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Abstract

Background traffic models are fundamental to packet-level
network simulation since the background traffic impacts
packet drop rates, queuing delays, end-to-end delay varia-
tion, and also determines available network bandwidth. In
this paper, we present a statistical characterization of wide-
area IP traffic based on 90-minute traces taken from a week-
long trace of packets exchanged between a large campus net-
work, a state-wide educational network, and a large Internet
service provider. The results of this analysis can be used to
provide a basis for modeling background load in simulations
of wide-area packet-switched networks such as the Internet,
contribute to understanding the fractal behavior of wide-
area network utilization, and provide a benchmark to eval-
uate the accuracy of existing traffic models. The key findings
of our study include the following: (1) both the aggregate
packet stream and its component substreams exhibit signifi-
cant long-range dependencies in agreement with other recent
traffic studies, (2) the empirical probability distributions of
packet arrivals are log-normally distributed, (3) packet sizes
exhibit only short-term correlations, and (4) the packet size
distribution and correlation structure are independent from
both network utilization and time of day.

Key Words: Traffic Modeling, Internet Traffic Character-
ization, Network Simulation, Self-Similar Traffic, Internet
Flows.

1 Introduction
Simulation modeling of computer networks is a powerful

technique for evaluating the design and performance of net-
work, transport, and application-level protocols. Background
traffic models are a fundamental component of packet-
level network simulators since the network load drives the
packet drop rate, queuing delay, end-to-end delay variation,
and available network throughput [7]. Developing back-
ground traffic models suitable for use in a large-scale, packet
switched network simulation (e.g., an Internet backbone net-
work simulator) is a difficult problem for the following rea-
sons: (1) backbone networks are often inaccessible for mea-
surement and study, (2) the nature of Internet applications,
user populations, and user demand is constantly changing,
and (3) network traffic is shaped by network switches as well
as end-system congestion control protocols.

The goal of the traffic characterization presented in this
paper is to support the development of an efficient and ac-
curate background traffic model for WAN simulations. In
particular, we are interested in developing packet-level simu-
lations of large-scale IP backbone networks that provide ser-
vice for large university, enterprise, or small ISP networks.
Recent measurement-based studies (see[6, 11, 13] and ref-
erences therein) have established theself-similar nature of
network traffic in several contexts and developed techniques

to model such traffic. This paper presents the statistical char-
acteristics of network traffic exchanged between the campus
network at the University of Virginia, a state-wide educa-
tional network, and a large Internet service provider. Our
analysis confirms the self-similarity of the campus-level IP
packet stream, determines parameter values under different
network loads, and analyzes an address-based partitioning
of the aggregate stream that is useful for WAN modeling.
The results of this analysis can be used to provide a basis
for modeling background load in simulations of wide-area
packet-switched networks such as the Internet, contribute to
understanding the fractal behavior of wide-area network uti-
lization, and give a benchmark to evaluate the accuracy of
existing traffic models.

The remainder of this paper is organized as follows: Sec-
tion 2 describes how the packet traces were collected and
gives an overview of the traces used throughout the paper.
Section 3 presents the statistical properties of the aggregate
packet stream generated by the UVA campus network. We
demonstrate that the arrival density function follows a log-
normal distribution, exhibits significant long-range depen-
dencies (LRD) over the entire range of network utilization,
and the LRD is consistent with LAN traffic. In the context of
modeling the campus traffic stream, the findings show that
established techniques for generating synthetic streams of
self-similar traffic [3, 4, 13] are well-suited for WAN back-
ground traffic models. Section 3 also presents the density
function and correlation structure of the packet sizes, and
finds that the packet sizes have only short-range dependen-
cies with a density that is independent of the network load.

Section 4 presents the arrival density and correlation
structure of the substreams obtained by partitioning the ag-
gregate UVA streams along destination IP addresses. Char-
acterizing substreams is important since, in the context of
simulation, an accurate partitioning of background traffic in-
troduced into the WAN backbone is crucial. In our partition-
ing, a few substreams comprise the majority of the aggre-
gate traffic, and these substreams exhibit statistical properties
similar to those of the aggregate stream. However, the par-
titioning also creates very light substreams, e.g., ones con-
tribute less that3% of the aggregate packet stream, and these
substreams do not exhibit the same degree of self-similarity
as the larger substreams and aggregate streams. These find-
ings are not surprising in that the amount of source aggrega-
tion is an important factor in determining the presence and
degree of self-similarity for a traffic stream [11]. For WAN
modeling using a self-similar traffic model, the findings show
that very light substreams are difficult to characterize using
the properties of the aggregate stream and may require sepa-
rate treatment. Conclusions and future work are discussed in
Section 5.



2 Collection of Wide-Area IP Packet Traces

The analysis presented in this paper is based on 90-
minute samples from a week-long trace of nearly one bil-
lion IP packets exchanged between the University of Vir-
ginia’s campus network (UVAnet), the Virginia Educational
and Research Network (VERnet), and BBNplanet (at the
time, UVA’s Internet service provider). The network mon-
itor used to collect the trace consists of a powerful worksta-
tion1, a kernel customized to have large network buffers, and
a kernel-level packet filter [1]. The network monitor provides
a timestamp resolution within 100�sec and an observed drop
rate of0:005% over the entire trace.

Figure 1 shows the experimental setup which consists of
three routers and a network monitor interconnected by an
Ethernet hub. The VERnet and BBNplanet routers are each
connected to three T1 links, while the UVAnet router is con-
nected to UVA’s backbone FDDI concentrator. The filter is
configured to listen promiscuously on the Ethernet and cap-
ture all IP packets sent between the UVAnet, VERNet and
BBNPlanet routers. The filter captures the IP header and
saves the IP source, IP destination, timestamp, and size of
each packet to disk. After compression, approximately six
bytes are saved per packet. The week-long packet trace (con-
sisting of 6GB of data) is publicly available at [2].

CISCO 2500 CISCO AGS/7000CISCO AGS/7000

UVAnet

(Global Internet)
BBNPlanetVERnet

Sun Ultra 170

Bay Networks Ethernet Hub

Monitoring Tool

Figure 1. Experiment Setup
Figure 2 depicts the nine-day packet trace captured by

the packet filter. The figure plots the number of packets ex-
changed between the three networks per100-second inter-
val as a function of time. There are two periods where the
monitor workstation went off-line. The first period occurred
between 8PM Wednesday and 8AM Thursday due to a disk
problem, and the second failure occurred at 11PM on the sec-
ond Tuesday due to a campus-wide power outage. Two in-
teresting observations about the data are: (1) the ratio of the
peak to the minimum data rate is approximately 8:1, which
is bursty at this timescale, and (2) the packet rate is cyclical
with periods of low utilization occurring around 5AM and
peak utilization occurring around 4PM.

3 Data Analysis

This section presents the packet size distribution, arrival
correlation, and arrival density of the aggregate traffic gener-
ated by UVAnet (i.e., the traffic leaving UVAnet destined for
either BBNplanet or VERnet). The analysis focuses on the
27-hour period highlighted in Figure 2. Figure 3 shows the

1Sun UltraSparc Model 170, 100MB RAM, 8GB HD running Solaris 2.5
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Figure 2. Packets per 100 seconds for 9 day
packet trace.
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Figure 3. Packets per 10-second interval for 27

hour packet trace.

packets generated by UVAnet per10-second interval during
this period. As indicated in Figure 3, only a single network
monitor fault occurred during the trace; just before 12PM,
the monitor timed out for ten seconds and dropped9; 784
packets.

The statistical analysis focuses on the three90-minute
intervals highlighted in Figure 3. These intervals, namely
the 2:15AM – 3:45AM (“2AM trace”), 2:00PM – 3:30PM
(“3PM trace”), and 9:00PM – 10:30PM (“9PM trace”), were
selected because they correspond with periods of low, high
and medium network utilizations, respectively, and because
the arrival processes are stationary over the duration2. Al-
though only three traces from a single27 hour trace are pre-
sented, the analysis here is consistent with and representative
of that done with other data sets from the week-long trace.

3.1 Packet Sizes

We first present the density and correlation structure of
the packet sizes for each trace. Figure 4 shows the empirical
probability distribution of packet sizes for the 2AM, 3PM
and 9PM traces. The density is presented on a logarithmic
scale to highlight that a small number of packet sizes domi-
nate the trace. In particular, approximately75% of the pack-
ets are either40 � 44, or 552 bytes in length. Inspection of

2Note that to evaluate the correlation structure of the packet arrivals, the
process must be stationary.



the distribution also reveals “spikes” at55; 60; 75; 144; 576
and1500 byte packets, accounting for12% of the packets.
A key observation in Figure 4 is that the densities are nearly
identical for all three traces, which shows the distribution of
packet sizes is independent of network utilization.
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Figure 4. Probability density function of packet
sizes.

We next consider the correlation structure of the packet
sizes. For a random processfXigi=0;1;:::;N with sample
mean X and sample variance ofS2, the autocorrelation
functionr can be estimated for all lagk as follows:

r(k) =

PN�k

i=1 (Xi �X)(Xi+k �X)

(N � k)S2
(1)

Figure 5 gives the autocorrelationr(k) of the packet sizes
plotted as a function of the lagk for each trace. Since the
tail converges rapidly to0, we can conclude that packet sizes
are not correlated; i.e., the size of packetxi has a negligi-
ble influence on the size of packetxi+1; : : : ; xn. The lack
of correlation can be explained by the nature of statistical
multiplexing in IP networks. That is, packet sizes are most
often highly correlated as they are generated by the appli-
cation. However, as the network statistically multiplexes a
large number of independent connections, the correlation di-
minishes. For example, Figure 5 shows that the9PM trace
has the most correlation, and the3PM trace has the least cor-
relation. The correlation analysis shows that packet sizes can
be faithfully modeled for a large campus network by inde-
pendently choosing a packet size using the empirical density
function shown in Figure 4.

3.2 Packet Arrival Correlation Structure

Next we consider how packet arrivals at the network mon-
itor are correlated over time. Accurately modeling the arrival
correlation of the traffic stream injected by the campus net-
work into the WAN backbone is critical since packet bursts
dramatically affect the packet drop rate, variation in network
transmission delay, and available network throughput within
a wide-area network simulation.

The time-dependent properties of the UVAnet streams are
shown in Figure 6 by plotting the autocorrelation function of
packet arrivals per1ms. In contrast to the packet size corre-
lation, Figure 6 shows the correlation structure of packet ar-
rivals is hyperbolically decaying, suggesting that the streams
have long-range dependencies (for a review of this subject,
see [5]). The important property of an arrival process with
long-range dependencies is that the arrival burstiness is sim-
ilar, independent of the time scale in which it is viewed (so-
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Figure 5. Autocorrelation function for packet
sizes.
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Figure 6. Autocorrelation function for the 2AM,
3PM and 9PM traces.

called self-similar processes). Formally, a stationary pro-
cessfXi j i = 0; 1; : : : ;1g and its associatedaggregated

arrival processesfX(m)
i j m = 1; 2; : : : ;1g given by:

X
(m)
i = 1=m

i(m+1)�1X

k=im

Xk (2)

is exactly second-order self-similarif the autocorrela-
tion r(m)(k) of each aggregated process is given by [11]:

r(m)(k) = r(k); k � 0 (3)

and the variance is given by [11]:

Var(X(m)) = V ar(X)m�2(1�H) (4)

The degree of self-similarity is expressed by the Hurst
parameterH in equation (4).H varies between0:5 and1,
where a larger value indicates a higher degree of self-
similarity. For a short-range dependent process, such as the
Poisson-based models in [9, 14], the Hurst parameter will be
approximately0:5; thus, by (4), the correlation of a Poisson
process will fall off as1=mwhere m is called theaggregation
level. Using the reference curves in Figure 6 we see that the
correlation structure of the traces correspond to self-similar
processes withH between0:70 and0:80; thus, they can not
be accurately modeled with a Poisson-based process. These
results are consistent with studies showing the self-similarity



of LAN traffic which have estimated the Hurst parameter as
high as0:82 [11].

In order to better evaluate the self-similar nature of the
traffic, we consider log-variance plots for the three traces in
Figure 7. Log-variance plots show the degree of burstiness
of an arrival process over multiple time scales by plotting
the log10 of the normalized variance of the aggregated ar-
rival processX(m) against thelog10 of the aggregation level,
m. In contrast to a short-range dependent or Poisson process
(i.e., whereV ar(X(m)) falls off as1=m), Figure 7 shows
that the variance of the arrivals for all three traces decay
slowly, in proportion to a self-similar process withH = 0:65
for small aggregation levels, and asymptotically as a self-
similar process withH = 0:8.
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traces.

0

0.01

0.02

0.03

0.04

0.05

0.06

0 20 40 60 80 100 120 140

Medium utilization (9PM)

Low utilization (2AM)

High utilization (3PM)

Pr
ob

ab
ili

ty

Packets per 100ms

Figure 8. Histogram and log-normal fit of
packet rates at low, medium, and high net-
work utilizations. Empirical traces are shown
as solid lines, while their log-normal approxi-
mations are depicted as dashed lines.

An important class of processes that can model frac-
tal traffic are so-called self-similar models such as frac-
tional Gaussian noise [12] and fractional ARIMA processes
[3]. Models that approximate fractional Gaussian noise
[8, 10, 13] are attractive for their computational efficiency
and simplicity (most of these models only require the Hurst
parameter as input). Typically, these traffic models generate
sample paths that are normally distributed. Thus, the sample
path must be converted to match the density of the empiri-
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Figure 9. Q-Q plots of 2AM, 9PM and 3PM em-
pirical traces versus fitted log-normal distribu-
tions.

cal traces. Figure 8 shows the distribution of packet arrivals
for UVAnet per100 ms interval. The solid lines give the
empirical probability density of the traces, while the dashed
lines represent analytical log-normal distributions that are fit
to the empirical densities using a maximum likelihood esti-
mator (MLE). As the figure shows, the fit appears to be good
except for the deviation at the distribution peaks. To better
evaluate the goodness of the fit, we show Q-Q plots in Fig-
ure 9 that plot the quantiles of the empirical data against the
quantiles of the fitted distribution. Figure 9 shows that the
log-normal distribution is very good across the entire range
of the distribution except for the tail at the right where the
log-normal approximation overestimates the empirical data.
This suggests that existing self-similar models may be use-
ful in matching our empirical data since normally distributed
processes can be easily transformed to a log-normal form.

4 Partitioning the Aggregate Packet Stream

In the previous section we considered the traffic of an ag-
gregate stream departing a campus network. This section
presents the statistical properties of substreams obtained by
partitioning the aggregate traffic along destination network
addresses. In the context of our modeling approach discussed
in the introduction, characterizing component substreams is
important because background traffic models must not only
construct an aggregate packet arrival process but must asso-
ciate a destination campus address or network access point
with each packet. Like the aggregate stream, the correlation
and density of each substream must be accurately modeled,
otherwise network drop and delays within the network sim-
ulation will not reflect the performance characteristics of a
production network.

We divide the aggregate stream into14 substreams based
on their destination IP addresses. Table 1 gives the network
mask used to define the component substreams and the per-
centage of packets each substream contributes to the aggre-
gate stream. The network masks divide the aggregate stream
such that the Class A address space and Class D/E address
space each correspond to a substream, and the remaining12
streams are created by partitioning the Class B and C address
along bits 2-53. Although this partitioning is arbitrary, it is

3This partitioning was motivated by making each of the Class B and
Class C streams the same “size” with respect to number of network ad-
dresses.



sufficient to give the statistical properties for substreams with
a range of means.

There are several interesting observations with regard to
the distribution of packets throughout the IP address space:

� Class A destinations accounts for less that2% of the
packet arrivals while consuming half of the total IP ad-
dress space.

� Two of the Class C streams (i.e., those addresses in the
range192:0:0:0 � 207:255:255:255) account for60%
of the packets but consume only1=16 of the IP address
space.

� Half of the high order Class C (i.e.,208:0:0:0 �
223:255:255:255) and a quarter of the high order Class
B (i.e.,176:0:0:0�191:255:255:255) address space had
almost no arrivals. For this reason, we do not consider
these substreams in the analysis that follows.

Filter Mask 2AM 9PM 3PM
0:0:0:0� 127:255:255:255 (Class A) 1:6% 1:6% 1:7%

128:0:0:0� 135:255:255:255 (Class B) 20% 20% 21%

136:0:0:0� 143:255:255:255 (Class B) 6:9% 5:9% 3:9%

144:0:0:0� 151:255:255:255 (Class B) 3:0% 3:0% 2:4%

152:0:0:0� 159:255:255:255 (Class B) 4:2% 7:7% 6:3%

160:0:0:0� 167:255:255:255 (Class B) 3:0% 3:0% 2:4%

168:0:0:0� 175:255:255:255 (Class B) 0:6% 1:4% 1:0%

176:0:0:0� 183:255:255:255 (Class B) 0:0% 0:0% 0:0%

184:0:0:0� 191:255:255:255 (Class B) 0:0% 0:0% 0:0%

192:0:0:0� 199:255:255:255 (Class C) 21% 26% 22%

200:0:0:0� 207:255:255:255 (Class C) 40% 32% 39%

208:0:0:0� 215:255:255:255 (Class C) 0:0% 0:1% 0:2%

216:0:0:0� 223:255:255:255 (Class C) 0:0% 0:0% 0:0%

224:0:0:0� 255:255:255:255 (Class D/E) 0:3% 0:1% 0:2%

Table 1. Network filter mask and percent of traf-
fic for 2AM, 9PM and 3PM traces.

4.1 Substream Arrival Distribution

Figure 10 shows the empirical probability density for sev-
eral of the component substreams of the 3PM trace. For clar-
ity of presentation, we include only the substreams which
compose more than3% of the aggregate stream. The solid
lines depict the empirical streams, while the dashed lines il-
lustrate an analytical log-normal distribution whose param-
eters were determined using the MLE. As the figure shows,
the log-normal distribution provides a good fit for the streams
with a larger mean, but those with smaller means contain a
large number of intervals with no arrivals, which makes the
log-normal fit poor. The data suggests that light streams can
not be modeled well by the log-normal distribution, at least
not without correction factors such as discretizing the log-
normal near zero.

4.2 Substream Correlation Structure

Figure 11 shows log-variance plots of the component sub-
streams for each trace. For the medium and high utiliza-
tion streams (i.e., 3PM and 9PM traces), the component
substreams exhibit the same degree of self-similarity as the
aggregate streams shown in Figure 7 (except for the class
D/E traffic, which is uncorrelated for all three traces). The
larger substreams of the low utilization trace (i.e., 2AM
trace) also exhibits the same correlation structure as the ag-
gregate stream. However, in the 2AM trace, the degree of
self-similarity decreases with the mean of the substream.
This observation is consistent with other studies [11], which
determine that sample paths with low utilization exhibit a
smaller degree of self-similarity than streams with high uti-
lizations. The data in Figure 11 suggests that the degree of
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self-similarity of substreams obtained by partitioning a syn-
thetic aggregate stream (i.e., assigning network addresses)
preserves the self-similarity as a function of the mean. This
conclusion holds for the UVAnet aggregate stream, whose
mean is measured in hundreds of packets per second; how-
ever, further research is needed to determine at which point
(in terms of packets per second) the self-similarity is not pre-
served.

5 Conclusions and Future Work

In this paper we presented the statistical characteristics
of long packet traces exchanged between UVAnet, VERnet
and BBNplanet. We focused on three representative 90-
minute traces of packets leaving the UVA network. We first
considered the distribution and correlation of packet sizes
and found that the densities are nearly identical for all three
traces, and are short-term correlated. Next, we considered
the density and correlation structure of the arrivals for each
trace. We showed that the arrival density can be modeled
with a log-normal distribution and that the arrivals are self-
similar, exhibiting significant long-range dependencies as
found in Ethernet LAN traffic studies. Finally, we analyzed
the component substreams of the aggregate traces. In our ex-
ample, the component substreams which compose more than
3% of the aggregate stream are also log-normally distributed;
however, the component substreams with very low packet ar-
rivals tend to deviate from the parameters of the aggregate
stream.

Future work will center on the development of an effi-
cient analytic background traffic model for WAN simulation
that will reflect the statistical properties of the empirical data.
This characterization study confirms the applicability of self-
similar models for modeling the aggregate packet arrival pro-
cess for a large campus network such as the university cam-
pus studied. We intend to model the traffic entering a WAN
backbone at a network access point with a single self-similar
traffic generator, using the statistics derived in the analy-
sis in this paper, and then to split the outgoing traffic into
destination-based substreams. This approach is attractive in
that a single generator per network access point (NAP) makes
the computational burden of background traffic generation
linear in the NAPs on the backbone.
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