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Abstract

Self-similar traffic distributions have been observed in a
wide range of networking applications and models such as
LANs, WANs, telnet, FTP, WWW, ISDN, SS7 and VBR traf-
fic over ATM. Therefore, it has been suggested that many
other theoretical protocols and systems need to be reevalu-
ated under this different type of traffic before practical im-
plementations potentially show their faults.

The ServerNet SAN is a new core technology for server
architectures that focuses on moving data. It is a wormhole-
routed, packet-switched, point-to-point network with spe-
cial attention paid to reducing latency and assuring reli-
ability. In this paper we investigate the implications of self-
similar traffic distributions in the ServerNet SAN, and com-
pare the results with those obtained on the basis of the Pois-
son assumption.

1. Introduction

The innovative work of Leland et al. [7], which was sub-
sequently repeated by many other researchers around the
world, used long, high-resolution traces of Ethernet packets
to show that their arrival rates exhibit self-similar behav-
ior, i.e., traffic is bursty over a wide range of aggregation
scales, and does not degrade into uniform noise when aver-
aged over a long period. This disparity with the traditional
buffering and queuing models that rely on the Markov as-
sumption may have a significant impact on them. The litera-
ture mentions high cell loss problems in first ATM switches
due to the assumption of Poisson arrivals, which suggested
buffer sizes too small for the actual traffic.

Self-similar traffic has been observed in Ethernet, ISDN,
and ATM LANs and WANs for a range of traffic patterns
generated by networking applications such as telnet, FTP,
and World-Wide-Web [4], as well as for signaling (SS7) in-
formation traffic and variable bit rate (typically video) traf-
fic over ATM. Therefore, it has been suggested that many

other protocols and systems need to be reevaluated under
this different type of traffic distribution before practical im-
plementations potentially show their faults.

Previously we have performed many studies, based on
the Poisson assumptions, of ServerNet SAN's performance
characteristics and have proposed a method for improving
them by optimizing the arbitration policy of routers. It is
now necessary to reevaluate the results of these studies with
self-similar traffic distributions. The purpose of this is to
provide a basis for fine-tuning the ServerNet routers and
end devices, and to modify the optimization method ac-
cordingly. Such a study also provides insight into the per-
formance discrepancies that may be generally observed be-
tween self-similar and Poisson traffic distributions.

1.1. Modeling Self-Similar Traffic

It has been shown through trace data [7, 10] and also
proven [9] that modeling of self-similar traffic can be
achieved by the aggregation of a large number of ON-OFF
packet train sources. The ON-OFF states are strictly alter-
nating where ON represents a state where packets are gen-
erated according to some regular rate, and OFF represents
a state where no packets are generated. The length of time
in which each train spends in either the ON or OFF state
should be selected according to a distribution which has
long-range dependence, i.e, the time spent in a state can be
very large with a non-negligible probability. The Pareto dis-
tribution (F (x) = 1� x��; with 1 < � < 2) [6] has been
found to fit well to the empirically observed packet distribu-
tions. The long-term correlations that result from using this
distribution are the main difference from traditional traffic
models, such as Poisson distributions.

1.2. Testing for Self-Similarity

There are three methods typically used for verifying self-
similarity in a time series: the “visual” test, aggregated vari-
ance plots, and rescaled R/S statistic plots. The first of these



is merely a set of plots of the original time series aggre-
gated over a variety of scales, which enables simple visual
inspection to determine that the process is bursty on many
time scales. Fig. 1 shows the difference between a Poisson
arrival process and a self-similar arrival process on a scale
of 100 time units. It can be seen that the variance of the
self-similar is much higher than that of the Poisson process.
The data presented in this section was produced to verify the
code and parameters, which were used to generate packets
for the simulations.
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Figure 1. Arrival Processes: (a) Poisson, (b)
Self-Similar

The method of aggregated variances visualizes the vari-
ance of the discrete self-similar process. The logarithm of
the variance of an aggregated self-similar process,Xt, de-
creases linearly with the logarithm of the aggregation size
[8], m:

log[V ar(X
(m)
t )] � log[V ar(Xt)]� �log[m]: (1)

As shown in Fig. 2, a log-log plot which fits a solid line to
the aggregated variance points allows us to verify the self-
similar nature of the process, as well as estimate the degree
of self-similarity H = 1 � �=2, where�� is the slope
of the line. The degree of self-similarity of a process is
typically described by theHurst parameter (H) [8]. H is

between 0.5 and 1, where 0.5 represents non self-similar
behavior and the closer to 1, the more long-range dependent
the process is. From the figure it is clear that the slope of
the variance plot line formed by the generated data is much
less than 1, thereforeH > 0:5 for this data, i.e., the process
is self-similar. The figure also displays a line with a slope
of -1, which corresponds to the aggregated variances which
would be seen from a process with short-term dependence
(e.g, Poisson).
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Figure 2. Normalized Variances of Aggre-
gated Versions of a Self-Similar Time Series

2. Modeling ServerNet

The ServerNet SAN is a wormhole-routed, packet-
switched, point-to-point network with special attention paid
to reducing latency and assuring reliability [5]. It uses mul-
tiple high-speed, low-cost routers to rapidly switch data di-
rectly between multiple data sources and destinations. Be-
cause it provides the intelligent switching that could previ-
ously be supplied only by a processor, ServerNet eliminates
the need for a processor in every data path.

There are four types of packets defined in the Server-
Net SAN: Read Request, Read Response, Write Request,
and Write Response [5, 3]. They consist of header, address,
checksum information, and a data payload of 64 bytes. The
generation of requests is limited by the maximum number
of outstanding requests allowed (8 was used in this study).

2.1. Simulation model

ServerNet is simulated by a discrete-event unit-time
model [2, 6] where each device is allowed to enter a partic-
ular state during each time step. The state that each device
enters is dependent on the condition of its state variables.
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Figure 3. 16-CPU ServerNet SAN Topology (16
CPUs, 104 I/O devices) and Link Categories

The order in which each device is given a chance to enter a
state is randomly generated during each clock step.

The simulation tool was written in C++ and compiled for
Solaris 2.5. It has been validated by comparing its results
with those collected in an experimental ServerNet testbed
implemented at Compaq Tandem Labs. The testbed con-
sisted of 8 routers and 24 end devices performing bulk data
transfers which result in bursty traffic distributions. Less
than 10% discrepancies were observed between the simula-
tion and the empirical results.

2.2. Traffic model

The modeled topology is shown in Fig. 3. It was chosen
because: it is one of the large topologies supported in the
family of ServerNet-based NonStopR HimalayaR S-series
servers; we have extensively studied it previously using the
Poisson model; and it has the valuable properties of being
deadlock-free and easily scalable.

The traffic load is determined by the Request Genera-
tion Rate (�), defined in units of packets�device/ms. In the
self-similar traffic simulations (�) determines the number
of packet-train sources that are aggregated to generate re-
quests. While in theON state each source generates a re-
quest every 10 clock ticks (200ns). A Pareto distribution
was used to control the time intervals for the packet trains
to remain in each of two states (ON or OFF). Thus a packet

train remains in theON state for4tON = (1 � R)
�1

�ON ,

and in theOFF state for4tOFF = (1 � R)
�1

�OFF , where
R is uniformly distributed random number between 0 and
1, �ON = 1:9, and�OFF = 1:25 [10]. For the Pois-

son simulations the request generation is controlled by a
Poisson process, the generation interval is determined using
tnext = �1

�
ln(1 � R); whereR is a uniformly distributed

random number between 0 and 1. The type of request (Read
of Write) is also determined by a uniformly distributed ran-
dom variable and the probabilities of generating either type
of request are equivalent.

Three types of traffic patterns (i.e., destination distribu-
tions) were employed in our studies [2]: Common Subtree
(CS) approximates applications where the interprocessor
traffic is primarily contained within a 4-CPU subtree; Uni-
form (U) approximates applications where traffic is evenly
distributed among all devices in the network; and Transpose
(T) approximates the worst case traffic in which traffic is al-
most exclusively remote.

2.3. Performance characteristics

The network performance characteristics used in this pa-
per are as follows.Actual Generation Rate, in flits/clock
tick, is the average number of flits generated during a sin-
gle simulation clock step over the life of the simulation.
Throughput , in Flits/clock tick is the average number of
flits consumed at a destination during each simulation clock
tick [6]. 2-Way Delivery Time, inms, is the difference be-
tween the time a request is created and the corresponding
response is consumed by the original sender; it is a mea-
sure of the instantaneous round-trip time. Each of these pa-
rameters is averaged over a large number of packets during
the course of the simulation until the required accuracy and
confidence level are achieved.

3. Results and Analysis

In previous studies of ServerNet network characteristics
were obtained based on a Poisson traffic-generation model.
This data was used to estimate the maximum two-way deliv-
ery time of the network [1], to determine the occurrence of
hot spots [2] and to eliminate them by improving the router
arbitration policy. Here the Poisson data is compared with
the new results obtained with the Self-Similar model.

Fig. 4a shows that self-similar traffic saturates the net-
work at lower average data rates, compared to the Poisson
traffic. It is noticeable that before saturation the network
exhibits higher average throughput under self-similar traf-
fic. The higher throughput is accompanied by higher av-
erage delivery times. Graph (b) indicates that the two-way
delivery time is approximately four times higher for self-
similar traffic, compared to Poisson. The link utilization,
illustrated in Fig. 5, shows the percentage of time links in
each given category (see Fig. 3) were in one of three states:
transmitting, stalled (blocked) or idle. All link categories
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Figure 4. Network Characteristics: Poisson
and Self-Similar; Uniform Destination Pattern

display an increased stalled time. This is particularly evi-
dent for categories 3, 6, and 8. The stalling of these links
is caused by a “domino” effect. It begins at link 8, which is
the most loaded one in the topology. The stalling of link 8
propagates through link 6 to link 3. Link 3 is highly utilized
because it carries traffic to and from the CPUs. CPUs gen-
erate more traffic than IOs for two reasons: (1) CPUs are
allowed more outstanding requests; (2) CPUs have to gen-
erate large amounts of responses, because they process all
requests from the numerous IOs. Thus, the combination of
the highly active CPUs and the stalling of the most loaded
link 8, causes link 3 to stall more than 70% of the time.
Notice that this is not the case for link 5, which is also con-
nected to CPUs and hence has the same load as link 3, but
this load does not need to pass through link 8. This signif-
icant increase in the fraction of time that links are blocked
is related to the bursty nature of self-similar traffic. Bursts
of data result in blocking conditions at the routers. In turn,
these blocking situations result in higher average delivery
time, as it was shown in Fig. 4. The increase in average de-
livery times is of the same degree as the increase in blocking
time.

Similar results were obtained under CS and T traffic pat-
ters. Link stalling occurs more often under self-similar traf-
fic – two to three times the values obtained under Pois-
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Figure 5. Utilization of Link Categories (Fig.3):
Poisson (left) and Self-Similar (right), Uniform
Destination Pattern

son traffic, which shows the direct connection between the
blocking time of links and the latency. Indeed, the aver-
age two-way delivery time for CS traffic are again two to
three times higher under self-similar data streams. CS traf-
fic is not as demanding on network bandwidth as U traffic
is, hence, a lower degree of blocking was observed. The in-
crease of latencies for the T pattern was of higher magnitude
than for the other two. The reason for this is that under the
T pattern packets make a more hops on average and, thus,
the link stalling propagates to produce higher latencies.

It is also important to estimate the maximum two-way
delivery time, i.e. the worst-case round-trip time. This is
performed under the worst traffic conditions [1]: T pattern
and maximum generation rate. In this estimation the num-
ber of samples necessary to achieve a reasonable percentile
and confidence level were determined by the formula [1]:

n = z1��
2

2 p

1� p
: (2)

wherep is the sought percentile, andz1��
2

is the normal
quantile for a confidence interval of100(1 � �)%. Thus
660,484 samples were needed to estimate the 99.999 per-
centile of the maximum two-way delivery time with a con-
fidence interval of 99%.

It is reasonable to expect that the maximum two-way
delivery time should not increase under self-similar traffic
generation. The premises for such expectation is that to esti-
mate the maximum latency it was necessary to use the worst
possible traffic conditions, which cannot be deteriorated by
any factr, including bursty generation. Fig. 6 shows that in
fact self-similar traffic does not produce a higher value for
the maximum two-way delivery time. However, the self-
similar traffic leads to high delivery times occurring more
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often. This also explains the significant increase of the av-
erage delivery times.

4. Conclusions

This study has demonstrated that making assumptions
about the nature of data traffic, in particular whether the
packets are generated according to a Poisson or a self-
similar process, can strongly influence performance eval-
uation results. Simulation data showed that the occurrence
of blocking situations within the network is up to four times
higher when packets are injected into the network by a self-
similar process compared to when packets are generated by
a Poisson process. The higher degree of blocking, results
in higher latencies, which also increase by up to four times.
This significant increase of blocking situations is attributed
to the bursty nature of self-similar traffic. The bursts of data
cause significant congestion in the network at much lower
average traffic loads than for Poisson traffic.

Thus, it is reasonable to expect that in general buffer
overflows will occur at lower average generation rates than
anticipated based on the Poisson assumptions. However,
such a phenomenon cannot be observed in ServerNet SAN
because it is prevented by the flow control mechanism
which stalls transmission when buffers approach their lim-
its. On the other hand, when average data generation rates
are very high and the network is saturated, the type of traffic
generation does not significantly influence the performance
characteristics, since enough data is generated (whether
bursty or not) to maintain constant congestion. Therefore,
the maximum two-way delivery times estimated using the

Poisson assumption retain their validity.
It is foreseeable that some modifications of network

components will be required to better accommodate self-
similar traffic distributions. One such modification would
be to increase buffer/queues sizes, so that bursts of data
could be stored effectively on a single device. This would
reduce the congestion caused by burst of data which fill the
buffers of several consecutive devices and block entire por-
tions of the network. Another means of controlling the net-
work performance is to reduce the maximum number of out-
standing requests and thus to limit the size of the data bursts
and reduce congestion. Finally, it will be necessary to de-
vise suitable router arbitration policies which will maximize
the performance of the network.
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