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Abstract

We propose a new methodology for modeling and analyzing heavy-tailed distributions, such as
the Pareto distribution, in communication networks. The basis of our approach is a fitting algorithm
which approximates a heavy-tailed distribution by a hyperexponential distribution. This algorithm
possesses several key properties. First, the approximation can be achieved within any desired degree of
accuracy. Second, the fitted hyperexponential distribution depends only on a few parameters. Third,
only a small number of exponentials are required in order to obtain an accurate approximation over
many time scales. Once equipped with a fitted hyperexponential distribution, we have an integrated
framework for analyzing queueing systems with heavy-tailed distributions. We consider the GI/G/1
queue with Pareto distributed service time and show how our approach allows to derive both quan-
titative numerical results and asymptotic closed-form results. This derivation shows that classical

teletraffic methods can be employed for the analysis of heavy-tailed distributions.

Keywords: Communication networks; GI/G/1 Queue; Multiple time-scale traffic; Fitting; Long-

tailed distribution; Hyperexponential distribution; Mixture of exponentials.



1 Introduction

Recent studies reveal that network traffic exhibits burstiness over multiple time scales [LTW94]. In
many circumstances, heavy-tailed probability distributions have been found appropriate for captur-
ing this salient feature (see [ReS98] and references therein). A random variable X has a heavy-tailed

distribution if its complementary cumulative distribution function (ccdf) F(t) satisfies

Fit)=Pr{X >t} ~ct @ as t — 0o, (1)

where a and c are positive constants, and f(¢) ~ g(¢) means lim;, f(¢)/g(t) = 1. The case
0 < a <1 is usually not of practical interest in queueing analysis since E{X} = oo (in this work,
we assume that @ > 1). The most encountered situation is 1 < a < 2 for which the random
variable X has a finite mean but an infinite variance. Occurrence of such a distribution in the
activity and/or silence period of an On/Off process gives rise to long-range dependence, i.e., a
non-summable autocorrelation function [BRS96]. A well-known heavy-tailed distribution is the

(translated) Pareto distribution for which

F(t) =Pr{X >t} = for t > 0 and a > 0. (2)
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The Pareto distribution provides parsimonious modeling since it depends on only two parameters.

Unfortunately, heavy-tailed distributions do not lend themselves to easy queueing analysis since
their Laplace transforms are not explicit, in most cases (for an exception, see [BoC98]). This
explains why, so far, most of the queueing results involving heavy-tailed distributions have only
been obtained in asymptotic regimes (see [GJK99] and references therein). These asymptotic results
have the merit of providing some insight into the relation between the heavy-tailed distributions

parameters and the queueing performance measures.

In order to obtain more quantitative results, several contributions have recently suggested to fit

hyperexponential distributions, i.e, mixture of exponentials, to heavy-tailed distributions [FeW98,



GJL99, RoL97] (see also the related work [AnN98]). However, none of the fitting algorithms
developed in these works provide a systematic way for deriving an approximation arbitrarily close
to the original distribution. Moreover, the queueing results obtained via these approaches are only

numerical.

Inspired by a work of Mandelbrot [Man71], we propose, here, a new methodology for fitting
hyperexponential distributions to heavy-tailed distributions. This new approach exhibits several
advantages. First, the approximation can be made arbitrarily close to the exact distribution and
bounds on the approximation error are easily obtained. Second, the fitted hyperexponential dis-
tribution depends only on a few parameters which are explicitly related to the parameters of the
heavy-tailed distribution. Third, only a small number of exponentials are required in order to
obtain an accurate approximation over multiple time scales, e.g. in the order of ten exponentials
for five time scales. Once equipped with a fitted hyperexponential distribution, we have an inte-
grated framework for analyzing queueing systems with heavy-tailed distributions. We consider the
GI/G/1 queue with Pareto distributed service time and show how our approach allows to derive

both quantitative numerical results and asymptotic closed-form results.

This paper is organized as follows. In the next section, we present our fitting algorithm. We
provide bounds on the approximation error and prove that the fitted hyperexponential distribution
can be made arbitrarily close to the original heavy-tailed distribution. As an illustration of the
method, we provide an explicit expression for a hyperexponential distribution, termed pseudo-
Pareto distribution, which can approximate arbitrarily closely the Pareto distribution. In Section 3,
we study the distribution of the waiting time in a queue with i.i.d. and arbitrarily distributed inter-
arrival times and pseudo-Pareto distributed service time. We show that it is straightforward to
obtain a numerical solution for the waiting time distribution, even when the number of exponentials
is very large. Moreover, as the number of exponentials tends to infinity, we derive an analytical

expression for the tail of the waiting time distribution. The last section is devoted to a summary



of the work and concluding remarks.

2 The Fitting Algorithm

Our algorithm proceeds in two stages. The first and most significant stage focuses on fitting a
mixture of exponentials to the behavior of the tail of the heavy-tailed distribution. The second
stage provides a fitting for small values of ¢ and ensures that the mixture of exponentials is indeed

a probability distribution. As an example, we consider the case of the Pareto distribution defined

in Eq. (2).

2.1 Mimicking the Long Term Behavior

Consider the function R(t) = ct~®. We want to derive an expression for a mixture of exponentials
which can capture the behavior of R(t) from some value of ¢ and over an arbitrary large number of
time scales. Our starting point relies on the fact that ¢t~ is the Laplace transform of the function
r(s) = ¢s*71/T'(a) where T'(-) is the Gamma function. We can, therefore, express R(t) in the

following way:

oo Saflefst
R(t) = c/o st. (3)

In the sequel of this subsection, we let ¢ = 1 since it is merely a constant of proportionality.
The integral appearing in the right-hand side of Eq. (3) can be approximated by a Riemann sum.
However, we know from the Tauberian theorems (see [Fel71], pp. 442-448) that the behavior of R(?)
for large values of ¢ is closely related to the behavior of r(s) near s = 0. The choice of a fixed grid
would not be wise. It would put too much emphasis on large values of s which correspond to“high
frequencies” and not enough on small values of s corresponding to “low frequencies”. We perform

therefore the following change of variables from s to u, s = B™*, where B > 1 is a parameter



which controls the accuracy of the approximation, as is made clear later. We note that choosing a
fixed grid for the variable u is equivalent to choosing a logarithmic grid for s. After the change of

variables, Eq. (3) can be rewritten as

R(t) = ?fj : /_ "B exp(—tB ")du
log B > nt+l/2 _
— - B~ exp(—tB~" 4
oy 2 / L B eR(—tB (4)

Eq. (4) can be approximated by a Riemann sum if we replace each integrand with its mid-span
value. It turns out, however, that a better approximation can be obtained if only the exponent

portion of the integrand is replaced with its mid-span value. We have then

logB - -n nt1/2 —au
R(t) ~ T(a) -n;wexp(—tB ) - /n s B~ %y,
B®/2 _ Bp—a/2 o) om .

As proven in the next subsection, with B — 1, the approximation R;(¢) can be made arbitrarily
close to R(t). The last step of the algorithm is to truncate the infinite sum R;(¢) and approximate
it by a finite sum Ry(t), where

Be/2 _g«o/2 N

Ry(t) = Tat 1) . n:ZM B " exp(—tB™"). (6)

The idea behind this truncation is the following. On one hand, values of n below M correspond
to high frequencies which have almost no effect on the long-term behavior of R(¢). On the other
hand, values of n larger than N correspond to very low frequencies (or very large values of ) falling
beyond the scope of interest. Note that the approximation Ry(t) is very parsimonious since it

depends on only four parameters: «, B, M and N. As an illustration of the fitting method, we



Figure 1(a): Original R(t) and approximation Ra(t) Figure 1(b): Approximation error and a bound

10° 4
) R tz ——  Exact
- R& t) 35¢ --- Bound
B a_ I
107 L | \ B -1 }
3 L\ /A
N ~ !
= /
4 « 2.5F \ 7
107 | g S . ,
. w \ ’
8 < 2t A »
o ‘3 ,,,,,,,,,,,,,,,,,, — =
6 [9]
10" 7 T 15t
1
10° 1
N 0.5
10-10 L L L L L 0 T
10° 10" 10° 10° 10" 10° 10° 10° 10 10° 10° 10* 10° 10

Figure 1: Example of fitting a mixture of exponentials to a heavy-tailed function

consider the example of a heavy-tailed function R(t) = t~%/2 with its approximating function Ry(t).
The values chosen for the parameters of Ry(t) are « = 3/2, B =2, M =0 and N = 20. As one can
see from Fig. 1(a), the quality of the approximation is excellent over the whole domain ¢ € [10, 10°].

The fitting is less tight for values of ¢ outside this domain due to the reasons mentioned above.

2.2 Approximation Errors and Bounds

The objective of this subsection is to develop a procedure for bounding the approximation error.
Based on the results of this procedure, we prove that Ry(t) can approximate arbitrarily closely the
exact function R(t) over any interval [t,,tp] (0 < t, < &, < 00). Moreover, the bounds provide a

very useful insight into the problem of setting the values of the parameters of Ra(t).

We define the relative approximation error between R(t) and Ra(t) as

Err[R(t),Rz(t)] =




The procedure for bounding the error is based on the derivation of the following two functions:
a function Rypo(t) which bounds R(t) and Ro(t) from above and another function Ry (t) which
bounds R(t) and Rs(t) from below. Once we obtain an expression for these functions, we readily

get the following bound on the error

Fupa(t) = Rin(t)

Err[R(t), Ry(t)] < Rigo(t)

(8)

The fitting method described in the previous subsection is based on two approximations: (i) the
discretization of an integral (ii) the truncation of an infinite sum. We begin by considering the error
due to the discretization. We recall that the discretization leading to R;(t) has been obtained by
replacing the exponent portion f(u) = exp(—tB~*) of each integrand in Eq. (4) with its mid-span
value f(n) = exp(—tB~ ™). The function f(u) is strictly increasing with u. Therefore, if we replace
f(u) with f(n + 1/2), which is the value of the function at the right-most point of the integration

interval, we obtain an upper bound R,;;(t) on both R(¢) and R;(t). The expression for R,y (t) is

Ba/2 _ B—a/2 0 . e
Rupl (t) = W . Z B €Xp (—tB 1/2) . (9)

n=—oo

In a strictly analogous way, we obtain a lower bound Ry, (t) on both R(t) and R;(t) by replacing

f(u) with f(n —1/2):

Be/2 _ p—a/2 o0
W . Z B_an exp (—tB_n+1/2) . (10)

n=—oo

Rin (t) =

Before we proceed, it is instructive to derive a bound on the approximation error between R(t) and

Ry (t):
0 —an _+Rp—n—1/2
Rupi () B exp ( tB )
E t )<l 1= -1
’l"’l"[R( )aRl( )] = Rlol(t) ?7,0:—00 B—on exp (_tB7n+1/2)



S B exp <—tB—ﬂ+1/2)

_ po.
300 B omexp (—tB"t1/2)

—1=B*—1. (11)

From Eq. (11), we can already draw three intermediate conclusions. First, the bound on the
approximation error between R(t) and R;(t) is independent of ¢. Second, the approximation error
can be made arbitrarily small by letting B approach 1 from above. Finally, we observe that as «

becomes larger, smaller values of B will be required for achieving the same degree of accuracy.

The next stage consists of bounding the approximation error due to the discretization and the
truncation, altogether. Let’s first consider the derivation of the lower bound. We define Ry, (t) as
the truncation of Ry, (t)

Be/2 _ g-ao/2 N "
— . —an _3p—n+1/2
Riga(t) NEEY HEZMB exp ( tB ) . (12)

Using the same arguments as in the previous paragraph, it follows that Ry (t) is a lower bound
on Ry(t). At the same time, Ry (t) is also a lower bound on R(t) since Ry(t) < Rip1(t) < R(t).
The computation of the upper bound R,;»(t) is somewhat more complex. Our goal is not to derive
the “tightest” bound. It is rather to find a bound which would enlight us as to the influence of
the different parameters of Ry(t) on the approximation accuracy. For this purpose, we start again
from the expression for R(t) given by Eq. (5) and divide the integral into three parts

fee) Sa—le—st
R(t) = /0 R

B~Y2=N ja—1,—st BY/2-M a—1,—st 00 ga—1lg—st
= —d / —d / —ds. 13
/0 IN()! st p-1/2-v  T'(a) st pi2-m  T'(a) N (13)

~ S ~
-~

(M) (I1) (111)

The consequence of the truncation is to neglect parts (I) and (III) of Eq. (13). Part (I) in Eq. (13)

represents the contribution of low frequencies, or correspondingly, values of u larger than N + 1/2



(remember that s = B™*). A trivial upper bound on this integral can be derived as follows:

B~1/2-N  a—1_—st B~1/2-N _a-1 B—a(N+1/2)
/ S ds< / 5 (14)
0 0

- ds = ————.

T(a) @)™~ T(a+1)
From Eq. (14), we see that the contribution of low frequencies are negligible as long as R(t) >>
B=2N_ Clearly the low-frequency error vanishes, as N — oo. Part (III) in Eq. (13) represents the
contribution of high frequencies (values of u smaller than M — 1/2). An upper bound on this part

can also be derived. For simplicity of exposition, we assume here that M < 0. We have then

1) g~ 1le—st 00 gla—1]p—st
[ ey e e
pi2-m  T(«) pi2-m  I'(a)

B exp(—tB1/2~M) [a—1] [a — 1)1 B~*(1/2-M) s
= () ,;_:0 W TR (15)

The inequality follows from the fact that s*~! < s/®~1l for s > 1 ([] denotes the smallest integer
larger than or equal to z). From Eq. (15), we see that the high-frequency error has no influence
on the long-term behavior since it decays exponentially fast with ¢ (note that this property holds
also when M > 0). Moreover for any (fixed) value of ¢, the error can be made arbitrarily small by
letting B2 M — oo or accordingly M — —oo. Finally, the discretization of part (IT) in Eq. (13)
leads to R2(t). An upper bound valid on both Rs(t) and part (II) is easily obtained by resorting

to the approach described in the previous paragraph. We have then

ds

BY/2=M a-1,-st log B N n+1/2
— . —au _4pu
/B_1/2_N Ta) = T / B ““exp(—tB ")du

n=pJn—1/2

B2 _pgo/2 N
< - = . B—an _ B—n—1/2 . 1
S Tt 2 exp (~ ) (16)

Summing (16), (15) and (14), we obtain the final expression for Rypo(t):



B2 _pg«o/2 N

. - B2
Fa+ D 7243 o exp (—tB " 1/?)

RupZ(t) =

exp(—tBY/2 M) [a—1] [ — 171 B~k(1/2-M)  p-a(N+1/2)

I'(a) ' = B tla—1]-k+1 + T(a+1)

(17)

We conclude that Ra(t) can approximate arbitrarily closely the exact function R(t), over any finite

interval, by letting B approach 1 and taking M sufficiently small and N sufficiently large.

To illustrate the results of this procedure, let’s consider again the example given at the end
of the last subsection (R(t) = t73/2 and Ry(t) with parameters o = 3/2, B = 2, M = 0 and
N = 20). In Fig. 1(b), we plot the approximation error and a bound on it. The exact expression
for the approximation error is given by Eq. (7). The expression for the bound is obtained by
substituting (12) and (17) into the right-hand side of Eq. (8). We observe that the bound is nearly
constant in the mid-frequency region and approximately equals to B — 1. This is expected since
the discretization error is the main source of inaccuracy in this region (see Eq. (11)). We remark
also that the bound is not very close to the actual error which is very small within the domain of
interest. Nevertheless, the qualitative behavior is similar. This similarity provides useful guidelines
for setting the values of the parameters of Ry(t). For instance, let’s assume that we want to obtain a
“good” estimate of R(t) over the interval ¢ € [10,10%] (by “good”, we mean an approximation which
is not influenced by the truncation). Computations show that the bound on the high-frequency
error, given by the second term in the rhs of Eq. (17), is smaller than R(¢) by at least one order of
magnitude when ¢ > 10. The bound on the low-frequency error, given by the third term in the rhs
of Eq. (17), becomes significant with regard to R(¢) only when ¢ > 10° . The selected values for M
and N are therefore reasonable. Finally, note that the approximation can be improved by letting
B approach 1. However, this will require in turn to decrease the value of M and increase the value

of N.



2.3 Matching a Probability Distribution

Our goal in this subsection is to show how a hyperexponential distribution can be fitted to a heavy-
tailed probability distribution. For this purpose, we propose to match the Pareto distribution
defined in Eq. (2). Using the Laplace transform representation, the ccdf of the Pareto distribution
can be expressed as

_ 1 0o ga—1,—s(at+1)
/ S ) (18)
0

F®) = a3ane — o)

Following the same steps as in subsection 2.1, we obtain the following approximation for F(t)

n Ba/2 — B_a/2 al —an —-n —-n
F(t) W - n_Z]MB exp(—B ) eXp(—GB t). (19)

The expression in the rhs of Eq. (19) must be slightly modified in order to obtain a probability

distribution. We define the sum of the coefficients of the exponentials in that expression as

Be/2 _ Bp—a/2 N
- . —an —B™™). 2
w Tat 1) n:EMB exp(—B™") (20)

The following expression corresponds to a hyperexponential distribution

_ B®/2 _ B—a/2 N

Git)=(1—w)exp(—aB MV 4 = — . Z B *"exp(—B ")exp(—aB "t). (21)
MNa+1) =

For large values of B, it may happen that w is larger than 1 (due to the discretization error).

In such a case, the value of M must be appropriately increased in order to ensure that w is

smaller than 1. Using the same terminology as [RoL97], we refer to G(t) as a “pseudo-Pareto”

distribution. Of course, the pseudo-Pareto distribution can be made arbitrarily close to the exact

Pareto distribution by letting B — 1, N — oo and M — —oo. As an illustration of the fitting

method, a Pareto distribution with ccdf F(¢) = 1/(1 + 0.5 - t)!2 is compared, in Fig. 2, to three

10



Figure 2(a): Complementary cumulative distribution Figure 2(b): Relative approximation error
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Figure 2: Comparison between a Pareto ccdf and three fitted pseudo-Pareto ccdfs consisting, respectively,

of five, ten, and twenty exponentials

fitted pseudo-Pareto distributions consisting, respectively, of five, ten, and twenty exponentials.
From Fig. 2(a), we see that as few as five exponentials are enough in order to mimic the behavior of
the Pareto distribution over several time scales. Of course, increasing the number of exponentials
leads to a smaller approximation error, as one can observe from Fig. 2(b). For instance, using a
pseudo-Pareto distribution consisting of twenty exponentials yields an approximation error smaller

than 5% within the domain of interest.

3 GI/G/1 Queueing Analysis

3.1 Theoretical Results

In this section, we consider the analysis of the (actual) waiting time W in a GI/G/1 queue with

Pareto distributed service time (note that W is closely related to the buffer content of a queue

11



fed by an On/Off fluid process with Pareto distributed activity period and arbitrarily distributed
silence period [Box96]). Our approach is based on modeling the Pareto distribution with a pseudo-
Pareto distribution. The waiting time distribution in a GI/G/1 queue with Pareto service time
distribution can be approximated arbitrarily closely by the waiting time distribution in a GI/G/1
queue with pseudo-Pareto service time distribution [FeW98]. Once equipped with a pseudo-Pareto
distribution, we show, in the sequel, that it is straightforward to obtain a numerical solution for
the waiting time distribution, even when the number of exponentials is very large. Moreover, we
show that an asymptotic closed-form expression for Pr(W > t) prevails as N — oo and ¢t — oo.
This expression is shown to coincide with a well-known result of Pakes [Pak75] (see also [Coh73]),

as B — 1.

We consider a GI/G/1 queue with arrival rate A and pseudo-Pareto service time distribution
with mean 1/p. The service policy of the queue is FIFO. We define the load as p = A/p and assume
that it is smaller than 1. We denote the Laplace transforms of the inter-arrival and service time
distributions, respectively, by A*(s) and G*(s). In the case of the pseudo-Pareto distribution, the

expression for G*(s) is

(1—w)aB~M-1) pa/2_p-a/2 N ;p—(athn gxp(_B=n)

s +aB~(M-1) + Da+1) n:ZM s+aB™"

G*(s) = (22)
We observe that G*(s) is a rational function, with denominator of degree N — M + 2. The class
of GI/G/1 queues with service time distribution having a rational Laplace transform is studied
in [Coh82], pp.322-329. The Laplace transform of the waiting time probability distribution is given

by the following formula (see [Coh82], Eq. 5.190)

N
wis) = I

n=M-—-1

—op(s+aB™")
aB—"(s —ay) ’

(23)

where o,, n € {M — 1,M,...,N — 1, N}, correspond to the roots (zeroes) in the left half-plane

12



Re(s) < 0 of the function A*(s) = —1 + A*(—s)G*(s). The main computational effort required in
order to invert W*(s) is the determination of the roots of A*(s). The following proposition reduces

considerably this effort.

Proposition 1 If p < 1, then A*(s) has N — M + 2 distinct real roots in the left half-plane
Re(s) < 0. A unique root, denoted by o,,, is contained in each interval (—aB~", —aB~(+1) where

ne€{M—1,M,...,N —2,N —1}. An additional root o is located in the interval (—aB~",0).

Proof: See Appendix A.

Since the roots are known to be real and belong to distinct intervals, it is very easy to determine

them with any simple search procedure.

As N — oo, explicit asymptotic results on the location of o,, can be obtained for large (positive)
values of n. In such a case, it turns out that the location of o, gets very close to s = —aB™".
We guess, therefore, that 0, = —aB™" + =y, where v, = o(B™") (the notation f(n) = o(g(n))
means lim, ;. f(n)/g(n) = 0). We substitute this guess into A*(s) and solve for -y,. We obtain

the following result:

Proposition 2 Let N — oo and

)\(Ba/2 _ B—a/2)

@ ptatn °

&n = —aB™" +

Then, (i) A*(&n) = o(B™"); (i) on = &n + o(B7").

Proof: See Appendix B.

The significance of the above proposition is three-fold. First, it provides a good starting point

for the root search procedure. Second, for large values of n, it states that &, represents a very

13



accurate approximation for o,. Third, it allows to obtain an asymptotic result on the waiting time

distribution, as shown next.

In order to obtain an asymptotic expression for Pr(W > t), we perform a partial fraction

expansion of W*(s)

N _o,(s+aB ™) A — al v
w*s)= ] é‘_n = II B—_"n + > n_ (24)
n=M-1 a (S - O'n) n=M-1 a n=M-1 §=0n

The values of the coefficients v, are easily computed by resorting to the residue theorem. Moreover,

as N — oo, it can be shown that

)\(Ba/2 _ B—a/2)
(=T +1)

Vp = aB™" + &, + o(B™M) = . B~ 4 o(B~oM), (25)

This result is proven in Appendix C using the asymptotic expression for ¢,, given by Proposition 2.

The general expression for Pr(W > t) is then:

N
Pr(W>t)= Y. —Z2.emt fort>0. (26)
n=m-1 9n

As we saw in Section 2, the long-term behavior of Pr(W > t) is determined by the elements of the
sum with large index n. The knowledge of the asymptotic behavior of v, and ¢, allows to obtain

an analytical expression for Pr(W > t) as N — oo and ¢t — 0.

Proposition 3 As N — oo and t — oo, one has

)\(Ba/Q _B—a/2) N

Pr(W > t) ~ sl Tat]) -7122()B(7a+1)n exp (—aB "t). (27)

Proof: See Appendix D.
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Using the same kind of reasoning as in Section 2, we know that, as N — oo, t = oo and B — 1,

(a=1)/2 _ g(-a+1)/2 N
B o -3 BCaH exp (“aB ) ~ (at) Ot (28)

n=0

Combining Eq. (28) with Eq. (27), we obtain

)\aia . t—Oé+1

PI‘(W>t)N4(1_p)(a_1) ’

(29)

as N — 0o, t — oo and B — 1. This relation corresponds to the formula of Pakes [Pak75] which
states that the waiting time ccdf in a GI/G/1 queue satisfies Eq. (29) when the service time has a
heavy-tailed ccdf F(t) ~ (at)~® (actually, Eq. (29) is only a special case of Pakes’ formula which

applies also to more general subexponential distributions).

3.2 Numerical Results

We present some numerical illustrations of the theoretical results derived in the previous subsection.
We counsider an M/G/1 queue with arrival rate A = 0.2 and Pareto service time distribution with
cedf F(t) = 1/(1+42t)!5 and mean 1/p = 1. In Fig. 3, we compare numerical approximated results
with simulated results for the waiting time distribution. The numerical approximated results are
obtained by replacing the Pareto distribution with a pseudo-Pareto distribution with parameters
B =2 M = —1and N = 25. The simulated results are obtained using the BONe’S network
simulator. Each simulation lasts 10® time units and 20 independent replications are run. The
simulated results are presented with 99% confidence intervals. Figure 3 shows excellent agreement
between the approximated and simulated results. Note also that, in this example, the asymptotic
expressions for o, and v, (provided by Proposition 2 and Eq. 25) differ from the exact values for

these quantities by less than 1% when n > 15.

In the next example, we compare the performance of GI/G/1 queues all having the same mean
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Figure 3: Waiting time distribution in an M/G/1 queue with Pareto service distribution: numerical

approximated results versus simulated results

arrival rate and service time distribution but with different inter-arrival distributions. We assume
that the service time distribution follows the pseudo-Pareto distribution described in the previous
paragraph. Regarding the inter-arrival time, we consider three different distributions, all with mean
1/X\ =5, that is a 2-stage Erlangian distribution, an exponential distribution and a hyperexponen-
tial distribution with ccdf 0.1-exp (—0.05 - t) +0.9-exp (—0.3 - t). In Fig. 4, we present the behavior
of the waiting time distribution in GI/G/1 queues with the mentioned inter-arrival time distribu-
tions. We observe that for small values of ¢, the waiting time distribution is strongly dependent on
the inter-arrival time distribution. The probability of waiting, Pr(W > 0), is the largest for the hy-
perexponential distribution and the smallest for the Erlangian distribution. From Eq. (27), we also

obtain an asymptotic expression for the waiting time distribution (we take N = 25). This expres-
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Figure 4: Waiting time distribution in GI/G/1 queues with pseudo-Pareto service distribution and

various inter-arrival distributions, and comparison with asymptotic results

sion is depicted in Fig. 4. Figure 4 indicates that the asymptotic region corresponds to rather large
values of delay, i.e., ¢ > 100. This result is in agreement with earlier work, see e.g. [ACW94], which

already noticed that heavy-tailed asymptotics may not provide especially good approximations.

4 Summary

In this work, we showed that classical teletraffic methods can be employed for the modeling and
analysis of heavy-tailed distributions in queueing systems. From the modeling point of view, we
introduced a new algorithm which fits a hyperexponential distribution to a heavy-tailed distribu-
tion. The fitted hyperexponential distribution depends only on a few parameters and provides

parsimonious modeling. Also, the parameters of the heavy-tailed distribution appear explicitly in
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the expression for the hyperexponential distribution. We showed that the approximation can be
obtained within any desired degree of accuracy. As an example, we derived a new distribution,
termed pseudo-Pareto distribution, which represents the “hyperexponential” counterpart of the
Pareto distribution. From the analysis point of view, we considered the GI/G /1 queue and showed
that when modeling the service time distribution with a pseudo-Pareto distribution, both quantita-
tive numerical results and asymptotic analytical results can be obtained. Our methodology provides
new insight into the impact of system characteristics, such as the inter-arrival time distribution, on

performance measures. Moreover, it enables to state the domain of validity of asymptotic results.

We conclude with the following remarks. First, in Section 3, we assumed that the service time
distribution follows the pseudo-Pareto distribution. In fact, the results obtained in that section
can be generalized to other hyperexponential distributions fitting heavy-tailed distributions. Next,
the bound on the approximation error derived in Subsection 2.2 served to prove that a heavy-
tailed distribution can be approximated arbitrarily closely by a hyperexponential distribution. It
provided also useful guidelines for the setting of the parameters M and N. For typical values of
a, experience teaches that values of B ranging from 2 to 3 yields a good approximation. Future
work may look for a tighter bound on the approximation error which would give more quantitative
insight into the setting of the parameter B. Finally, we note that the results of this work can be
employed for obtaining upper bounds in network of queues, using the network calculus for “sums

of exponentials” developed in [StS99].
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Appendix A: Proof of Proposition 1

The fact that A*(s) has N — M + 2 roots in the left-hand plane Re(s) < 0 is proven in [Coh82],
p-323, by making use of Rouché’s theorem. In order to find the location of theses roots, we study
the behavior of the function A*(s) for real, negative, values of s. We note that for such values of s,
the function A*(—s) is continuous (since it is analytic), positive and bounded, i.e., 0 < A*(—s) < 1.
The function A*(s) has the same N — M + 2 points of discontinuities as G*(s). These points are
located at s = —aB "™ where n. € {M —1,M, ..., N}. In each interval (—aB ", —aB~(™t1)), where
ne€{M-1,M,...,N — 1}, A*(s) is continuous and tends to +oo as s approaches —aB~" and
to —oo as s approaches —aB~ (1) Therefore, A*(s) has at least one root in each one of these
N — M +1 intervals. Besides that, A*(s) is also continuous in the interval (—aB~",0] and tends
to +o0o0 as s approaches —aB~ Y. When p is smaller than 1, as assumed in the proposition, the

derivative of A*(s) is positive at s = 0 since

dA;s(s) ls=0 = (G*(S)M;i(s_sn ls=0 + (A*(_S)dCi;(s)) ls=0 = ;

Since A*(0) = 0, we conclude that A*(s) must have at least one root in the interval (—aB~,0).
We have, thus, found, N — M + 2 distinct intervals containing each one at least one root of A*(s).

Reminding that A*(s) has exactly N — M + 2 roots in the left-hand plane , we conclude that a

unique root, denoted by oy, is contained in each one of the intervals (—aB~", —aB~("+1) where

ne€{M—1,M,...,N—2,N —1} and an additional root oy is located in the interval (—aB~",0).

Appendix B: Proof of Proposition 2

In order to prove the first part of the proposition, we set s = &, into A*(s) and obtain
A*(&n) = =14+ A™(=£n) G (&n)- (30)

Our goal, now, is to provide asymptotic expansions for A*(—¢,) and G*(¢,) for large and positive
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values of n. For such values of n, one has |£,] << 1 and thus A*(—¢,) satisfies the following

asymptotic expansion

aB

A () = 14 6t olfn) = 1= S +0(B™) (31)
Regarding G*(,), one has
RIS (& s
where the constant c is defined as
. A(B®/2 — B=2/%) (33)

- p{a+1)

We let N — oo and consider large positive values of n, such that B™" >> B~%". The first term in

the rhs of Eq. (32) can then be rewritten in the following way

(1 —-w)aB M-1)
—aB "+ cBon 4 gB—(M-1)

B (1-waB-i-) B y
R = B R S A

We consider now the second term in the rhs of Eq. (32). We divide the sum appearing in this term

into three parts. The first part corresponds to indices ¢ running from M to n — 1. We have

aB(at+1)i exp(—Bii) B nil aB—(et+1)i exp(—Bii)
—maB™"

n—1
z§4 —aB " 4+ ¢cB—aon 4 gB—t ; (1 o aB‘Z;E?—a”)

n—1 00 _ _ k

. . aB™™ — cB™o"
Y 5 ea-n 3y (o
=M aB™"

0 —n —an\ ¥ n-1
Z <aB —cB ) Z B(k_o‘)iexp(—B_i)

k=0 a



Y Bexp(-B ) + (u) .3 BO-@ exp(-B)
=M

a i=M

o -n __ —an k' n-1 . .
+> (M) 3" B eiexp(—B). (35)

k=2 a i=M

We show now that the third term of Eq. (35) is in the order of o(B~"). We use the notation dy,

for denoting a function equal to 1 if £ = « and to 0 for other values of k. We have

k 1
0<Z<—“Bn_€3 an) 'Y B exp(~B <ZB "’“ZB’““
=M

00 3 Blk—a)M _ g(k—a)n B
= Y B, IR (1 = ) + (n — M)B™ ™5,

. (1 o 5ka)> . Z B—nk‘(B(k—a)(M—l) _ B(k—a)(n—l)l + (n _ M)B—an
k=2

B@2—a)(M-1 Ba—2
. B72n
1—BM-1B—n +1—B

k—a oo
S maX(H-_BToq 5k‘a> (ZB a(M— 1BkM 1— n)+B a(n— l)B )-I—(n—M)B‘m
( ( (2—a) )

Bk—a

Note that the expression (1 — 6xo)B*¥~%/(1 — B¥~?) is bounded since k is a discrete parameter. We

have, thus,
B Y exp(—B )+ B " BV "% exp(—B ") +o(B™").
by’ —aB "4 cB~ 0‘"+aB i S

(36)

The second part of the sum appearing in the last term of Eq. (32) corresponds to the index i =n
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for which

aB~(@tDn exp(—B aB™ X (-B™)k  aB™ —n

The third part of the sum corresponds to indices ¢ larger than or equal to n + 1. The contribution

of this part is in the order of o(B™") since

i G,B_(a-l-l)i exp(—B_i) Ei]\;n—kl aB—(a—l—l)i
P —aB™™ 4+ ¢B~" 4+ qB~| T min;>p41| —aB™" + ¢B7%" + aB~|

a B (a+1)(n+1)
(1 _ Bf(a—kl)) . | —aB™ 4+ cB-on + (J/B_(TH—I)‘ =o0

(B™"). (38)

Substituting (34), (36), (37) and (38) into (32), and rearranging the terms, we obtain

G (e = (1—w) + LU

o ) n—1 ) )
3 225 Z B *exp(—B ")
=M

~~

—
~—

n—1
e ( Lo+ Pl 5 gl 4 L ’”) to(B).  (39)

We recall the normalization condition which states that

c(1

1-w)+

N
;p) . Z B %exp(—B %) = 1.
=M

Therefore, part (I) in Eq. (39) can be rewritten as

_ c(l1-p) N i p—iy N i i
(1-w)+ 3 > B %exp(—B™") = > B *exp(—B")
=M i=n
C(l — p) al —ai —14 -n
= 1= B exp(-B ) = 14 0(B 7). (40)
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Besides that, the expression

1-w) | cl=p < (1-a)i i
. pl-a)i _Bt
=0 T oy Z;/[ exp( )

corresponds to the mean (1/4) of the pseudo-Pareto distribution. Thus, part (IT) in Eq. (39) can

be rewritten as

(1 — w) + C(l — p) . i B(l—a)i exp(—B_i) _ iB(l—a)i exp(—B_i) + a’(l — P)
By A =M i=n A

al=p) cl=p) & 0w N _ G

= ap+ — " B @iexp(—B ) = < +o(1). (41)
A A =~ A

Substituting (40) and (41) into (39), we obtain
B—n
G* () = 1+ 5—+0(B™"). (42)

We now insert the asymptotic expressions for A*(—¢,,) and G*(,) given by (31) and (42) into (30)

and obtain

A* (&) = —1 + <1 . “B/\_n + o(B—")> (1 n “E’;_n + o(B—")> — o(B™™). (43)

which proves the first part of the proposition.

In order to prove the second part of the proposition, we let € be any constant different from 0
and derive an expression for A*[§, + ecB~*" + o(B~*")]. It turns out that all the expressions
obtained during the derivation of A*(§,) remain the same, except for Eq. (37). Instead, we have

aB~ (@t exp(—B~™) aB™" n
(1+€)cB=on +o(B=on)  (1+€)c +o(B™). (44)
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We obtain, then,

A* [€, + ecB™*" + o(B™")] = _% B +o(BT"). (45)

For sufficiently large values of n, the sign of A*[£, + ceB~*" + o(B~?")] is positive when € < 0

and negative when € > 0. From arguments of continuity, it follows that o, = &, + o(B—").

Appendix C: Proof of Equation (25)

The coefficients v, are easily computed by resorting to the residue theorem which gives

vy = (op +aB™") ﬁ (a_BUii> (0" + aBi> . (46)

. . Onp — 0;
i=M—1,i#n n ¢

We derive, now, an explicit asymptotic expression for v, as n — 0co. We substitute the asymptotic

expression for oy, given by Proposition 2, into Eq. (46) and obtain

N B B ~ »
_ _ —0; —aB ™"+ c¢B7*" +0o(B™*") +aB™"

= {cB™" 4 o(B~" [1 Z-) o

vn = {c + of )}i_M—li;én (aB—z ( —aB™" 4+ c¢B™" + o(B=") —0; )’ 7

where ¢ is defined in the same way as in Eq. (33). Clearly, Eq.(25) is proved if one can show that

the product appearing in the rhs of Eq. (47) satisfies

IJ—V[ ( —0j ) (—aB_” +¢B™ 4 o(B~%) + aB~*

- =1 1 4
aB™ —aB—" 4+ ¢cB—an + O(B—an) —0; ) + 0( )’ ( 8)

i=M—1,i#n

asn — o00. Welet 0 < e < a—1 and define § = (1 + €)/a such that 1/a < § < 1. In the sequel,
we use the notation f(n) = O(g(n)) to mean lim,_, f(n)/g(n) = K where 0 < K < co. We
consider now the product appearing in the rhs of Eq. (47) and divide it into three parts. The first

part corresponds to indices ¢ running from M — 1 to én (with some abuse of notation, we write én

24



instead of [dn]) . We have

i_”[ ( mps ) (—aB" +eB ™ 4 o(B ") + aBi)

i=M—1 aB —aB™" 4+ ¢Bon 4 o(B~") — g
= M — i —aB " +0o(B ") +aB"
- i:g—l <“B‘i) < —aB™" +0o(B~") — o ) (49)
_ o (o) (zeBeBT + aB_i) : (1 _aB"+ o(B‘n)> 50
i:lj\:I[—l (aB_i) < —0; o (50)
M (=) (2 aB™" + O(Bn)) ( aB—" + o(B”)>
— . - . .
i:ll\:I[—l (aB—Z) < —0i ) ( aB~* o;
_ on (1_ GB_n+O(B_n)> (1_ CLB_n—}—o(B_n))
=M1 aB™* o
= exp -ln ( ﬁ (1 _aB™" ‘;OEBR)) (1 _aB "+ 0(371)))] -
L \i=M-1 a o
- on -n 4 o(B~" aB~" + o(B~"
-0 (aB T )) 62)
| i=M-1 i
- o on] <140 o

The transitions from (49) to (50) and from (51) to (52) are justified by the fact that for all 1 < dn

we have |o;| > aB~"+1) " according to Proposition 1, and thus |oi| >> aB™™.

The second part of the product term corresponds to indices ¢ running from én to n — 1. We

note that

P nl:[l (_aB—n_I_CB—om_I_O(B—om)_I_GB—i)

imomt1 —aB™" 4 ¢B7" 4 o(B~") — g;

B nlzll (1 N CB—ai 4 O(B—ai) )
i=0nt1 —aB™" +0(B™") — i
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- ”1:[1 <1+ cB~% 4 o(B o) )

iont —aB "+ aB "l 4+ o(B—7)
= exp OB = exp [O(B™™)] = 1+ o(1). (54)

From (54), we have, therefore, that the second part of the product term is in the order of

o) T (52) (59)

i=dn+1

The last part of the product term corresponds to indices ¢ running from n 4+ 1 to N. In this

case, we have

—aB™" + ¢B™" 4+ o(B~%") + aB"
—aB~" + ¢B~an + o(B~n) — g,

N
1> ]

i=n+1
B ﬂ 1+ cB™% 4 o(B~)
i —aB™" 4+ o(B™") — o;
N . o
cB~ 4 O(B az)
> 1
a 1:1111 ( T aB B O(Bn)>
= exp [O(BUHIM] =1+ 0(1), (56)

and from (56) we obtain that the last part of the product term is in the order of

(o) 11 () 657)

By multiplying (53) with (55) and (57), we obtain that the product appearing in the rhs

of Eq. (47) satisfies

ﬁ ( —0; ) (—aB—n +cB7°" +0o(B™*") + aB—i> — (14 0(1))- ﬁ (a_BU—ii> (58)

i=M - Lign 0BT —aB™" + cBT" +o(B7") — 0 i=0n+1,i#n
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The product term appearing in the rhs of Eq. (58) is in the order of 1 + o(1) as n — oo because

that

(o) 1 ()

1=dn+1,i#n 1=dn+1,i#n
N
_ H (1 _ ¢ . platbi +O(B(a+1)i))
i=6n+1,i#n a
= exp [O(BTOTUIM)] =1 4 0(1). (59)

Equation (48) is now simply proven by substituting (59) into (58).

Appendix D: Proof of Proposition 3

We let N — oo and take, first, ¢ as a constant. We let 1 < § < a and divide the sum appearing

in the rhs of Eq. (26) into two parts

o
r(W > 1) § : ot 4 § gt (60)
=M— U” t)+1 In

where 9(t) = In(¢)/(dIn(B)) (for the simplicity of exposition, we assume that this quantity is

integral). The first sum appearing in the rhs of (60) can be bounded as follows

ORI 0
0< ——— et <
n:%—l On n= % 1
< (B(t) = M +2)exp oy -], (61)

where Eq. (61) follows from the fact that o, is increasing with n. According to Proposition 1 we

have g, > —aB~("*1) for all n and therefore

In(t) exp [—aB_lt_l/‘Hl]
aln(B)

() exp oy - t] < () exp [—aBHO71] < =o(t™t).  (62)
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One concludes that the first sum appearing in the rhs of (60) decays to zero faster than ¢~

The second sum in the rhs of (60) can be rewritten as follows

cB~" 4 o(B—°n)

o
n:wX(t:)H " —aB~" 4 cB—on  o(B—on)

exp [(—aB "™+ cB " +o(B ")) - t]

=Y (B B exp [(aB 4 B (B 1], (6
n=1(t)+1

where ¢ is defined in the same way as in Eq. (33). For sufficiently large values of ¢, Eq. (63) is

bounded from below by

and from above by

exp [cB*a’/’(t) -t] . i (cB_(O‘+1)” + o(B_(O‘+1)”)) - exp [—aB™ "]

n=(1)+1
= exp [t—a/tﬂ—l] . Z (CB—(a+1)n + O(B—(a+1)n)) . exp [~aB "]
n=(t)+1
= (1+0o@*/ty). ¥ (cB—(a“)" + o(B—<a+1>")) - exp [~aB™"1] (65)
n=t(t)+1

Now, we let t — oo and from Eqs. (64) and (65), we conclude that

fe's) o0
S et S eBT@IR exp [—aB ). (66)
=y " n=p(t)+1

Based on similar arguments as developed in Section 2.2, we have for sufficiently large values of ¢

Z ch(OH’l)n - exp [—aBint] > K]_tia+l, (67)
n=p(t)+1
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where K is some positive constant. Eq. (67) is proven by considering its lhs as an approximation
of some function Kot~®*!. This approximation is affected only by the discretization and high-
frequency errors. The discretization error is uniformly bounded (see Eq. (11)). The high-frequency
error decays faster than ¢~ “*! since (see Eq. (13))

[e's) saflefsat 1 Saflefsat oo Saflefsat
/ ——ds = ——ds+ / —ds
Bi2-v)  I'(a) pi2-vt)  I'(a) 1 [(«)

/1 e—satd +/oo S[a]—le—satd
/24 I'(a) N 1 [(«) s

exp [—B_Wt) . at]
tl'(a)

< +0(e™ ) = o(t~2T1).

We obtain, therefore, from Egs. (60), (62), (66) and (67) that

0o 00
Z _Pnont Z cB~@+Dn . exp [—aB ™). (68)
n=mM-1 9n n=y(t)+1

Also, using the same arguments as for the derivation of Eq. (62) it is easy to show that

¥(t)
Z eB~(@+D" . exp [—aB™™] = o(t™HY). (69)

n=0

From Egs. (67), (68) and (69) we finally get

N y N
Yooty cB~@FV . exp [—aB™™],
n=M-1 In n=0

as N — oo and t — oo which corresponds to the statement of the proposition.
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