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Tablica prevodenja

Za svaku stranicu postoji zapis u tablici prevodenja:
redni broj okvira u kojem se stranica nalazi
razne zastavice, npr. za x86:

31 1211 10 9 8 7 6 5 4 3 2 1 O

redni broj okvira

Gl D A WtOWV

Zastavice:

V  bit prisutnosti A stranica je koriStena
W zastita od promjene D “prljava” (dirty)

O zaOS Gl globalna stranica

W, "write through”

Osim zapisa u tablici prevodenja, za svaku stranicu je
potrebno zapisati i gdje se ona nalazi na pomo¢hom
spremniku
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Zamjena stranica

Kada su svi okviri popunjeni i dogodi se promasaj sto
napraviti?
ocCito je potrebno izbaciti neku stranicu iz nekog okviral
kako odabrati stranicu za izbacivanje?

Teorijske strategije:
FIFO
LRU
LFU
OPT



Satni algoritam

Koristi se inaCica LRU algoritma (least recently used)
izbaciti stranicu koja se vec¢ duze nije koristila
statistiCki se ta stranica niti neCe jos neko vrijeme koristiti
satni algoritam (clock algorithm, second chance algorithm)
okviri, tj. opisnici stranica koje se u njima nalaze, se kruzno
obilaze - promatra se zastavica A koja oznacCava je li
stranica koriStena (engl. accessed)
ako je A == 0 stranica se izbacuje iz okvira i u njega se
moze staviti druga stranica
ako je A== 1, postavlja se A= 0 i pomicCe se na iduci
okvir (trenutna stranica ostaje u okviru, daje joj se jos
jedna prilika obzirom da se nedavno koristila)
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Instrukcije (redom)

1: LDR R1, (508)

2: LDR RZ, (332)

3: LDR R3, (256)

zastavice A za
odgovarajuce okvire

a) nakon 1. instr.

Primjer rada
satnog algoritma

Na prvu instrukciju dogoditi ¢e se prekid zbog
promasaja (trazi se stranica 5 programa). Prema
algoritmu zastavica Cetvrtog okvira A(4) postaviti ¢e se
u 0 te ¢e se kazaljka pomaknuti. Zastavica A(5) je O te
¢e se taj okvir osloboditi i u njega staviti 5. stranica
procesa. Tada se moze obaviti prva instrukcija. Njenim
izvodenjem (Citanjem iz 5. okvira) postavlja se
zastavica A(5) u 1 (slika a) ).

Druga instrukcija traZi 3. stranicu koja se nalazi u okviru
6. Njenim izvodenjem (Citanjem podatka iz 6. okvira)
postaviti ¢e se zastavica A(6) u 1 (sl. b)) (kazaljka se ne
mice).

Treca instrukcija trazi podatak iz 2. stranice koja nije u
radnom spremniku, pa ¢e se kazaljka pomaknuti,
najprije na 6. mjesto, pa na 7. (pritom postavlja A(5),
A(6) i A(7) u nulu) i tek na 8. pronalazi A(8)=0, izbacuje
stranicu koja se tu nalazi i ucitava stranicu 2 procesa.
Nakon toga moze se izvesti instrukcija 3. Izvodenjem 3.
instrukcije postavlja se zastavica A(8) u 1 (sl. c)).
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b) nakon 2. instr.

¢) nakon 3. instr.



DinamicCko upravljanje
spremnikom

dodatni materijali



DinamicCko upravljanje
spremnikom u OS-u

o Koristi se
— za dodjelu adresnog prostora procesima

* u sustavima koji ne koriste stranicenje vec “dinamicko
upravljanje spremnikom”
— za upravljanje prostorom na razini OS-a

e koji su dijelovi za jezgru, za procese, za meduspremnike
(buffere) naprava 1 sli¢no

— za upravljanje gomilom (heap) unutar procesa
* U programima: malloc/free, new/delete 15l

e U nastavku razmatramo samo ovo upravljanje iako se
slicni postupci mogu koristiti 1 drugdje
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[ nd marya adresa

instrulcije

: podaci :
| (konstante, glob. war.) |

gomnila (heap)

e =

__.ﬁ'—"'_"_‘“—'F__

stog E

» A vela adresa 23 proces

i dio rezeriran za jezgru i

' .
mRrzizizly - NA|VECA adresa



Gomila (heap)

* sluzi za posluzivanje dinamickih zahtjeva procesa
— pri pokretanju procesa nisu unaprijed poznati zahtjevi
« veli¢ina problema se zadaje/ucitava naknadno
— u C-u:
» malloc/free (1 slicni)
— u C++ (Java):
« new/delete (1 slicni)

 veliina gomile raste s novim zahtjevima

— adresa do kuda je trenutno gomila narasla naziva se
program break value (pogledati sbrk)



Slobodni 1 zauzeti blokovi

 potrebna struktura podataka sastoji se od:
— liste slobodnih blokova
— liste zauzetih blokova

 nije neophodna; moze sluziti radi provjere rada algoritma (da se ne
oslobada nepostojeci blok)

» svaki blok mora imati zaglavlje sa:
— veli¢inom bloka
— 0znakom zauzetosti

— kazaljkama na 1duci/prethodni blok
 prema potrebi algoritma

* podnoZje (na kraju bloka) ovisno o algoritmu
— uglavnom su pozeljna, radi jednostavnosti algoritma

— zaglavlja Sto krac¢a da ne troSe uzalud spremnicki prostor
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Struktura podataka u C-u za
prethodni primjer

/* velicine blokova moraju biti visSekratnik od 2 da bi se

zadnji bit mogao iskoristiti za oznaku zauzetosti */

/* zaglavlja za zauzete blokove */
struct zag_zau {
int vel; /* velic¢ina bloka ukljucuje zaglavlija */

};

/* podnoZje za zauzete blokove jednako je zaglavlju */

#define pod zau zag zau

/* zaglavlje za slobodne blokove */

struct zag_slo {
int vel; /* velic¢ina bloka ukljucuje zaglavlja */
struct zag_slo *preth;

struct zag_slo *iduci;

};

/* podnoZje za slobodne blokove jednako je zaglavlju zauzetih */

#define pod slo zag zau



Neki makroi ...

/* B - adresa zaglavlja - pocletka bloka, A - adresa “korisnog” dijela */
#define ADR KORISNO(B) ((void *)B)+sizeof (int))/*B-pocCetak zauzetog bloka*/

#define ADR BLOK (A) ((void *)A)-sizeof(int))/* A-adr. iza zagl. u z.b.*/
#define ZB (B) ((struct zag_zau *) (B)) /* adresa u tip zag zau */
#define SB (B) ((struct zag_slo *) (B)) /* adresa u tip zag slo */
#define VEL (B) ( ZB(B)->vel & (-1) ) /* vrati velicdinu bloka */
#define ZAUZ (B) ( ZB(B)->vel & 1 ) /* je 1li blok zauzet */

#define POSTAVI VEL(B,V) do { ZB(B)->vel = (V) | ZAUZ(B); } while(0)
#define POSTAVI ZAUZ (B) do { ZB(B)->vel = (ZB(B)->vel) | 1; } while(0)
#define POSTAVI_ SLOB (B) do { ZB(B)->vel = VEL(B); } while(0)

/* idué¢i/prethodni po adresama */

#define IDUCI_BLOK (B) ( (void *) (B) + VEL(B) )

#define PRETH BLOK (B) ( (void *) (B) - VEL(ZB(B)-1) )

/* iduc¢i/prethodni po listi slobodnih blokova */

#define IDUCI_SLOB (B) ( SB(B)->iduci )

#define PRETH SLOB (B) ( SB(B)->preth )

/* neki prevoditelji bi se mogli buniti na operacije tipa: ((void *) a + b)

* tada napraviti: ((void *) ( (unsigned int) a + b )) */
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