Stranicenje

ukratko



Dio spremnika
za operacijski
sustav;
tu se nalaze i
tablice
prevodenja za
sve procese

Dio spremnika
za procese —
okviri koji npr.
zapocinju na
adresi 750000

751
752
753
754
755
756
757
758
759

Tablice
prevodenja
____________________________ - To 753 | 1
_________________________________________________ Ty >
,,,,,,,, T —
751 | 1 - |0
752 | 1 754 | 1
- 0
- 0 _ 0
- 0 _ 0
...... 755 | 1
- |0 - |0
- |0 757 | 1
756 | 1 - 0

Ad

/ DISK
\

T
-

A5

Bl

B5

C3

C6

D2

A2

/

Proces A Proces B
Al Bl
A B2
/ A3 B3
> A4 B4
A5 B5
B6
Proces C B7
C1 BS
C2
B 3 Proces D
C4 D1
\\CS\ D2
Cé6 D3

\



M

tablica

27 % g




hijerarhijska
tablica ,
prevodenja ;

e

apsolutna adrega

1/1|1(0|1(1|0|1

adresa tablice

relativhe adrese :
revodenja

4

o8l 1 [1]0]1

adresa koja
se stavlja na
sabirnicu

\
\
\
\
\
N
N

Primjer dvo-razinske pretvorbe
adresa, sli€ne onoj u x86
procesorima




Intel x86 MMU

procesor

[N PA

TLB

32

tablice

prevodenja u
adresnom
prostoru jezgre

20 12
pocetna
adresa
20 tablice
prevodenja
tablica
LA prevodenja
|
10/ 10 '
CR3
1K
adresa

1K
adresa

1K
adresa

1K
adresa

1Kx1K



Tablica prevodenja

Za svaku stranicu postoji zapis u tablici prevodenja:
redni broj okvira u kojem se stranica nalazi
razne zastavice, npr. za x86:

31 1211 10 9 8 7 6 5 4 3 2 1 O

redni broj okvira

Gl D A WtOWV

Zastavice:

V  bit prisutnosti A stranica je koriStena
W zastita od promjene D “prljava” (dirty)

O zaOS Gl globalna stranica

W, "write through”

Osim zapisa u tablici prevodenja, za svaku stranicu je
potrebno zapisati i gdje se ona nalazi na pomo¢hom
spremniku



generirana adresa M pripada
stranici koja nije trenutno u
radnom spremniku

stranica u

spremniku

@)

e

ponovi
instrukciju

’\/

azuriraj

revodenjg

tablicu
prevodenja

RO

jezgra

dohvati stranicu

s diska

’\/

promasaj izaziva
prekid

prazan
okvir

@

ucitavanje
stranice u prazni
okvir

stranica
na disku



Zamjena stranica

Kada su svi okviri popunjeni i dogodi se promasaj sto
napraviti?
ocCito je potrebno izbaciti neku stranicu iz nekog okviral
kako odabrati stranicu za izbacivanje?

Teorijske strategije:
FIFO
LRU
LFU
OPT



Satni algoritam

Koristi se inaCica LRU algoritma (least recently used)
izbaciti stranicu koja se vec¢ duze nije koristila
statistiCki se ta stranica niti neCe jos neko vrijeme koristiti
satni algoritam (clock algorithm, second chance algorithm)
okviri, tj. opisnici stranica koje se u njima nalaze, se kruzno
obilaze - promatra se zastavica A koja oznacCava je li
stranica koriStena (engl. accessed)
ako je A == 0 stranica se izbacuje iz okvira i u njega se
moze staviti druga stranica
ako je A== 1, postavlja se A= 0 i pomicCe se na iduci
okvir (trenutna stranica ostaje u okviru, daje joj se jos
jedna prilika obzirom da se nedavno koristila)



Tablica

. okviri
prevodenja
0
2 1 0] 1
99
100
0 1 1| x
199
200
0 210
299
300
6 1 3| x
399
400
0 41 x
499
500
0
599 S| x
6 |3
X - stranica
nekog drugog 7| x
procesa
8 | x
Y
20

Instrukcije (redom)

1: LDR R1, (508)

2: LDR RZ, (332)

3: LDR R3, (256)

zastavice A za
odgovarajuce okvire

a) nakon 1. instr.

Primjer rada
satnog algoritma

Na prvu instrukciju dogoditi ¢e se prekid zbog
promasaja (trazi se stranica 5 programa). Prema
algoritmu zastavica Cetvrtog okvira A(4) postaviti ¢e se
u 0 te ¢e se kazaljka pomaknuti. Zastavica A(5) je O te
¢e se taj okvir osloboditi i u njega staviti 5. stranica
procesa. Tada se moze obaviti prva instrukcija. Njenim
izvodenjem (Citanjem iz 5. okvira) postavlja se
zastavica A(5) u 1 (slika a) ).

Druga instrukcija traZi 3. stranicu koja se nalazi u okviru
6. Njenim izvodenjem (Citanjem podatka iz 6. okvira)
postaviti ¢e se zastavica A(6) u 1 (sl. b)) (kazaljka se ne
mice).

Treca instrukcija trazi podatak iz 2. stranice koja nije u
radnom spremniku, pa ¢e se kazaljka pomaknuti,
najprije na 6. mjesto, pa na 7. (pritom postavlja A(5),
A(6) i A(7) u nulu) i tek na 8. pronalazi A(8)=0, izbacuje
stranicu koja se tu nalazi i ucitava stranicu 2 procesa.
Nakon toga moze se izvesti instrukcija 3. Izvodenjem 3.
instrukcije postavlja se zastavica A(8) u 1 (sl. c)).

0
0
9 1
1 1
8 2
0 0
7 3
1 1
6 4
0 3 1
0
0 0
0 0
9 1 9
1 1 1
8 2 8
0 0 0
7 3 7
1 1 1
6 4 6
0 3 0 1 3
1 1

0
0
] 9 ]
1 1 1
2 2
‘\. 0
7
1 0 1
4 6 4
0 0 5 0

b) nakon 2. instr.

¢) nakon 3. instr.



DinamicCko upravljanje
spremnikom

dodatni materijali



DinamicCko upravljanje
spremnikom u OS-u

o Koristi se
— za dodjelu adresnog prostora procesima

* u sustavima koji ne koriste stranicenje vec “dinamicko
upravljanje spremnikom”
— za upravljanje prostorom na razini OS-a

e koji su dijelovi za jezgru, za procese, za meduspremnike
(buffere) naprava 1 sli¢no

— za upravljanje gomilom (heap) unutar procesa
* U programima: malloc/free, new/delete 15l

e U nastavku razmatramo samo ovo upravljanje iako se
slicni postupci mogu koristiti 1 drugdje



UobiCajena organizacija adresnog
prostora procesa

[ nd marya adresa

instrulcije

: podaci :
| (konstante, glob. war.) |

gomnila (heap)

e =

__.ﬁ'—"'_"_‘“—'F__

stog E

» A vela adresa 23 proces

i dio rezeriran za jezgru i

' .
mRrzizizly - NA|VECA adresa



Gomila (heap)

* sluzi za posluzivanje dinamickih zahtjeva procesa
— pri pokretanju procesa nisu unaprijed poznati zahtjevi
« veli¢ina problema se zadaje/ucitava naknadno
— u C-u:
» malloc/free (1 slicni)
— u C++ (Java):
« new/delete (1 slicni)

 veliina gomile raste s novim zahtjevima

— adresa do kuda je trenutno gomila narasla naziva se
program break value (pogledati sbrk)



Slobodni 1 zauzeti blokovi

 potrebna struktura podataka sastoji se od:
— liste slobodnih blokova
— liste zauzetih blokova

 nije neophodna; moze sluziti radi provjere rada algoritma (da se ne
oslobada nepostojeci blok)

» svaki blok mora imati zaglavlje sa:
— veli¢inom bloka
— 0znakom zauzetosti

— kazaljkama na 1duci/prethodni blok
 prema potrebi algoritma

* podnoZje (na kraju bloka) ovisno o algoritmu
— uglavnom su pozeljna, radi jednostavnosti algoritma

— zaglavlja Sto krac¢a da ne troSe uzalud spremnicki prostor



Primjer zaglavlja za zauzeti |
slobodni blok

zawuzetl blok slobodm blok

| wveliinabloke 1§ | velifinabloka 0}

it [} 1 i
! i-I-I-I“‘-“I“‘-“‘I“mmmm\l—lﬂl L] I ! 1 I“ff'm‘ff'm‘f'm“‘m“d—lf'd :
1 1

it [ H

kazaljka na prethodni

| kazalika na shijedesi |

upotrebljiv die bloka
koji proces moZe

= _ ne koristi se
koristiti po potrebi

| velitinabloka |0}

S—
i weli¥ina bloka L



Struktura podataka u C-u za
prethodni primjer

/* velicine blokova moraju biti visSekratnik od 2 da bi se

zadnji bit mogao iskoristiti za oznaku zauzetosti */

/* zaglavlja za zauzete blokove */
struct zag_zau {
int vel; /* velic¢ina bloka ukljucuje zaglavlija */

};

/* podnoZje za zauzete blokove jednako je zaglavlju */

#define pod zau zag zau

/* zaglavlje za slobodne blokove */

struct zag_slo {
int vel; /* velic¢ina bloka ukljucuje zaglavlja */
struct zag_slo *preth;

struct zag_slo *iduci;

};

/* podnoZje za slobodne blokove jednako je zaglavlju zauzetih */

#define pod slo zag zau



Neki makroi ...

/* B - adresa zaglavlja - pocletka bloka, A - adresa “korisnog” dijela */
#define ADR KORISNO(B) ((void *)B)+sizeof (int))/*B-pocCetak zauzetog bloka*/

#define ADR BLOK (A) ((void *)A)-sizeof(int))/* A-adr. iza zagl. u z.b.*/
#define ZB (B) ((struct zag_zau *) (B)) /* adresa u tip zag zau */
#define SB (B) ((struct zag_slo *) (B)) /* adresa u tip zag slo */
#define VEL (B) ( ZB(B)->vel & (-1) ) /* vrati velicdinu bloka */
#define ZAUZ (B) ( ZB(B)->vel & 1 ) /* je 1li blok zauzet */

#define POSTAVI VEL(B,V) do { ZB(B)->vel = (V) | ZAUZ(B); } while(0)
#define POSTAVI ZAUZ (B) do { ZB(B)->vel = (ZB(B)->vel) | 1; } while(0)
#define POSTAVI_ SLOB (B) do { ZB(B)->vel = VEL(B); } while(0)

/* idué¢i/prethodni po adresama */

#define IDUCI_BLOK (B) ( (void *) (B) + VEL(B) )

#define PRETH BLOK (B) ( (void *) (B) - VEL(ZB(B)-1) )

/* iduc¢i/prethodni po listi slobodnih blokova */

#define IDUCI_SLOB (B) ( SB(B)->iduci )

#define PRETH SLOB (B) ( SB(B)->preth )

/* neki prevoditelji bi se mogli buniti na operacije tipa: ((void *) a + b)

* tada napraviti: ((void *) ( (unsigned int) a + b )) */



	Slide 1: Straničenje
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Tablica prevođenja
	Slide 7
	Slide 8: Zamjena stranica
	Slide 9: Satni algoritam
	Slide 10
	Slide 11: Dinamičko upravljanje spremnikom
	Slide 12: Dinamičko upravljanje spremnikom u OS-u
	Slide 13: Uobičajena organizacija adresnog prostora procesa
	Slide 14: Gomila (heap)
	Slide 15: Slobodni i zauzeti blokovi
	Slide 16: Primjer zaglavlja za zauzeti i slobodni blok
	Slide 17: Struktura podataka u C-u za prethodni primjer
	Slide 18: Neki makroi …

