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Distributional Semantics

@ Representation of word meaning as vectors

e Vector components: co-occurrences with context features
e Firth (1957): You shall know a word by the company it keeps

report
Peter 1
Peter convinced himself to write reports convince 1
write 1

@ Vector similarity approximates semantic similarity

e Simple, unsupervised induction of word meaning
o Used in variety of tasks (Turney and Pantel, 2010)
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Main Context Choices

lexical vector space syntactic vector space
t shoot } subj-shoot
o
hunter o hunter
Ograss o
deero grass
deero
eat obj-eat

@ Lexical (word) context captures topical similarity
e Syntactic (word-relation) context captures relational similarity

o Can model fine-grained information (Baroni and Lenci, 2010)
e More appropriate for free word order languages
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A problem for syntactic vector spaces: Sparsity

@ Syntactic vector spaces are very sparse
e Even if constructed from very large corpora

@ Reason: Less cooccurrences

ncsubj nesubj
Peter convinced himself to write reports

report
write 1

xcomp dobj =

@ Many word pairs receive semantic similarities of zero
o Real dissimilarity or missing data?
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Derivation Smoothing

Where can we get semantic relatedness information to smooth
distributional similarity?

v

The answer: Derivational morphology

@ Consider derivational families:

argue

o argumentation
arguably o ° g

o

argument O argumentative

@ Words that are derived from one another have similar meaning
@ Auvailable from resources like CatVar (Habash and Dorr, 2003)
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Derivational Smoothing

@ If vectors are sparse, do not compute semantic similarity directly

@ Instead, back off to less sparse members of derivational families

sim(arguably, debatably) =0
sim(argue, debate) > 0

back-off

smoothed-sim(arguably, debatably) =

f( arguably s debatably )

o o o o

@ (Similar to back-off to less sparse n — 1 grams in LMs)
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Derivational parameters: Two parameters

@ Smoothing trigger: When is a vector considered too sparse?

e Smooth always
e Smooth only if sim(h, h) = 0 (or undefined)

@ Smoothing scheme: How to bring in derivational family

e maxSim: Consider most similar R R
pair between families o =L

e avgSim: Consider average sim-

ilarity of all pairs =y

o centSim: Consider similarity of
family centroids —— o
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Language choice: German

@ Resource situation comparable to English, but not quite as good

@ Derivation important process of word formation

v

Distributional models

@ Base Model: German Distributional Memory DM.DE
(Padé and Utt, 2012)

o 900M-token SDEWAC web corpus (FaaB et al., 2010)
e DERIVBASE derivational families (Zeller et al., 2013)

o Rule-based resource for German, focus on precision
e 18.000 non-singleton families covering 60.000 lemmas

@ Baseline: Bag-of-words models (same corpus)
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Evaluation

Task 1: Synonym choice

@ 980 targets with four candidates each (Reader’s Digest)
“Which term is antiquated most similar to?
(a) venerable, (b) old, (c) unusable, (d) outdated?"

@ Prediction: candidate with max cosine similarity to target

@ Evaluation: Accuracy (%) + Coverage (%)

v

Task 2: Word similarity prediction

@ 350 pairwise judgments on 5-point scale (Zesch et al., 2007)
(monkey, macaque) = 4
(office, tiger) = 1

@ Prediction: Cosine similarity

@ Evaluation: Correlation (Pearson’s r) + Coverage (%)
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Results: Synonym choice

Model Acc. % Cov. %
DM.DE, unsmoothed 53.7 80.8
avgSim  46.0 86.6
DMm.DE, smooth always maxSim  50.3 86.6
centSim 49.1 86.6
avgSim 52.6 86.6
DM.DE, smooth if sim =0 maxSim 51.2 86.6
centSim 51.3 86.6
BOW “baseline” 56.9 98.5

@ Gain in coverage (+6%), but small loss in accuracy (-1%)
o BoW “baseline” performs best

e Conservative trigger (smooth if necessary) works best
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Results: Semantic similarity

Model r Cov. %

DM.DE, unsmoothed A4 58.9
avgSim .30 88.0

DM.DE, smooth always maxSim .43 88.0

centSim .44 88.0

avgSim .43 88.0
DM.DE, smooth if sim =0 maxSim .42 88.0

centSim .47 88.0
BoW baseline .36 94.9

@ Again, conservative trigger works best

e Big increase in coverage (+30%), small increase in correlation
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Task Comparison

Result change through smoothing

Task Quality Coverage
Synonym choice —0.09 % Acc. +6%
Semantic similarity +0.03 Corr. +30%

@ Semantic similarity benefits more from derivational smoothing than
synonym choice

e Derivational families contain related words, not synonyms

argue

argumentation
arguably o ° g

o .
argument argumentative
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@ Sparsity is a problem for syntax-based distributional models
o “Derivational smoothing": Back off from rare word to derivational
family
@ Initial experiments
o Conservative trigger (smooth only when sim=0) works best
o Jury still out on smoothing scheme (combination method)
o Future work

e More experiments on smoothing schemes
o Use richer information about derivational families
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