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Abstract

Supervised word sense disambiguation
(WSD) has been shown to achieve state-of-
the-art results but at high annotation costs.
Active learning can ameliorate that prob-
lem by allowing the model to dynamically
choose the most informative word contexts
for manual labeling. In this paper we inves-
tigate the use of active learning for Croa-
tian WSD. We adopt a lexical sample ap-
proach and compile a corresponding sense-
annotated dataset on which we evaluate our
models. We carry out a detailed investiga-
tion of the different active learning setups,
and show that labeling as few as 100 in-
stances suffices to reach near-optimal per-
formance.

1 Introduction

Word sense disambiguation (WSD) is the task
of computationally determining the meaning of
a word in its context (Navigli, 2009). WSD is
considered one of the central tasks of natural lan-
guage processing (NLP). A number of NLP applica-
tions can benefit from WSD, most notably machine
translation (Carpuat and Wu, 2007), information
retrieval (Stokoe et al., 2003), and information ex-
traction (Markert and Nissim, 2007; Hassan et al.,
2006; Ciaramita and Altun, 2006). At the same
time, WSD is also considered a very difficult task;
the difficulty arises from the fact that WSD relies
on human knowledge and that it lends itself to dif-
ferent formalizations (e.g., the choice of a sense
inventory) (Navigli, 2009).

The two main approaches to WSD are
knowledge-based and supervised. Knowledge-
based approaches rely on lexical knowledge bases
such as WordNet. The drawback of knowledge-
based approaches is that the construction of large-
scale lexical resources requires a tremendous ef-

fort, rendering such approaches particularly cost-
ineffective for smaller languages. On the other
hand, supervised approaches do not rely on lexi-
cal resources and generally outperform knowledge-
based approaches (Palmer et al., 2001; Snyder and
Palmer, 2004; Pradhan et al., 2007). However, su-
pervised methods instead require a large amount
of hand-annotated data, which is also extremely
expensive and time-consuming to obtain. Inter-
estingly enough, Ng (1997) estimates that a wide
coverage WSD system for English would require
a sense-tagged corpus of 3200 words with 1000
instances per word. Assuming human throughput
of one instance per minute (Edmonds, 2000), this
amounts to an immense effort of 27 man-years.

One way of addressing the lack of manually
sense-tagged data is to rely on semi-supervised
learning (Abney, 2007), which, along with a
smaller set of labeled data, also makes use of a
typically much larger set of unlabeled data. A re-
lated technique is that of active learning (Olsson,
2009; Settles, 2010). However, what differenti-
ates active learning from ordinary semi-supervised
learning is that the former requires subsequent man-
ual labeling. The underlying idea is to minimize
the annotation effort by dynamically selecting the
most informative unlabeled instances, i.e., the most
informative contexts of a polysemous word to be
manually labeled.

In this paper we address the WSD task for Croat-
ian using active learning (AL). Croatian is an under-
resourced language, lacking large-scale lexical re-
sources and sense-annotated corpora. Our ultimate
goal is to develop a cost-effective WSD system
with a reasonable coverage for the most frequent
Croatian words. As a first step towards that goal, in
this paper we present a preliminary, small-scale but
thorough empirical study using different AL setups.
We adopt the lexical sample evaluation setup and
evaluate our models on a chosen set of polysemous
words. The contribution of our work is two-fold.
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First, we present a small sense-annotated dataset –
the first such dataset for Croatian – which we also
make freely available for research purposes. Sec-
ondly, we investigate in detail the performance of
various AL models on this dataset and derive pre-
liminary findings and recommendations. Although
our focus is on Croatian, we believe our results gen-
eralize to other typologically similar (in particular
Slavic) languages.

The rest of the paper is organized as follows. In
the next section, we give a brief overview of AL-
based WSD. In Section 3, we describe the manually
sense-annotated dataset for Croatian. In Section 4,
we describe the AL-based WSD models, while in
Section 5 we present and discuss the experimental
results. Lastly, Section 6 concludes the paper and
outlines future work.

2 Related Work

WSD is a long-standing problem in NLP. A num-
ber of semi-supervised WSD methods have been
proposed in the literature, including the use of ex-
ternal sources for the generation of sense-tagged
data (McCarthy et al., 2004), 2004), use of bilin-
gual corpora (Li and Li, 2004), label propagation
(Niu et al., 2005), and bootstrapping (Mihalcea,
2004; Park et al., 2000).

Focusing on AL approaches to WSD, one of the
first attempts is that of Chklovski and Mihalcea
(2002). Their Open Mind World Expert system
collected sense-annotated data over the web, which
were later used for the Senseval-3 English lexical
sample task (Mihalcea et al., 2004). The system
employs the so-called committee-based sampling:
the instances to be labeled are selected based on
the disagreement between the labels assigned by
two different classifiers.

Chen et al. (2006) experiment with WSD for
five frequent English verbs. Unlike Chklovski and
Mihalcea, they use uncertainty-based sampling cou-
pled with a maximum entropy learner, and a rich
set of topical, collocational, syntactic, and seman-
tic features. Their results show that, given a target
accuracy level, AL can reduce the number of train-
ing instances by half when compared to labeling
randomly selected instances. Their analysis also
reveals that careful feature design and generation
is necessary to fully leverage the AL potential.

Additionally, a number of studies focus on is-
sues specific to AL for WSD. Zhu and Hovy (2007)
consider the class imbalance problem, which is

typical for WSD due to skewness in sense distribu-
tion. They analyze the effect of resampling tech-
niques and show that bootstrap-based oversampling
of underrepresented senses improves classifier per-
formance. Another important issue of AL is the
stopping condition. Zhu and Hovy (2007) propose
a stopping criterion based on the classifier con-
fidence, Wang et al. (2008) propose a minimum
expected error strategy, while Zhu et al. (2008a)
propose classifier-change as a stopping criterion.
Finally, Zhu et al. (2008b) propose sampling meth-
ods for generating a representative initial training
set, as well as selective sampling method for allevi-
ating the problem of outliers.

All of the above cited work addresses WSD for
English, whereas our work focuses on Croatian.
Similar to Chen et al. (2006), we use uncertainty-
based sampling but combine it with an SVM model.
In contrast to Chen et al. (2006), we opt for sim-
ple, readily available features derived from co-
occurrences. We study three sampling methods in
this work, but leave the issues of stopping criterion
and class imbalance for future work.

Croatian is a Slavic language, and WSD for
Slavic languages seems not to have received much
attention so far. Notable exceptions are (Baś et
al., 2008; Broda and Piasecki, 2009) for Polish
and (Lyashevskaya et al., 2011) for Russian. WSD
for Bulgarian, Czech, Serbian, and Slovene has
been considered in a cross-lingual setup by Tu-
fiş et al. (2004) and Ide et al. (2002). Bakarić et
al. (2007) analyze the discriminative strength of
co-occurring words for WSD of Croatian nouns.
Additionally, Karan et al. (2012) consider a prob-
lem dual to WSD, namely synonymy detection. To
the best of our knowledge, our work is the first
reported work on active learning for WSD for a
Slavic language.

3 Dataset

In this work we adopt the lexical sample style eval-
uation, i.e., we select a set of words and sample
sentences from a corpus containing these words.
We next describe how we compiled and sense-
annotated the sample.

3.1 Corpus and Preprocessing

To compile a sense-annotated dataset for our ex-
periments, we sample from a Croatian web corpus
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hrWaC1 (Ljubešić and Klubička, 2014), containing
1.9M tokens, annotated with lemma, morphosyntax
and dependency syntax tags.

For the sense inventory, we initially adopted the
Croatian wordnet (CroWN) compiled by Raffaelli
et al. (2008). Although of a limited coverage (10k
synsets, compared to 200k synsets of Princeton
WordNet), CroWN was a good starting point for
word selection and sense definition for this task.

To keep the annotation effort manageable, sim-
ilarly to (Chen et al., 2006), we decided to limit
ourselves to six words: two nouns, two verbs, and
two adjectives. We selected these by first compil-
ing a list of polysemous words from CroWN that
occur at least 1000 times in hrWaC. We then de-
cided to discard words with more than three senses
as our preliminary analysis revealed that CroWN
senses of such words are potentially very difficult
to differentiate. The problem of sense granular-
ity of wordnets is a well-known issue (Edmonds
and Kilgarriff, 2002), and in this study we wanted
to avoid the problem by choosing words with as
distinct senses as possible.2 Research on sense
granularity in the context of AL is warranted but is
beyond the scope of this paper.

The final list of words is as follows: okvirN
(frame), vatraN (fire), brusitiV (to rasp), odliko-
vatiV (to award), lakA (easy), and prljavA (dirty).
For each of these words, we sampled 500 sentences
from hrWaC, yielding a total of 3000 word in-
stances. Note that 500 instances per word is well
above the 75+15·n instances recommended by Ed-
monds and Cotton (2001), where n is the number
of senses of the word.

3.2 Sense Annotation

To construct the sense-annotated dataset, we asked
10 annotators to label the senses of the selected
words in sampled sentences. Each annotator was
given 600 sentences to annotate, with 100 instances
of each of the six words. To obtain a more reliable
annotation, each instance was double-annotated,
and we ensured that there is a uniform distribution
across the annotator pairings.

For each word instance, the annotators were
1http://nlp.ffzg.hr/resources/corpora/

hrwac/
2We are aware that selecting words with easily distinguish-

able senses results in a biased sample. However, we note that
such a sample does not necessarily need to be unrealistically
easy. One could argue that senses that are difficult to differen-
tiate are not realistic to begin with, as they are not likely to be
of practical interest in real-world NLP applications.

given a list of possible word senses (two or three)
and an additional “none of the above” (NOTA) op-
tion. They were instructed to select a single sense,
unless there is no adequate sense listed or the in-
stance is erroneous (incorrect lemmatization or a
spelling error). For each sense, we provided a gloss
line and usage examples from CroWN.

The annotation guidelines were rather straight-
forward. In cases when more than a single sense
apply, the annotators were asked to choose the one
they deem more appropriate. The only issue that we
felt deserved additional elaboration was the treat-
ment of polysemous words in semantically opaque
contexts (idioms and metaphors). In such contexts,
the annotators were asked to choose the literate
sense of a word, rather than to consider the id-
iomatic or metaphoric reading. For example, in
sentence Istarska kuhinja je dijamant koji treba
brusiti (Istrian cuisine is a diamond that needs to be
cut), the verb brusiti (to cut in this example) is used
in its literate sense (to rasp), although the whole
phrase brusiti dijamant is used in a metaphorical
sense, which in this case happens to be somewhat
related to the to hone sense of brusiti.3

The total effort for annotating 6000 word in-
stances (including double annotations) was 36 man-
hours, i.e., a throughput of 22 seconds per word
instance. We note that this is considerably lower
than the one-minute-per-instance estimate of Ed-
monds (2000). One of the possible reasons for this
difference might be the biased word selection pro-
cess, which probably resulted in somewhat easier
disambiguation tasks.

3.3 Inter-Annotator Agreement

We use Cohen’s kappa to measure the inter-
annotator agreement (IAA). We calculate the agree-
ment for each word separately by averaging the
agreements for each annotator pair that labeled that
word. The per-word IAA is shown in Table 1. The
average IAA across the six words is 0.761, which,
according to Landis and Koch (1977) is considered
a substantial agreement.

Two words that stand out in terms of IAA are
odlikovati (high IAA) and prljav (low IAA). The
former has two clearly distinguishable senses. The
latter turned out to be problematic as the word is of-

3The alternative strategy would be to exclude (ask the
annotators to tag as NOTA) all instances with opaque contexts,
under the justification that idioms and metaphors require a
special treatment. We will investigate this strategy in future
work.
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Word κ Word κ

okvirN 0.795 odlikovatiV 0.978
vatraN 0.704 lakA 0.582
brusitiV 0.816 prljavA 0.690

Table 1: Cohen’s κ for the six chosen words.

Word Freq. # Senses Sense distr. NOTA

okvirN 141862 2 381 / 115 4
vatraN 45943 3 244 / 106 / 141 9
brusitiV 1514 3 205 / 262 / 27 7
odlikovatiV 15504 2 425 / 75 0
lakA 15424 3 277 / 87 / 113 23
prljavA 14245 2 228 / 187 85

Table 2: Statistics of the gold standard sample.

ten used as part of the idiomatic expression prljavo
rublje (dirty laundry). According to our annotation
guidelines, here prljav is used in its literal sense
(dirty), as dirty laundry is an idiom (matters embar-
rassing if made public). Annotators often selected
the other, “sordid” meaning of prljavi, probably be-
cause they felt it is more related to the meaning of
the idiom. Another source of disagreement are the
named entities Prljavo kazalište (a rock band) and
Prljavi Harry (the movie Dirty Harry), in which
the intended sense of prljavo is questionable.

3.4 Gold Standard Sample

The last step in data annotation was to manually re-
solve the disagreements and obtain a gold standard
sample. While trying to resolve the disagreements,
we noticed that a large number of them are system-
atic – most of the time, one of the two annotators
chose the NOTA option. Upon closer inspection,
we found that for the most of the six considered
words the CroWN sense inventory was arguably
incomplete. To overcome this problem, we decided
to modify the CroWN sense inventory for the six
considered words to get a reasonable sense cov-
erage on our lexical sample. Using this revised
sense inventory, we (the authors) resolved all the
disagreements (a 6 man-hours effort). The statis-
tics of the 3000-sentences gold standard sample
is shown in Table 2. Sense inventory is given in
Table 3. We make the dataset freely available.4

4http://takelab.fer.hr/cro6wsd

okvir (frame)

#1 An environment to which the situation is related or
whose influence it is exposed to.

#2 A structure that supports or contains something.

vatra (fire)

#1 One of the four fundamental classical elements (along
with water, air, and earth) according to Empedocles.

#2 The act of firing weapons or artillery at an enemy.
#3 A heat source for food preparation.

brusiti (to rasp)

#1 Making something smooth using a file or a rasp.
#2 Gaining skill in something; taking quality, readiness,

and specific knowledge and abilities to a high level.
#3 Increasing the level of eagerness/tension/excitement.

odlikovati (to award)

#1 Having a certain characteristic, trait, feature.
#2 Giving something to someone, especially as a reward

for an accomplishment.

lak (easy)

#1 One that does not require a lot of effort to be carried
out or understood.

#2 One that possesses a small physical mass.
#3 One that is not strong or intense.

prljav (dirty)

#1 One that contains or produces stains or filth.
#2 One that is not morally pure.

Table 3: Sense inventory.

4 Models

4.1 Active Learning Setup

There are a number of different AL strategies; refer
to Settles (2010) for a comprehensive overview. We
employ the pool-based strategy (Lewis and Gale,
1994) using uncertainty sampling. This method
uses a small set of labeled data L (the seed train
set) and a large pool of unlabeled data U . The clas-
sifier is first trained on set L. After that, P (the
pool size) instances are randomly sampled from
U and the classifier is used to predict their labels.
Next, from this set at most G (train growth size)
instances are selected for which the classifier is
the least confident about and an oracle (e.g., a hu-
man expert) is queried for their labels. Finally, the
newly-labeled instances are added to the training
set L and the process is repeated until a stopping
criterion is met. The active learning loop is shown
in Algorithm 1.

The motivation for the use of a pool is to reduce
the computational cost associated with sense label
prediction on the entire set of unlabeled instances
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Algorithm 1: Active learning loop
L : initial training set
U : pool of unlabeled instances
P : pool sample size
G : train growth size
f : classifier
while stopping criteria not satisfied do

f ← train(f , L);
R← randomSample(U , P )
predictions← predict(f , R)
R← sortByUncertainty(R, predictions)
S ← selectTop(R, G)
S← oracleLabel(S)
L← L ∪ S
U ← U \ S

end

U . In our experiments, U is relatively small, thus
we decide to use the complete set U as the pool,
P = |U |. This eliminates one source of random-
ness and allows us to focus on other, in our view,
more important AL parameters.

Our experiments are focused on different uncer-
tainty sampling methods. We therefore simulate a
perfect oracle by providing the labels from the gold
standard sample for each query. Furthermore, we
ignore the stopping criterion issue and run the AL
algorithm until the complete training set is utilized.

We consider three uncertainty sampling methods,
i.e., methods for evaluating the informativeness of
an unlabeled instance, as outlined below.

Least confident (LC). Trivially, the most infor-
mative instance is the one for which the prediction
is the least confident:

x∗LC = argmax
x

(
1− Pθ(ŷ|x)

)
(1)

where ŷ stands for the class label with the highest
posterior probability under the model θ.

Minimum margin (MM). An instance for
which the difference between the posterior proba-
bilities of two most probable class labels is maxi-
mal bears the most information:

x∗MM = argmin
x

(
Pθ(ŷ1|x)− Pθ(ŷ2|x)

)
(2)

where ŷ1 and ŷ2 are the first and second most prob-
able class labels under the model θ.

Maximum entropy (ME). Selects an instance
whose vector of posterior class label probabilities
has the maximum entropy:

x∗ME = argmax
x

(−∑
i

Pθ(yi|x) logPθ(yi|x)
)
(3)

4.2 Classifier and Features
As the core classifier in AL experiments, we use
a linear Support Vector Machine (SVM) imple-
mented in LIBSVM (Chang and Lin, 2011) library.
To turn SVM confidence scores into probabilities
over classes, we use the method proposed by Platt
(1999), also implemented in the same library. Mul-
ticlass classification is handled using the one-vs-
one scheme.

We opt for a simple model with readily available
features. The simplest features are word-based con-
text representations: given a sentence in which a
polysemous word occurs, we compute its context
vector by considering the words it co-occurs with
in the sentence. We consider two context repre-
sentations. First is a simple binary bag-of-words
vector (BoW). In our case, the average dimension
of a BoW vector is approximately 7000.

The second representation we use is the recently
proposed skip-gram model, a neural word embed-
ding method of Mikolov et al. (2013), which has
shown to be useful on a series of NLP tasks. To
obtain a context vector, we simply add up the skip-
gram vectors of all the context words. The advan-
tage of skip-gram representation over BoW is that
it generates compact, continuous, and distributed
vectors representations such that semantically re-
lated words tend to have similar vectors. This not
only results in more effective context representa-
tions, but also allows for a better generalization,
as context vectors of words unseen during training
will be similar to vectors of semantically related
context words used for training. We build the vec-
tors from hrWaC using the word2vec5 tool. We
use 300 dimensions, negative sampling parameter
set to 5, minimum frequency set to 100, and no
hierarchical softmax.

5 Experimental Results

In this section we describe the AL experiments on
our lexical sample dataset. We randomly split the
dataset into a training and a test set: for each of the
six words, we use 400 instances for training and
100 for testing.

5.1 Supervised Baseline
We compare our AL-based models against their
fully supervised counterparts as baselines, i.e., lin-
ear SVM classifiers with either BoW or skip-gram
context representations, denoted SVM-BoW and

5https://code.google.com/p/word2vec/
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Word MFS SVM-BoW SVM-SG

okvirN 0.53 0.92 0.89
vatraN 0.49 0.91 0.88
brusitiV 0.53 0.85 0.86
odlikovatiV 0.85 0.97 0.97
lakA 0.55 0.80 0.81
prljavA 0.46 0.82 0.88

Average: 0.57 0.88 0.88

Table 4: Supervised models accuracy.

SVM-SG, respectively. In addition, we use the
most frequent sense (MFS) as a baseline for the
supervised models. Note that MFS has been gener-
ally proven to be a very strong baseline for WSD.
We optimized the SVM regularization parameter C
using 5-fold cross-validation on the training set.

Table 4 shows the results on the test set. Overall,
the SVM models perform comparably well and out-
perform the MFS baseline by a wide margin. The
models perform best on odlikovati, which was also
the word with the highest IAA score (cf. section
3.2). The MFS baseline also performs quite well
on this word due to its skewed sense distribution.

5.2 Active Learning Experiments
For AL experiments we use the same train-test split
as before. The difference is that, for each word, the
initial training set L is a randomly chosen subset
of the full training set. In what follows, to obtain
robust performance estimates, we run 50 trials of
each experiment, each time random sampling anew
the set L, and then averaging the results.

AL is governed by a number of parameters: the
choice of the sampling method, train growth size
G, and the size of the initial training set L. To more
clearly show the effectiveness of AL, we set G to
1 and the size of the initial training set to 20, but
elaborate on this choice later.

For the C parameter we use the same value
as above, i.e., the value optimized using cross-
validation on the entire training set. Arguably, this
is not a realistic AL setup, as in practice the en-
tire training is not labeled up front. In this work,
however, we decided to simplify the setup as we
observed that on our dataset the optimal C value is
rather stable regardless of the training set size.

Learning curves. The purpose of AL is to re-
duce the labeling effort, i.e., to achieve a satisfac-
tory level of accuracy with a smaller number of
training instances. To analyze the effectiveness of
AL WSD on our lexical sample, we compute the

learning curves for SVM-BoW and SVM-SG and
the three considered uncertainty sampling methods.
The baselines are the learning curves obtained us-
ing random sampling (RAND). Fig. 1 shows the
learning curves and the standard deviation bands.

The first thing we observe is that all uncertainty
sampling methods outperform RAND. For exam-
ple, when the training set reaches 100 instances, AL
with uncertainty sampling outperforms RAND by
∼2% of accuracy for both SVM-BoW and SVM-
SG models. In our view, this performance gain
justifies the use of AL WSD on our dataset.

The second thing we observe is that the three
uncertainty sampling methods generally perform
comparably. However, the least confident (LC) and
maximum margin (MM) methods slightly outper-
form the maximum entropy (ME) method in the
100–150 instances range.

The last thing we observe is that, with uncer-
tainty sampling, labeling as few as 100 out of
400 training instances already gives ∼0.94% of
maximum accuracy for SVM-BoW, while random
sampling requires a training set of twice that size.
Moreover, labeling 150 instances gives almost max-
imum accuracy for SVM-BoW. For SVM-SG, the
effect of uncertainty sampling is even more pro-
nounced – with 100 instances we already reach
performance equivalent to that on the full training
set. We conclude that AL WSD with SVM-SG
reduces the number of training instances to 100
without any drop in performance.

Taking into account the previous observations,
we decided to use the SVM-SG model and MM
uncertainty sampling in subsequent experiments.

Parameter analysis. To investigate the impact
of the initial training set size L and the train
growth size G, we run a grid search with L ∈
{20, 50, 100} and G ∈ {1, 5, 10}. For each pair
of parameter values, we carry out 50 AL runs per
word, each time using a random sample of size L as
the initial training set. We thus obtain a total of 300
runs per parameter pair, which we average to pro-
duce corresponding learning curves. We compare
the AL WSD performance in terms of the Area
Under Learning Curve (ALC), which we define
as a sum of classifier accuracy scores across the
iterations of the AL algorithm, normalized by the
number of iterations.

Table 5 shows the ALC scores for different pa-
rameter combinations. Expectedly, the larger the
initial training set L, the more information is avail-
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Figure 1: Learning curves for (a) SVM-BoW and (b) SVM-SG.

G

|L| 1 5 10

20 0.8794 0.8772 0.8760
50 0.8824 0.8819 0.8810

100 0.8843 0.8836 0.8833

Table 5: ALC scores across parameters for SVM-
SG with MM sampling.

able to the learning algorithm up front. At the same
time, using a train growth size G of one yields bet-
ter models, as they are able to make more confident
predictions on yet unlabeled instances in each itera-
tion of the AL algorithm. Nonetheless, we observe
that in our case these two AL parameters do not
considerably affect the model performance.

Per word analysis. In the previous analyses we
looked at learning curves averaged over the six
words in our dataset. For a more detailed analysis,
we turn to the learning curves of the individual
words, shown in Fig. 2. We plot both the accuracy
on the training set and the test set using the MM
sampling method, as well as the RAND accuracy
on the test set. Note that a large gap between the
curves on the training set and test set indicates
model overfitting.

The plots reveal that MM outperforms the
RAND baseline for all six words. Moreover, the
gain is most prominent for vatra, lak, and brusiti.
On odlikovati the full maximum accuracy can al-
ready be reached with as few as 60 training in-
stances. In contrast, the word prljav is a problem-
atic one: the learning curve does not seem to get
saturated even after 400 instances. This is proba-

bly due to the many NOTA labels for that words.
The train-test curve gap is the largest for lak, sug-
gesting that the model overfits the most on that
particular word. We hypothesize that, for some rea-
son, the instances of this word are more noisy than
instances of other words. Because disagreements in
our dataset have been manually resolved, we think
that latent variables are a more likely explanation
for the noise than mislabelings. In other words, we
believe that for some reason skip-gram contexts are
less informative of the senses of the word lak than
of the other words.

Another interesting observation is that for some
words the accuracy rises above that of a model
trained on the entire training set of 400 instances,
after which it drops and eventually the two accu-
racy curves converge. This effect is most prominent
for vatra and brusiti, and somewhat less for okvir
and lak. A similar effect has been observed by
Chen et al. (2006) on some English verbs, suggest-
ing that the effect can be traced down to model
starting to overfit at some point. We think that this
hypothesis is plausible, as it is also confirmed by
the fact that we observe no drop in the training
error. Moreover, we hypothesize that the drop in
accuracy is due to the sampling of a sequence of
noisy examples from the training set. By the same
token as before, we tend to exclude mislabelings
as the cause of the noise, but rather attribute the
noise to non-informative contexts. The existence
of such “bad examples” was hypothesized by Chen
et al. (2006), who suggest that that adequate fea-
ture selection could solve the problem. We leave a
detailed investigation for future work.
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(b) brusitiV (to rasp)
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(c) lakA (easy)
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(d) vatraN (fire)
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(e) odlikovatiV (to award)
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(f) prljavA (dirty)

Figure 2: Learning curves for words from the lexical sample.

6 Conclusion

We have explored the use of active learning (AL)
in Croatian word sense disambiguation (WSD). We
manually compiled a sense-annotated dataset of
six polysemous words. On this dataset, we have
shown that by using uncertainty-based sampling we
can reach a 99% of accuracy of a fully supervised
model at the cost of annotating only 100 instances.
On some words, the AL WSD even outperforms a
fully supervised model.

Our main priority for future work is to extend
our lexical sample. Having a more representative
dataset at our disposal, we plan to study how AL
WSD performance relates to the linguistic prop-
erties of polysemous words, and how these can
be exploited to improve the sampling of instances.
We also plan to investigate the issues of class im-
balance, stopping criteria, and other uncertainty
sampling methods.

Having in mind our ultimate goal of creating a
cost-effective WSD for Croatian, another interest-
ing direction for future work is to study AL WSD
in a crowdsourcing (noisy multi-annotator) envi-
ronment.
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