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Abstract

The goal of this study is to introduce some im-
portant topics in today’s traffic modeling in high-
speed networks. In recent years, a number of
studies demonstrated that in wide variety of net-
working environments the traffic appears to exhibit
many unusual characteristics such as heavy-tailed dis-
tributions, long-range dependence (LRD) and self-
similarity. Since understanding traffic characteristics
is very important in network dimensioning and per-
formance prediction, the identification and quantifi-
cation of these phenomena are in the focus of this
paper. Together with the description of the statisti-
cal methods used, the analysis results are presented
for two data sets taken from real networks.

1 Introduction

The classical models in queuing and network the-
ory based on, for example, the Erlang formulas con-
tain simple assumptions that guarantee the Marko-
vian properties and ensure their analytical tractabil-
ity. In the early stages of traffic modeling—when the
typical case was the telephone traffic—the Poisson
process was known as a simple and adequate model
of real traffic. Nowadays, with a surprisingly rapid
rate of the evolution of communication technology,
we know much more about traffic flows of different
kinds. Let’s take a look at some of them which we are
using in our everyday’s life: the wide area TCP traf-
fic which provides the Internet connection, the pos-
sibility for e-mail; the FTP traffic for file transfers;
the TELNET traffic for external accessing; the video
conferencing data; etc. Statistical analysis of number
of data sets selected from this traffic mix show that
some properties cannot be explained by Poisson-like
models. Analysis of these data is challenging since
there is strong evidence that the classical modeling
assumptions (such as independence or the lack of long
memory) do not hold any longer.
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In recent years, a number of studies, [1], [2], [5], [8],
[15], and [19], demonstrated that in certain environ-
ments, the traffic appears to exhibit many unusual
characteristics such as heavy-tailed distributions,
long-range dependence and self-similarity. In some of
these publications useful analytical methods—which
were used to identify and quantify these properties—
can be found with detailed (or less detailed) descrip-
tions.

Since understanding traffic behavior and charac-
teristics is very important to network designers and
system analysts in network dimensioning and perfor-
mance prediction, there are needs to study and un-
derstand the heavy-tailed and self-similar properties
of today’s network traffic. In this paper the mathe-
matical side of these phenomena is addressed. First,
approaches and results which researchers had reached
in their studies of this area is summarized. Second,
our analysis to test the fractal behavior of measured
data including heavy tail and long-range dependence
tests are presented.

2 Background

Before turning to the main point of this study, this
chapter introduces the basic concepts of fractal traffic
characteristics.

2.1 Heavy-tailed distributions

The concept heavy-tail can be found in many envi-
ronments. Heavy-tailed distribution arises in the set
of cities have all the people, the set of words have
all the use, the set of earthquakes do all the dam-
age, etc. Let’s look at an example: consider a vari-
able that represents a waiting time. For waiting time
with a light-tailed distribution, the longer we have
waited, the sooner we are likely to be done. In con-
trast, for waiting time with a heavy-tailed distribu-
tion, the longer we have waited, the longer is our
expected future waiting time [2].



To be more specific, let X be a random variable
with distribution function F concentrating on [0, c0).

Definition 1 [16] F is said to be heavy-tailed with

indez a, if

1-F(z) =2 *L(z), as a>0

(1)

i.e.,

T — 00,

where L is slowly wvarying at
limg yo0 L(tz)/L(z) =1, t > 0.

0,

If a < 2, the distribution has infinite variance, and
if a < 1, it has infinite mean.

For example, the simplest case of heavy-tailed dis-
tributions is the so-called Pareto distribution. In this
case, L(z) = 1, so the distribution function of Pareto
is F(z) = 1 — 2~®. The difference between expo-
nential tails and heavy tails can be seen on Figure 1.
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Figure 1: The distribution tails of exponential and
Pareto distributions

In communications, heavy-tailed distributions have
been used to model number of traffic flows like sizes
of Unix files or frame sizes of variable bit rate video.

2.2 Long-range dependence

The autocorrelation function r(k):

_ E{(Xn - E(X)) (Xntx — E(X))}
E{(X, - B(X))’}

of a long-range dependent stochastic process decays
hyperbolically as the lag increases. As a result,
> p_ir(k) — oo when n grows in infinity. This
non-summability of the correlations captures the in-
tuition behind long-range dependence, namely that
while high-lag correlations are all individually small,
the cumulative effect is of importance and gives rise
to features which are drastically different from those
of the more conventional, i.e., short-range dependent
processes. The latter are characterized by a geomet-
ric decay of the autocorrelations, i.e., r(k) ~ a*,0 <
a <1 as k — oo, resulting in the summable autocor-
relation function 0 < ), r(k) < co. By definition,

r(k)

Definition 2 [9] X; is called o stationary process
with long range dependence (LRD or long memory) if
there exists a real number H € (0.5,1) and a constant
cr > 0 such that

lim r(k)

- =1
k— o0 CTkQH_2 ’

(2)

where H is called the Hurst parameter and measures
the degree of LRD.

2.3 Self-similarity

The unifying concept underlying fractals, chaos, and
power laws is self-similarity. Self-similarity, or invari-
ance against changes in scale or size, is an attribute
of many laws of nature and innumerable phenomena
in the world around us [17]. A phenomenon that is
self-similar looks the same or behaves the same way
when being viewed at different scales on a dimension.
The dimension can be considered in space or time. In
our study of the traffic data, we concentrate on the
time series and stochastic processes that exhibit self-
similarity with respect to time.

Figure 2 is a comparison of time series plots of a
self-similar and a non-self-similar stochastic process.
Note that self-similarity does not mean that the time
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Figure 2: Comparison of self-similar and non self-
similar process

function is exactly reproduced at different time scales.
Instead we can observe similar burstiness of traffic
at different time scales in case of self-similar traffic.
This difference is noticeable between the self-similar
process (left side) and the non self-similar process
(right side).

Definition 3 [15] Consider the process X, and de-
fine the m-aggregated time series (m =1,2, ...)

1
X(m) = {X,Em) :X,Em) = _(ka—m+1 + ...+
m

FXpi), k=1,2,...} (3)



Let (™ (k) be the autocorrelation function of the ag-
gregated process. The process X is said to be

(a) exactly self-similar, if X 2 m~HXM) e, if
X s identical to X(™) within a scale factor in a
finite dimensional distribution sense.

(b) ezactly second-order self-similar, if r™ (k) =
r(k), k> 0.

(¢) asymptotically second-order self-similar, if

r(™ (k) ~ r(k), k,m — 0.

3 Performance implications

The first study of fractal behavior of traffic was pub-
lished in [5] by researchers at Bellcore. Based on ex-
tensive measurements made on a local area Ethernet
network they concluded that the traffic possesses self-
similar properties and discovered that the higher the
load on the Ethernet, the higher the estimated Hurst
parameter H of the traffic or, equivalently, the higher
the degree of self-similarity. This result is vital be-
cause it is precisely at high loads that performance
issues become most relevant.

An equally important result of the Ethernet analy-
sis was the inadequacy of traditional queuing models
to predict performance. For example, a common as-
sumption concerning data traffic is that multiplexing
a large number of independent traffic streams results
in a Poisson process. It would be the right assump-
tion, if we disregard some limits in the environment.
Study in [6] points out that this assumption and the
resulting queuing analysis led Asynchronous Transfer
Mode (ATM) switch vendors to produce first genera-
tion switches with small buffers (10—100 cells). When
these switches were deployed in the field and exposed
to real traffic, cell losses far beyond those expected
were experienced and resulted in a redesign of the
switches.

For a queuing system, such as ATM, Frame Relay,
100BASE T, Wide Area Network (WAN) routers, and
generally for statistical multiplexers, if the input data
of the queue is self-similar, then increased delays and
increased buffer size requirements will be experienced
[5]. The queuing performance of actual ATM traffic
exhibiting self-similar characteristics was investigated
in [13]. It has been found that the upper time scale
which determines the range of correlations of interest
from cell loss point of view is approximately ten times
the buffer size. However, this time scale also depends
on the load.

For better traffic control, the traffic profile can be
changed, for example by traffic shaping. However, the
fractal characteristics seem to be rather robust with
respect to shaping and can difficultly be removed [11].

The nature of traffic self-similarity may be inher-
ent in the data traffic source, for example the Vari-
able Bite Rate (VBR) video traffic [8], or may be
the result of numerous interactions with the network,
for example the Transmission Control Protocol-based
(TCP) traffic [7]. In the first case, the traffic behav-
ior remains dependent of the network conditions un-
der which it is sent, it can be effectively managed in
the context of admission control and resource alloca-
tion subject to Quality of Service (QoS) guarantees.
In the other case, the traffic self-similarity changes
its behavior depending on the congestion status, re-
transmission scheme (different TCP version), number
of concurrent users, request file size (for Web), File
Transfer Protocol (FTP) file size, and so on. Some
cases, non-stationarity can be detected in measured
traffic which can also provide alternative modeling
approaches to fractal traffic modeling [12]. In both
cases the traffic is difficult to be characterized and
modeled. From traffic engineering point of view, it
yields to a difficult traffic control.

This summary took part in a wide area and dealt
with different kinds of network traffic and based on
the results, self-similarity and heavy-tailedness seem
to be good structures in high-speed network model-
ing. Although their application can explain and ad-
dress many problems in the traffic behavior, it does
not mean that these models are the best and the only
solution for the modern traffic modeling. The studies
on self-similarity and heavy-tailedness is complicated
and still the subject of the ongoing research all over
the world.

4 Measurements

These measurements are freely available from the In-
ternet Traffic Archive [18].

4.1 1P traffic traces

This trace is the result of an hour long Ethernet mea-
surement ran from 14:00 to 15:00 on Friday, January
21, 1994. The tracing was done on the Ethernet DMZ
network over which flow all traffic into or out of the
Lawrence Berkeley Laboratory, located in Berkeley,
California. The raw traces were made using tcpdump
on a Sun SparcStation using the BPF kernel packet
filter.

The measurement captured arrival timestamps
in microsecond precision of TCP, UDP, TCP
SYN/FIN/RST, encapsulated IP and other IP pack-
ets in five files, respectively. After processing these
files, a set of around 300,000 IP packet arrivals in
consecutive time-windows, equally 0.021sec, was se-
lected for analysis.



4.2 WWW traffic traces

These measurements were done at Boston Univer-
sity’s Computer Science Department. In order to
capture all of the Web activity on a Local Area Net-
work (LAN), researchers modified the Web browser
NCSA Mosaic and installed it for general use. After
that Mosaic browsers could write down all working
activities of browsers in a log file. Each line in a log
corresponds to a single URL requested by the user;
it contains the machine name, the timestamp when
the request was made, the user id number, the URL,
the size of the document (including the overhead of
the protocol) and the object retrieval time in seconds
(reflecting only actual communication time, and not
including the intermediate processing performed by
Mosaic in a multi-connection transfer). These traces
contain records of the HTTP requests and user be-
havior of a set of Mosaic clients running in a general
computing environment at the department. This en-
vironment consists principally of 37 SparcStations 2
workstations connected in a local network, which is
divided in two sub-nets. Each workstation has its
own local disk; logs were written to the local disk
and subsequently transferred to a central repository.
The data collection then took place in about 5 months
from 17 January 1995 until 8 May 1995.

In this study we consider only the characteristics
of the file sizes transmitted over the Internet. So
a small C routine was implemented to subtract this
information from over 6000 log files. Around 230,000
unique file sizes were recorded. As the suggestion
of some previous studies, this data set—called the
Web file sizes data set or the WFS set—may contain
heavy-tailed properties.

5 Analysis and results

5.1 Testing for heavy tails

A heavy-tailed process has its own feature that the
tail of the distribution decays much more slowly than
exponential. This is the main point of methods
used to detect the heavy tail. Moreover, to estimate
the scale parameter a (see Definition 1) various ex-
ploratory plotting techniques are available. They are
based on the Hill estimator and the modified QQ-
plot. Another considerable method is the DeHaan’s
moment estimator. These statistics are shortly de-
scribed in the followings.

Hill estimator Suppose X;, Xo, ..., X, are inde-
pendent, identically distributed (iid.) random sam-
ples from a distribution F and X;,, > Xo,, > ... >
Xn,n are the order statistics. If F'is a heavy tailed
distribution (see Definition 1), The Hill estimation of

index « takes the following form [16]:

-1

1 n
- > log X;n —log Xgn (4)

=1

O =0, =

The Hill estimation of WFS data set can be seen on
Figure 3. The plot goes fast to its stable value 0.67.
It is the estimate of index a of the WFS distribution
tail.
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Figure 3: The Hill plot estimation of WFS data set

Modified QQ-plot The main idea of using modi-
fied QQ-plot follows the assumption: if X; > X, >

. > X}, are samples from a distribution F and k is
large enough, the distribution function F' at z = X
can be estimated by

J
=FX;)~1- ——.

X wi-g 6
From this, the modified QQ-plot is defined as follows
[10]: Let X7 > X» > ... > X} = u be the order
statistics of a distribution, which is approximately
Pareto. Then the plot of

{<long—logu, log<kil)>, 1§j§k}

(6)

should roughly look like a straight line with slope a.

Figure 4 is the modified QQ-plot of WFS data set.

It can be seen on the figure that the plot is not exactly

a straight line but a regression line can be fitted over

points with small deviations. The slope provides the
estimate of a to be 0.73.

P(iL‘ < XJ)

DeHaan’s moment estimator According to [16],
DeHaan’s moment estimator is defined as follows: Let
X1 > X5 > ... > X, be the order statistics from a
random sample of size n. Define for r = 1, 2 and for
k upper-order statistics
T
Xk+1> '

Hkn:kz<

(7)
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Figure 4: The modified QQ-plot estimation of WFS
data set

DeHaan’s estimate of index a can be calculated by
the form
-1
1
(Hy )2
2 (1- )
Figure 5 shows the plot result generated by De-
Haan’s testing methods. The estimate of « in this
case, 0.65, is a bit smaller than in the Hill’s case.
It may be the effect of smoothing technique used in
DeHaan’s algorithm.

y'=|Hy,+1- (8)
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Figure 5: DeHaan’s estimate of index a of WFS data
set

We can conclude that the set of file sizes trans-
ferred over the Internet seems to fit well the Pareto
distribution with index « about 0.7. Similar results
were also explored by other researchers in [1]. As
discussed in this paper, it may be an evidence of self-
similar WWW traffic.

5.2 Testing
similarity

forr LRD and self-

For estimating the Hurst parameter, a number of al-
gorithms has been worked out. Algorithms were de-

scribed, for example, in [3], [4], and [16]. In this sec-
tion four widely used methods: variance-time plot,
R/S plot, periodogram, and Whittle estimator are
summarized. However, by using LRD tests and other
statistical tests, it is difficult to make reliable con-
clusions about the self-similarity of traffic. Note that
in most cases statistical methods can not prove an
empirical data set to be produced by an exactly self-
similar process. Instead, as shown in Definition 3, a
data set may only have the property of second-order
or asymptotically second-order self-similarity.

Variance-time plot For a stationary process with
LRD, the following property can be proven:

1

var(X ) =

var(X), 9)

s0
log var(X ™)) = log var(X) + (2H — 2)logm. (10)

Because logvar(X) is a constant independent of
m, if we plot var(X (™) versus m on a log-log graph,
the result should be a straight line with a slope of
(2H — 2). The plot can be easily generated from the
data series X by generating the aggregated processes
of X at different levels of m and then computing the
empirical variance. Plot with slope values between
—1 and 0 suggests LRD.

The variance-time plot of IP data set is drawn on
Figure 6. It is surprising that there is a breaking
point on the plot. From a certain large value of time
unit, the slope takes up a bigger value. Anyway, by
the Definition 2 of LRD it is an asymptotic charac-
teristics, so the Hurst parameter should be estimated
by the slope of the higher aggregation levels. The
estimate of H was 0.83.

est. H=10.83
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Figure 6: Variance-time plot of IP data set

R/S plot For a stochastic process X defined in dis-
crete time {X; : j =1, 2, ..., n}, the rescaled ad-



justed range or R/S-statistics of X over a time inter-
val n is defined as the ratio R/S with:

R = max{W;:i=1,2,...,n}
—min{W;:i=1,2,...,n},
S = var(X) (11)

where W; = >, (Xx — X),s = 1,2,...,n and
X = (1/n) Y-, Xi. It can be proven for any sta-
tionary process with LRD that the ratio R/S has the
following characteristics for large n:

R _/n\H

S~ (2)
which is known under the name Hurst effect. Thus if
we plot R/S versus n on a log-log graph log(R/S) ~
Hlogn — Hlog2, the plot should fit a straight line
with slope H.

Using this algorithm, the R/S analysis of IP data
set was provided and can be seen on Figure 7. Data
points are scattered around a straight line, which
means that IP packet arrivals seem to be LRD with
Hurst parameter H = 0.84, which is the estimate
from the slope of regression line.

(12)
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Figure 7: R/S analysis of IP data set

Periodogram Another alternative way to estimate
the Hurst parameter of LRD is the periodogram plot.
The power spectral density of a LRD process obeys
a power law near the origin

lim f)

P T

(13)
where ¢y is a constant, v is the frequency, and
f(v) is the power spectral density function, that is
the Fourier transform of the autocorrelation function
r(k). Periodogram provides a fast estimate of f(v):

n 2

Z(Xk _ X)ez'ky

k=1

(14)

So if the periodogram is plotted against small val-
ues of frequency on a log-log graph, the plot should
be a straight line with slope (1 — 2H).

The periodogram plot of IP data set is shown on
Figure 8. The estimate of H in this case is 0.82.

log(periodogram)

log(frequency)

Figure 8: Periodogram plot of IP data set

Whittle estimator Whittle estimator is a con-
crete application of maximum likelihood method
(MLE). On the other hand, the Whittle estimation
is based on the periodogram. So in most cases these
methods provided the same estimates of the Hurst
parameter.

The Whittle estimator was suggested to estimate
the Hurst parameter of Fractional Gaussian Noise
(FGN), which is an exactly self-similar process. If
data is from a FGN process, the estimate of H is the
value that minimizes the function Q(H):

Q(H)

_ (" 1) "
= | Fo.m dx+/_wlogf(z/,H)dV. (15)

To calculate the value of Q(H), we should consider
the exact behavior of the spectral density f(v) of the
process close to the origin. The Whittle estimator
is more robust testing method than the others, and
it also provides the confidence interval (95%) of the
calculated Hurst value.

Figure 9 shows the Whittle estimation of IP data
set. The result is 0.83 with confidence interval
(0.81, 0.85).

So, by going through four testing methods,
variance-time plot, R/S plot, periodogram, and
Whittle estimator, the IP packet arrival process
seems to exhibit LRD with H =~ 0.83. (Although
Whittle estimator provides the good estimate of
Hurst parameter, it is a bit soon to make a conclusion
about self-similarity of this process.)

Note that IP packet arrivals and WWW file sizes
are not the only samples of traffic flows which are
analyzed to provide fractal properties in recent sev-
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Figure 9: The Whittle estimate of H of IP data set

eral years. This topic is still an open area of traffic
modeling for more studies and researches.

6 Conclusion

In this paper, after summarizing the results and ob-
servations of researchers about self-similar and heavy-
tailed properties of some high speed network traffic
types in recent years, the brief mathematical back-
ground of them was discussed. These properties of
high-speed networks have a strong impact on the per-
formance of the networks. Then the analytical meth-
ods testing for self-similarity and heavy-tailedness
were described. It included the algorithms of useful
statistical methods: variance-time plot, R/S plot, pe-
riodogram, and Whittle estimator for LRD and modi-
fied QQ-plot, DeHaan’s moment method and Hill es-
timator for heavy-tailedness. Using these methods,
two data sets from real traffic measurements were an-
alyzed.

Testing with the IP packet arrivals data set pro-
vided LRD property with asymptotic characteristics.
The estimate of H in various estimating methods was
about the same, 0.83. The confidence interval (95%)
given by the Whittle estimator was (0.81,0.85). The
distribution of file sizes transferred on the Internet
from a given threshold may be well modeled by heavy-
tailed (Pareto) distributions. The estimates of scale
parameter o are about the same and equals 0.7.
Heavy-tailed file sizes may be a cause of self-similar
WWW traffic which was discussed in [1].

More recent researches indicate that complex traf-
fic (ATM or Internet) is consistent to an even more
complex structure compound to self-similarity. This
research [14] suggests that traffic has multifractal na-
ture. The application of multifractals for traffic mod-
eling is a hot research topic.
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