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Abstract – In this paper we investigate the impact of traffic 
patterns on wireless data networks. Modeling and simulation of 
the Cellular Digital Packet Data (CDPD) network of Telus 
Mobility (a commercial service provider) were performed using 
the OPNET tool. We use trace-driven simulations with genuine 
traffic trace collected from the CDPD network to evaluate the 
performance of CDPD protocol. This trace tends to exhibit long-
range dependent behavior. Our simulation results indicate that 
genuine traffic traces, compared to traditional traffic models such 
as the Poisson model, produce longer queues and, thus, require 
larger buffers in the deployed network's elements. 
 
Keywords – wireless networks, mobile networks, CDPD networks, 
long-range dependence. 
 

I. INTRODUCTION 
 
Traffic patterns generated by voice, data, and image services, 
which are available in current packet switched data networks, 
differ from patterns observed in circuit switched voice 
networks. Simulating these services requires traffic models that 
differ from traditional Poisson models used for voice traffic. 
Users may experience poor performance due to incorrect 
traffic assumptions made when provisioning and designing 
data networks based on traditional traffic models. 
 
Interest in self-similar traffic was first stimulated by the 
measurements of Ethernet traffic at Bellcore [8]. The analysis 
of the collected traffic traces led to the discovery that “traffic 
looks the same on all time scales” [8, 15, 16] and to the 
introduction of the term self-similar (or fractal) traffic. Since 
then, this feature has been discovered in many other traffic 
traces, such as Transmission Control Protocol (TCP) [10, 11], 
Motion Pictures Experts Group (MPEG) video [5], World 
Wide Web [3], and Signaling System 7 [4] traffic. An 
important characteristic of self-similar traffic is its long-range 
dependence, i.e., the existence of correlations over a broad 
range of time scales [2, 12]. 
 
Most network traffic measurements have been performed on 
wired networks. The question arises whether the traffic in 
wireless data networks exhibits self-similar behavior as well. If 
so, it is important to determine if this traffic characteristic 
affects the provisioning and design of wireless data networks. 
 

To answer these questions, we analyzed traffic from a Cellular 
Digital Packet Data (CDPD) [1, 14] network of a mobile data 
service provider (Telus Mobility). Our initial statistical 
analysis results indicate that this trace exhibits a certain degree 
of self-similarity. This long-range dependent behavior is 
statistically different from the behavior of traffic generated by 
traditional traffic models. In order to evaluate the performance 
of CDPD wireless networks, we use the OPNET tool [6] to 
simulate the Telus Mobility CDPD network. In our 
simulations, we use genuine traffic trace collected from the 
Telus Mobility network. Our simulation results indicate that, as 
a consequence of being long-range dependent, genuine traffic 
produces longer queues. Hence, it requires larger buffers in the 
network's elements than traffic generated by traditional 
models. 
 
The paper is organized as follows. In Section II, we describe 
wireless traces and provide statistical analysis and the test for 
self-similarity. In Section III, we describe the CDPD protocol 
and the OPNET simulation of the CDPD network. Simulation 
results and implications on traffic modeling are given in 
Section IV. We conclude with Section V. 
 

II. TRAFFIC MEASUREMENTS AND ANALYSIS 
 
A.  Self-similar stochastic process and statistical tests 
 
We present here a brief definition of self-similarity for 
stochastic processes [2]. Assume kX ...) 2, 1,(k =  to be a 

wide-sense stationary process with mean ( ) XXE k =  and 

autocorrelation function ( )ir . Next, consider the processes 
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An important parameter of a self-similar process is the Hurst 
parameter H that can be estimated from the variance of a 



  

statistical process. Self-similarity is implied if 0.5 < H < 1. We 
used two graphical methods to test the self-similarity of the 
wireless data traffic trace: R/S and variance-time plots [8]. 
 
The R/S analysis plot is  the rescaled adjusted range plot or the 
pox diagram of R/S [8]. In Fig. 1, we plot ))(/)(log( nSnR  vs. 

)log(n , where )(nR  is the adjusted range statistic of the 
process and )(nS  is sample standard deviation. For a set of 

observations kX n) ..., 2, 1,(k = , the R/S statistic is given by: 
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where )()...( 21 nXkXXXW kk −+++= )1( ≥k , with sample 

mean )(nX . Logarithmically spaced values of n  are taken, 
starting with 10≈n . The slope of the coned zone with plotted 
data is the estimated Hurst parameter H. In case of a self-
similar process, the zone should be located between two lines 
with slopes ½ and 1. 
 
For the variance-time plot [8], we plot ))log(var( )(m

kX  vs. 
)log(m  with a least-square fit for the plotted points (small 

values of m are ignored). The process is self-similar if the 

estimated asymptotic slope β̂  is between 1−  and 0 . The 

Hurst parameter can then be estimated as 2/ˆ1ˆ β−=H . 
 
B.  Telus Mobility traffic trace 
 
Traffic data were collected from the Telus Mobility CDPD 
network, located in downtown Vancouver area, from 
14:56:37.56 to 15:24:46.88 on June 12, 1998. Trace properties 
are given in Table I. The trace consisted of Mobile Data Link 
Layer Protocol (MDLP) frames. CDPD network subscribers 
used both TCP and UDP over IP protocols. The channel 
capacity was 19.2 kbps. During the time period when these 
data were collected, 10 mobile end systems appeared in the 
cell. Some were more and some were less active. For our 
statistical analysis, we used the aggregated traffic (the total 
input traffic to the mobile data base station) and selected only a 
20 minute interval. 
 

Table I. Telus Mobility CDPD network traffic trace. 
 

Duration 
Number of 
link layer 

frames 

Number of 
bytes 

Average 
traffic 
load 

Network 
utilization 

20 minutes 1,281 152,439 1,016 bps 5.29 % 

 

Fig. 1 shows the R/S plot (top) and the variance-time plot 
(bottom). The Hurst parameter estimated from the slope in R/S 

plot is 80.0ˆ ≈H . In Fig. 1 (bottom), the variance-time curve, 
which has been normalized by the corresponding sample 
variance, shows an asymptotic slope that is distinctly different 
from 1−  (dotted line) and is estimated to be approximately 

2.0− , resulting in an estimate 90.0ˆ ≈H  of the Hurst 
parameter. Unfortunately, the trace was too short for a more 
definite statement regarding its self-similarity. 
 
These two graphical methods suggest that the traffic sequence 

is self-similar, with a self-similarity parameter 80.0ˆ ≥H . 
According to [12], if 60.0≥H , the data trace can be 
considered self-similar even if the trace has some degree of 
non-stationarity. 

 

 

Fig. 1. Test for self-similarity: R/S plot (top) and variance-time 
plot (bottom). 

 
III. SIMULATION OF THE CDPD NETWORK 

 
A.  CDPD protocol 
 
CDPD [1, 14] is a standard protocol stack developed for 
mobile data networks. It is a multiple access protocol in which 
stations that want to transmit data into the network must 
compete for access in the shared communications medium. 
Although it shares some characteristics with more familiar 
multiple access protocols such as Ethernet (IEEE 802.3), 
CDPD differs from other multiple access protocols in two 
significant aspects: the wireless transmission medium and the 
mechanism for collision detection. 
 
In most networks, the data transmission medium is either a 
wireline or a fiber-optic cable. In mobile data networks, radios 
transmit the data over the air-interface. This interface, in 
contrast to wires or fiber-optics, is more susceptible to bit 
errors introduced into the transmitted data. A typical and fairly 
static bit error rate (BER) for wired and fiber-optic networks is 

1010 − . The wireless BER is rather dynamic and can be as high 

as 210 − , or even higher [7]. This highly dynamic environment 
presents a unique challenge to the implementation of CDPD 
networks. 
 
A second difference between CDPD and other multiple access 
protocols is in collision detection. In wired networks, stations 



  

can listen to their own transmissions. If another station is 
transmitting at the same time, stations will detect that a 
collision has occurred. When using radios to transmit data, 
mobile end systems (M-ES’s) cannot reliably detect that a 
collision has occurred, and, therefore, must rely on the mobile 
data base station (MDBS) and the forward channel (from 
MDBS to M-ES) to determine whether the transmission was 
successful. 
 
B.  OPNET model 
 
The topology of a simple CDPD network is shown in Fig. 2. 
Mobile end station (M-ES) is connected to the backbone 
network through the mobile data base station (MDBS). The 
network also includes a mobile data intermediate system (MD-
IS) (also called a mobile router) and several fixed end stations 
(F-ES) connected to the wired backbone network. 
 

Fig. 2. Topology of a simple CDPD network.  
 
We only modeled the wireless connection between M-ES and 
MDBS, i.e., the Media Access Control (MAC) layer of the 
CDPD protocol. In the M-ES node model in our simulations, 
we implemented a queueing system with the following 
characteristics: first-in-first-out (FIFO) queueing discipline, 
infinite buffer size, and arrivals that can be taken either from a 
genuine CDPD network traffic trace (trace-driven simulation), 
or from an ideal packet generator built in OPNET. 
 
C.  Modeling of traffic sources 
 
In the absence of better wireless traffic models, we used trace-
driven simulations and incorporated the collected CDPD 
network traffic trace into the network model. This was 
achieved by creating a process model, where collected traffic 
trace was read into the model from a file containing measured 
inter-arrival times and frame sizes. The underlying assumption 
in engineering practice, also used in our research work, is that 
the traffic environment is stationary over a range of time 
scales. While this assumption is not always satisfied in 
practice, it appears to be a reasonable hypothesis for the trace 
we have used. 
 

In our simulation experiments, we also used input traces 
created by bursty ON/OFF traffic source models, and traces 
created from a process with exponentially distributed inter-
arrival times (Poisson process). The ON/OFF model [13] 
generates a statistical process with the same mean as the 
genuine trace collected from the Telus Mobility CDPD 
network. Adjustment of the traffic burstiness is achieved by 
modifying the duration of the ON and OFF periods. In this 
model, three parameters are essential in determining the level 
of burstiness of the generated traffic: the mean duration of the 
ON state, the mean duration of the OFF state, and the number 
of frames sent during one ON period. In our simulations, 
durations of the ON periods and the OFF periods are 
exponential with means a and b, respectively. Smaller values 
of a indicate more bursty traffic. The number of frames 
generated during the ON period is 11, obtained as a ceiling of a 
ratio of the total number of frames (1,281) over the duration of 
the trace (20 min). It is calculated based on the mean rate of 
the traffic trace (1.067 packets/sec) and the duration of the 
ON/OFF cycle (10 seconds). The packet size in the ON/OFF 
traffic model is chosen to be 127 bytes, calculated to match the 
traffic load of the collected traffic trace (1,016 bps). 
 
All three traffic sources used in our study (actual trace, traces 
generated by ON/OFF models, and traces generated by Poisson 
arrival process) have the same traffic mean, and thus produce 
comparable traffic loads on the network. Therefore, we were 
able to compare the queueing performance of the CDPD 
network with various input traffic traces. 
 

IV. SIMULATION RESULTS 
 
We performed a series of simulation experiments to 
demonstrate the practical significance of self-similarity in the 
queueing performance of a CDPD network. We show that 
using traditional queueing approximations to select CDPD 
network operating parameters may lead to overestimating 
network performance. 
 
A.  Simulations of M-ES queueing delays 
 
The queueing delays at the M-ES buffer with three different 
traffic types are shown in Fig. 3. We plot the average queueing 
delays vs. link utilization for the actual CDPD traffic trace and 
for the traffic traces generated by the ON/OFF and Poisson 
sources. We varied the link utilization by both increasing the 
number of users (M-ES's) and by decreasing the link capacity 
in OPNET model that was equivalent to increasing the traffic 
load of a single user. 

As can be seen from Fig. 3, the average queueing delay 
obtained with the genuine trace differs from the delay 
predicted by the Poisson (short-range dependent) arrival 
process. The burstiness of the input traffic trace was the feature 
that contributed to the sharp rise in delays at relatively high 
utilizations. The disparity between graphs A and E indicates 
that the short-range dependent traffic source model will greatly 
underestimate queueing delays at both moderate and high link 
utilizations. Our simulations also suggest that, although bursty 
ON/OFF traffic model (graph B) can emulate the genuine 

 



  

network traffic trace better than the Poisson model, this traffic 
model with a single distribution cannot adequately capture the 
traffic burstiness. The queueing delays corresponding to traces 
of lower burstiness is shown in graphs C and D of Fig. 3. 

 
Fig. 3. Average queueing delay vs. link utilization plots for 
genuine traffic trace (graph A), traffic generated by ON/OFF 
models (graphs B, C, and D), and traffic generated by the 
traditional Poisson model (graph E). For ON/OFF sources the 
parameters are: (B) a = 0.01 sec and b = 9.99 sec; (C) a = 5.00 
sec and b = 5.00 sec; (D) a = 8.00 sec and b = 2.00 sec. 

 
The queueing delay graphs obtained by using the actual CDPD 
trace (graph A) and the most bursty ON/OFF model (graph B) 
differ by approximately 10%. These differences arise because 
the ON/OFF source model employs exponential distribution of 
its ON and OFF periods. There are also ON/OFF models 
where the ON and OFF periods may employ more general 
distributions with finite variance and short-range dependence. 
Nevertheless, it has been recently recognized that multiplexing 
a large number of ON/OFF traffic sources results in aggregate 
traffic that is inconsistent with traffic measurements from 
actual networks [16]. 
 
B.  M-ES buffer overflow probabilities 
 
While in the study of average queueing delays we chose 
infinite size buffers, in this section we select a finite M-ES 
buffer size and we investigate two relationships: buffer 
overflow probability vs. buffer size and vs. link utilization, 
respectively. 
 
First, we investigate the relationship between buffer overflow 
probability and the buffer size. The link utilization is kept 
constant at 40%. The buffer overflow probabilities with 
genuine traffic (A) and Poisson traffic (B) are shown in Fig. 4. 
A linear region on the semi-log plot indicates that the 
probability of buffer overflow is exponential with a constant 
decay. The buffer overflow probability resulting from Poisson 
traffic (B) is exponential and decreases much faster than the 
buffer overflow probability resulting from the genuine traffic 
trace (A). Other short-range dependent models with constant or 

exponential service times also exhibit this fast-decaying 
behavior. 

 
Fig. 4. Buffer overflow probability vs. buffer size plots for (A) 
genuine traffic trace and (B) Poisson arrival traffic source. 

 
In our second study we investigate the relationship between 
buffer overflow probability and link utilization. We varied the 
link utilization in the same manner as in our simulations of M-
ES queueing delays. A plot of P(q>x), where q  is the queue 
length, is shown in Fig. 5. The buffer size x is set to five 
packets. The larger buffer overflow probability in Fig. 5, 
compared to Fig. 4, is the result of using larger number of 
users to achieve higher link utilizations. Fig. 5 illustrates that 
even at relatively low link utilizations (~20%), the buffer 
overflow probability obtained by using the genuine traffic 
trace is noticeably larger than by using a Poisson traffic source 
model. The ON/OFF traffic model, as expected, predicts the 
buffer overflow more accurately than the Poisson model. 

 

Fig. 5. Buffer overflow probability vs. link utilization plots for 
(A) genuine traffic trace; (B) ON/OFF source model with a = 
5.00 sec and b = 5.00 sec; (C) Poisson arrival traffic source. 
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C.  The importance of traffic modeling in wireless networks 
 
The results of our simulations imply the importance of 
capturing long-range characteristics of traffic models in 
wireless networks, and indicate “the end of simple traffic 
models” [9, 10]. Self-similarity has emerged as one of the most 
important characteristics that needs to be captured by network 
traffic models [8, 15, 16]. Traditional traffic models provide 
limited insight into the true nature of genuine traffic data, often 
fail to capture the properties of genuine traffic, have no 
meaningful physical interpretation, and have limited value in 
the engineering of future networks. In contrast, characteristics 
observed in measured traffic data can be captured with long-
range dependent (self-similar) processes described with one 
parameter (Hurst parameter) [2]. These processes can also be 
generated by fractional Gaussian noise (FGN) and by 
fractionally differenced autoregressive integrated moving-
average (FARIMA) models. For example, LAN traffic can be 
successfully modeled using an FGN process with three 
parameters: mean, variance, and the Hurst parameter [15]. A 
FARIMA process with four or five parameters was found to 
describe VBR video traffic with reasonable accuracy [5]. 
 

V. CONCLUSIONS 
 
In this paper we analyzed traffic collected from the Telus 
Mobility CDPD network. Our preliminary results suggest that 
this wireless data traffic tends to have a self-similar behavior, 
and that it is statistically different from traffic generated by 
traditional traffic models. Nevertheless, our traffic trace was 
too short (20 minutes long) to warrant a more definite 
conclusion. 
 
We used trace-driven OPNET simulations to demonstrate that 
long-range dependence is an important traffic characteristic in 
wireless networks, and, if ignored, may result in overly 
optimistic performance predictions and inadequate network 
resource allocations. Our simulation results show that the 
queueing delays obtained with the genuine traffic trace differ 
from the queueing delays predicted by short-range dependent 
traffic source models (ON/OFF and Poisson arrival processes). 
In the case of moderate and high link utilizations, short-range 
dependent traffic models underestimate queueing delays. Thus, 
genuine traffic traces produce longer queues and require larger 
buffers in the network's elements. Genuine traffic traces also 
cause higher buffer overflow probabilities than the 
conventional traffic models. This may require lower wireless 
link utilizations in order to avoid undesired loss rates. 
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