and combined

by using the sum combination method . 242

6.29. Performance analysis of the best ensemble generated by BagGP and combined

by using the vote combination method . 243

6.30. Performance analysis of the best ensemble generated by BagGP with ESS and

combined by using the sum combination method 244

6.31. Performance analysis of the best ensemble generated by BagGP with ESS and

combined by using the vote combination method 246

6.32. Performance analysis of the best ensemble generated by unweighted BoostGP

and combined by using the sum combination method 248

6.33. Performance analysis of the best ensemble generated by unweighted BoostGP

and combined by using the vote combination method 249

6.34. Performance analysis of the best ensemble generated by unweghted BoostGP

with ESS and combined by using the sum combination method 251

6.35. Performance analysis of the best ensemble generated by unweighted BoostGP

with ESS and combined by using the vote combination method 253

6.36. Performance analysis of the best ensemble generated by weighted BoostGP and

combined by using the sum combination method 254

6.37. Performance analysis of the best ensemble generated by weighted BoostGP and

combined by using the vote combination method 256

459

List of Tables

6.38. Performance analysis of the best ensemble generated by weighted BoostGP

with ESS and combined by using the sum combination method 258

6.39. Performance analysis of the best ensemble generated by weighted BoostGP

with ESS and combined by using the vote combination method 260

6.40. Performance analysis of the best ensemble generated by cooperative coevolu-

tion and combined by using the sum combination method 262

6.41. Performance analysis of the best ensemble generated by cooperative coevolu-

tion and combined by using the vote combination method 263

7.1. Parameter values used by the machine learning methods 273

7.2. Feature set combinations used by the static DR selection procedure 276

7.3. Results of the DR selection procedure for several selected parameter values . . 281

7.4. Feature set combinations used by the dynamic DR selection procedure 283

7.5. Results of the dynamic DR selection procedure for several selected parameter

values, when applied on problems with constant characteristics 290

7.6. Results of the DR selection procedure for several selected parameter values,

when applied on problems with changing due date characteristics 295

7.7. Results of the DR selection procedure for several selected parameter values,

when applied on problems with changing due date and ready time characteristics 302

7.8. Performance of the DR selection procedure on several selected problem in-

stances from the test set . 303

7.9. Performance of the individual DRs used by the DR selection procedure 307

7.10. Dynamic DR selection procedure behaviour analysis 310

8.1. List of static terminal nodes . 319

8.2. Additional nodes used by IDRs . 327

8.3. Results obtained by using additional static terminal nodes 331

8.4. Results for DRs with look-ahead obtained by using only terminal nodes for

dynamic scheduling . 336

8.5. Results obtained by DRs with look-ahead and static terminal nodes calculated

based on all unreleased jobs . 338

8.6. Results obtained by DRs with look-ahead and static terminal nodes calculated

based on unreleased jobs outside the look-ahead horizon 340

8.7. Results obtained by using DRs with a look-ahead horizon 20 jobs and different

combinations of static terminal nodes . 342

8.8. Results obtained by IDRs with various IDR node combinations 345

8.9. Results obtained by IDRs with static terminal nodes and different combinations

of IDR nodes . 347

460

List of Tables

8.10. Results obtained by IDRs and different combinations of static terminal nodes . 349

8.11. Results obtained by IDRs and look-ahead when using different look-ahead pa-

rameter values . 351

8.12. Results obtained by IDRs with look-ahead when using different IDR node com-

binations . 352

8.13. Results obtained by IDRs with look-ahead and static terminals when using var-

ious look-ahead parameter values . 355

8.14. Results obtained by IDRs with look-ahead and static terminals when using var-

ious combinations of IDR nodes . 356

8.15. Results obtained by IDRs with look-ahead and static terminal nodes, when us-

ing various combinations of static terminal nodes 358

8.16. Results obtained by the rollout algorithm, when using different rollout parame-

ter values and DRs generated by DGP . 360

8.17. Results obtained by the rollout algorithm with static terminal nodes, when using

different rollout parameter values and DRs generated by using the best static

terminal node combination . 362

8.18. Results obtained by the rollout algorithm with static terminal nodes, when using

various rollout parameter values and DRs generated by using different static

node combinations . 363

8.19. Results obtained by the rollout algorithm with static terminal nodes, when using

DRs generated by different combinations of static terminal nodes 365

8.20. Results obtained by the rollout algorithm with look-ahead, when using different

rollout parameter values . 368

8.21. Results obtained by the rollout algorithm with look-ahead, when using different

look-ahead parameter values . 369

8.22. Results obtained by the rollout algorithm with look-ahead and static terminal

nodes calculated based on all unreleased jobs, when using different rollout pa-

rameter values . 371

8.23. Results obtained by the rollout algorithm with look-ahead and static terminal

nodes calculated based on all unreleased jobs outside the look-ahead horizon,

when using different rollout parameters . 372

8.24. Results obtained by the rollout algorithm with look-ahead and static terminal

nodes calculated based on all unreleased jobs, when using different look-ahead

parameter values . 374

8.25. Results obtained by the rollout algorithm with look-ahead and static terminal

nodes calculated based on all unreleased jobs outside the look-ahead horizon,

when using different look-ahead parameter values 375

461

List of Tables

8.26. Results obtained by the rollout algorithm with look-ahead and static terminal

nodes calculated based on all unreleased jobs, when using different static node

combinations . 377

8.27. Results obtained by the rollout algorithm with look-ahead and static terminal

nodes calculated based on all unreleased jobs outside the look-ahead horizon,

when using different static node combinations 380

8.28. The results obtained by the different static scheduling methods 383

8.29. Influence of the look-ahead parameter values on the execution time of the DRs . 387

8.30. Influence of the rollout parameter values on the execution time of DRs 388

8.31. Results for the execution times obtained by the different methods 390

8.32. Properties of the problem instance used for analysis 399

462

List of Algorithms

2.1. The min-min rule . 25

2.2. The max-min rule . 25

2.3. The min-max rule . 26

2.4. The sufferage rule . 26

2.5. The sufferage2 rule . 27

2.6. The MECT rule . 28

3.1. Standard steady state GP algorithm . 30

3.2. Generational GP algorithm . 30

4.1. Schedule generation scheme used by DRs generated by GP 50

5.1. The NSGA-II algorithm . 86

6.1. The vote combination method . 164

6.2. The random selection method . 165

6.3. The probabilistic selection method . 166

6.4. The grow method . 167

6.5. The grow-destroy method . 167

6.6. The instance based method . 168

6.7. The BagGP approach . 169

6.8. The BoostGP approach . 170

6.9. The cooperative coevolution approach . 171

7.1. Pseudo-code of the GAS procedure . 272

8.1. Calculation procedure of terminals which approximate the tardiness and weighted

number of tardy jobs values . 323

8.2. Schedule generation scheme used for DRs with look-ahead 325

8.3. Schedule generation scheme used by IDRs . 326

8.4. Rollout algorithm for scheduling with DRs . 329

463

Biography

Marko Ðurasević was born on the eleventh of August 1990 in Zagreb, Croatia. In 2009, he

enrolled the Faculty of Electrical Engineering and Computing, on which he completed the un-

dergraduate study in computing. On the same faculty in 2014 he graduated in the field of com-

puting with great honour with the topic "Optimisation of scheduling in the unrelated machines

environment", under the mentorship of Professor Domagoj Jakovović. During his graduation

studies, he was awarded the "Josip Lončar" award for his outstanding achievements in the first

year of graduation studies, as well as the "bronze plaque Josip Lončar" for his overall achieve-

ment at the graduate study. Together with Dino Šantl he was awarded the Rector’s award for

their work under the title "Implementation of Medical Visual Data Compression Algorithm on

GPU for Increased Throughput and Reduced Energy Consumption", which was mentored by

Associate Professor Josip Knezović.

Since October 2014 he has been employed as a teaching and research assistant at the De-

partment of Electronics, Microelectronics, Computer and Intelligent Systems of the Faculty

of Electrical Engineering and Computing. He is actively involved in teaching of the graduate

course "Computer Analysis and Design", and the undergraduate course "Interactive Computer

Graphics". He also assisted in mentoring for an undergraduate and graduate thesis. His re-

search interests include the field of evolutionary computing, optimisation methods, machine

learning and scheduling problems. In the current research process, he published three papers in

CC-indexed journals and three conference papers.

List of published works

Papers in journals

1. Ðurasević, M., Jakobović, D., Evolving dispatching rules for optimising many-objective

criteria in the unrelated machines environment, Genetic Programming and Evolvable Ma-

chines, 2017.

2. Ðurasević, M., Jakobović, D., Comparison of ensemble learning methods for creating

ensembles of dispatching rules for the unrelated machines environment, Genetic Pro-

gramming and Evolvable Machines, 2017.

465

Biography

3. Ðurasević, M., Jakobović, D., Knežević, K., Adaptive scheduling on unrelated machines

with genetic programming, Applied Soft Computing, Vol. 48, November 2016, 419-430.

Papers at international scientific conferences

1. Ðurasević, M., Jakobović, D., Comparison of solution representations for scheduling in

the unrelated machines environment, 39th International Convention MIPRO (2016), June

2016, 1336-1342.

2. Šantl, D., Ðurasević, M., Knezović, J., GPU Implementation of a Medical Imaging Data

Compression Algorithm, IT Systems 2013, e-Health 2013 Electronic Proceedings, Septem-

ber 2013.

3. Dujak, M., Parać, V., Ðurasević, M., Herić, A., Machine-to-machine communication as

key enabler in smart metering systems, 36th International Convention MIPRO (2013),

June 2013, 409-414.

466

Životopis

Marko Ðurasević rod̄en je 11. 08. 1990. godine u Zagrebu, Hrvatska. U 2009. godini upisuje

Fakultet elektrotehnike i računarstva, na kojem 2012. godine završava preddiplomski studij

računarstva. Na istom fakultetu je 2014. godine diplomirao je s velikom pohvalom na sm-

jeru računarstvo, s temom "Optimizacija raspored̄ivanja u okruženju nesrodnih strojeva", pod

mentorstvom prof. dr. sc. Domagoja Jakobovića. Tijekom diplomskog studija nagrad̄en je na-

gradom "Josip Lončar" za izvrstan uspjeh na prvoj godini diplomskog studija, kao i "brončanom

plaketom Josip Lončar" za ukupno ostvaren uspjeh na diplomskom studiju. Zajedno s Dinom

Šantlom dobitnik je Rektorove nagrade za njihov rad pod naslovom "Izvedba algoritma za kom-

presiju medicinskih slikovnih podataka korištenjem grafičkog procesora s ciljem povećanja pro-

pusnosti i smanjenja utrošene energije", pod mentorstvom izv. prof. dr. sc. Josipa Knezovića.

Od listopada 2014. godine zaposlen je kao asistent na Zavodu za elektroniku, mikroelek-

troniku, računalne i inteligentne sustave Fakulteta elektrotehnike i računarstva. Sudjeluje u

izvod̄enju diplomskog kolegija "Analiza i projektiranje računalom" te preddiplomskog kolegija

"Interaktivna računalna grafika". Takod̄er je asistirao u vod̄enju jednog završnog i diplomskog

rada. Njegovi istraživački interesi obuhvaćaju područje evolucijskog računarstva, metoda opti-

mizacija, strojnog učenja te problema raspored̄ivanja. U dosadašnjem tijeku istraživanja objavio

je tri rada u časopisima indeksiranim u bazi CC i tri konferencijska rada.

467

	Introduction
	Research motivations
	Major contributions of the thesis
	Outline of the thesis

	Scheduling problems
	Notation of scheduling problems
	Scheduling conditions
	Methods for solving scheduling problems
	The unrelated machines environment
	Improvement heuristics
	Dispatching rules

	Genetic programming
	Standard genetic programming
	Solution representation
	Initialisation
	Evaluation
	Selection
	Genetic operators
	Termination criteria

	Dimensionally aware genetic programming
	Gene expression programming

	Design of dispatching rules by genetic programming for the unrelated machines environment
	Designing dispatching rules with genetic programming
	Literature overview
	Parameters and experimental design
	GP parameters
	Experimental design

	Results
	Performance of automatically generated DRs
	Comparison of GP approaches

	Automatic development of dispatching rules for multi-objective and many-objective problems
	Multi-objective optimisation
	Multi-objective GP

	Experimental design
	Parameter tuning
	Optimisation of the number of function evaluations
	Population size optimisation
	Mutation probability optimisation
	Algorithm specific parameter optimisation

	Results
	Comparison of results achieved by MOGP and SOGP
	Performance comparison of MOGP algorithms

	Comparison with standard DRs
	Comparison of automatically generated DRs with MCT
	Comparison of automatically generated DRs with ATC
	Comparison of automatically generated DRs with RC
	Comparison of automatically generated DRs with COVERT
	Comparison of automatically generated DRs with the sufferage rule

	Analysis of the correlation between the scheduling criteria
	Conclusion

	Designing ensembles of dispatching rules
	GP ensemble learning methods
	Simple ensemble combination
	BagGP
	BoostGP
	Cooperative coevolution
	Ensemble subset search

	Experimental design
	Performance analysis of the SEC approach
	Influence of different ensemble construction methods
	Influence of the method used for the generation of DRs
	Influence of the size of the generated DRs

	Results obtained by different ensemble learning methods
	Results obtained by the SEC approach
	Results obtained by the BagGP approach
	Results obtained by the BoostGP approach
	Results obtained by the cooperative coevolution approach
	Performance comparison of ensemble learning approaches

	Discussion
	SEC
	BagGP
	BoostGP
	Cooperative coevolution
	ESS
	Influence of the ensemble combination methods
	Influence of the ensemble size

	Analysis of the generated ensembles
	Analysis of the frequency of DRs in the ensembles generated by SEC
	Analysis of ensembles generated by SEC
	Analysis of ensembles generated by BagGP
	Analysis of ensembles generated by BoostGP
	Analysis of ensembles generated by cooperative coevolution

	Conclusion

	Selection of DRs based on problem instance characteristics
	Overview of DR selection literature
	DR selection procedure
	Problem instance features
	The learning process
	The decision process

	Static DR selection procedure
	Parameter analysis of the DR selection procedure
	Performance comparison with a manually selected DR

	Dynamic DR selection procedure
	Experimental design
	Results obtained for experiments with constant problem parameters
	Results obtained for experiments with changing due dates
	Results obtained for experiments with changing due dates and release times

	Analysis of the rule selection procedure
	Analysis of the static selection procedure
	Analysis of the dynamic selection procedure

	Discussion
	Conclusion

	Design of DRs for static scheduling conditions
	Design and adaptation of DRs for static scheduling
	Terminal nodes with static information
	Look-ahead
	Iterative dispatching rules
	Rollout algorithm
	Combination of static methods

	Results
	Results obtained by DRs with static terminal nodes
	Results obtained by DRs with look-ahead
	Results obtained by look-ahead with static terminal nodes
	Results obtained by IDRs
	Results obtained by IDRs with static terminal nodes
	Results obtained by IDRs with look-ahead
	Results obtained by IDRs with static terminals and look-ahead
	Results obtained by the rollout algorithm
	Results obtained by the rollout algorithm with static terminals
	Results obtained by the rollout algorithm with look-ahead
	Results obtained by the rollout algorithm with static terminals and look-ahead
	Comparison of all static scheduling methods

	Execution time analysis
	Influence of the parameter values of static methods on the execution time
	Execution time comparison of all methods

	Analysis of the static scheduling methods
	Conclusion

	Conclusion
	Achieved contributions and main conclusions
	Design of dispatching rules for simultaneous optimisation of multiple criteria
	Designing ensembles of dispatching rules
	Procedure for the selection of dispatching rules based on problem instance characteristics
	Developing dispatching rules for the static scheduling environment

	Future research

	Bibliography
	List of Figures
	List of Tables
	List of Algorithms
	Biography
	Životopis

