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A Neural-Based Technique for Estimating
Self-Similar Traffic Average Queuing Delay
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Abstract— Estimating buffer latency is one of the most impor-
tant challenges in the analysis and design of traffic control algo-
rithms. In this paper a novel approach for estimating average
queuing delay in multiple source queuing systems is introduced.
The approach relies on the modeling power of neural networks in
predicting self-similar traffic patterns in order to determine the
arrival rate and the packet latency of low loss, moderately loaded
queuing systems accommodating such traffic patterns.

Index Terms—Bursty Traffic, Self-Similarity, Intelligent Traffic
Modeling, Neural Network, Queuing Delay.

I. INTRODUCTION

ANALYSIS of traffic data from networks and services such
as Ethernet LANs [6], Variable Bit Rate (VBR) video

[1], ISDN traffic [4], and Common Channel Signaling Network
(CCNS) [2] have all convincingly demonstrated the presence of
features such as long range dependence, slowly decaying vari-
ances, and heavy-tailed distributions. These features are best
described within the context of second-order self-similarity and
fractal theory. Self-similar phenomena show structural similar-
ities across a wide range of time scales in which traffic spikes
ride on the longer term ripples, that in turn ride on longer term
swells, so on and so forth.

Neural networks are a class of nonlinear systems capable of
learning and performing tasks accomplished by other systems.
Some of the applications of neural networks manifest in speech
and signal processing, pattern recognition, and system model-
ing. Systems with neural network building blocks are robust in
the sense that occurrence of small errors does not interfere with
proper operation of the system. This characteristic of the neural
networks makes them quite suitable for traffic modeling.

Estimating and reducing packet latency is a major design is-
sue in computer communication networks. There are a number
of factors that introduce delay in network services. Different
delay types may be classified under processing, propagation,
multiplexing, and queuing categories. The main objective of
packet scheduling methods is then to come up with solutions
for predicting and reducing delay while efficiently utilizing net-
work resources.

In [8], we made use of the modeling power of neural net-
works introduced in [7] to provide a fair dynamic buffer man-
agement scheme improving the loss performance of a class of
queuing systems with self-similar characteristics. In this study,
we utilize the modeling power of neural networks in predicting
self-similar traffic patterns in order to determine the arrival rate
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and the packet latency of queuing systems accommodating such
patterns assuming the service rates are given and there is no sig-
nificant loss impact. Our packet latency estimation technique
might be thought of as a part of a packet scheduling algorithm.

An outline of the paper follows. Section II briefly reviews
the characteristics of aggregated self-similar traffic patterns and
provides an overview of the neural network modeling of such
traffic patterns. Section III describes typical multiple source
systems used for the application task and discusses the packet
latency estimation application. It also evaluates the perfor-
mance of the average latency estimation technique by compar-
ing its results with measured average latency in the presence of
typical buffer management and server scheduling schemes. The
paper concludes in Section IV.

II. SELF-SIMILAR TRAFFIC MODELING

This section includes a brief description of self-similarity fol-
lowed by a review of the neural network modeling technique.

A. Second-Order Self-Similarity

In [7] and [8], we provide an analytical framework for self-
similarity as a statistical property of the time series. Mathemat-
ically, self-similarity manifests itself in a number of ways.� Slowly decaying variance property points out that the vari-

ance of sample mean decreases more slowly than the recip-
rocal of the sample size with the meaning ���������
	������������ 	����� as
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tocorrelations decay hyperbolically rather than exponen-
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The most important feature of self-similar processes is seem-
ingly the fact that their aggregated processes �$	��� possess
a non-degenerate correlation function as

� � �
. This is

completely different from typical packet traffic models previ-
ously considered in the literature all of which have the property
that their aggregated processes �
	��� tend to second order pure
noise, i.e., + 	��� �  as

�����
.

B. Neural Network Modeling of Self-Similar Traffic

In [7], we describe how a fixed structure feed forward percep-
tron neural network with back propagation learning algorithm
can be used to model aggregated self-similar traffic patterns as
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an alternative to stochastic and chaotic systems approaches pro-
posed in [5] and [3]. We note that although the emphasis of our
work is on self-similar traffic modeling, our proposed neural
network modeling approach can nevertheless be used for any
traffic pattern independent of self-similarity. In what follows
we briefly review the neural network modeling technique of [7]
in which an elegant approach capable of coping with the fractal
properties of the aggregated traffic is introduced. The approach
provides an attractive solution for traffic modeling and has the
advantage of simplicity compare to the previously proposed ap-
proaches namely stochastic and deterministic chaotic map mod-
eling. The promise of neural network modeling approach is to
replace the analytical difficulties encountered in the other mod-
eling approaches with a straight forward computational algo-
rithm. As oppose to the other modeling approaches, neural
network modeling does not introduce a parameter describing
the fractal nature of traffic neither does it investigate identifi-
cation of appropriate maps. It, hence, need not cope with the
complexity of estimating Hurst parameter and/or fractal dimen-
sions. The approach simply takes advantage of using a fixed
structure nonlinear system with a well defined analytical model
that is able to predict a traffic pattern after learning the pattern
dynamics through the use of information available in a number
of traffic samples.

The fixed structure, fully connected, feed forward percep-
tron neural network utilized for the task of modeling consists
of an input layer with eight neurons, three hidden layers with
twenty neurons in each layer, and an output layer with one neu-
ron. Figure (1) illustrates the structure of the neural network.
The output of each neuron is connected to the input of all of the
neurons in the layer above after being multiplied in a weighting
function. The specific neural network used for the task of mod-
eling relies on the so-called back propagation learning algo-
rithm described in [7] and the references therein. In a nutshell,
the back propagation learning algorithm changes the weight-
ing functions of the underlying neural network in the opposite
direction of the gradient vector and its momentums in order to
minimize the absolute error function defined proportional to the
square of the difference between the neural network output and
the real output.

In a typical iteration of the learning phase, the neural network
is provided with samples BDC � @FEHG through BIC � @J&KG of the real
traffic pattern and the difference between sample BDC � G of the real
traffic pattern and the neural network output is used to adjust the
weighting functions of the network accordingly. In the next it-
eration, sample BDC � @FELG of the real traffic pattern is discarded,
samples BDC � @NM1G through BDC � G of the real traffic pattern are used
as the new input sample set, and sample BDC �NO &�G is used as
the new real traffic sample. The neural network continues pro-
cessing more information in consecutive iterations of the learn-
ing phase until the absolute error is less than a specified error
bound, P . The learning phase of the perceptron neural network
is directly followed by the recalling phase when the network
output is able to follow the real traffic within the acceptable
error bound, P . In each iteration of the recalling phase, the neu-
ral network independently generates the samples by discarding
the oldest input sample, shifting the input samples by one, and
using its output as the most recent input sample. The same se-

quence of following a learning phase by a recalling phase is
repeated when and if the neural network output difference ex-
ceeds the acceptable error bound, P . The number of samples
required for the training of the neural network depends on the
complexity of the traffic pattern dynamics. The time complex-
ity and the space complexity of the back propagation algorithm
are respectively Q �8R�S>� and Q ��ST� where S is the number of
weighting functions in the network and R is the number of it-
erations. Although the complexity is typically better than the
complexity of implementing statistical approaches such as frac-
tional ARIMA processes or the complexity of calculating frac-
tal dimensions such as correlation dimension, wide variations
of R prevent us from making a strong claim about complex-
ity advantage of the algorithm compare to other algorithms.
Nonetheless combining the straight forward way of implemen-
tation with the analysis of complexity, we claim that the neural
network modeling approach provides an elegant approach for
the task of traffic modeling.
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Fig. 1. Fixed structure neural network used for the task of modeling.

In the following section, we apply the proposed neural net-
work modeling technique to predict the packet generation pat-
terns of a number of ON-OFF traffic sources and utilize the pre-
diction results in estimating arrival rates and average latencies
in queuing systems accommodating such patterns.

III. LATENCY IN SELF-SIMILAR QUEUING SYSTEMS

Our application test bed relies on a multiple source queuing
system. A multiple source queuing system consists of a num-
ber of sources sharing a total available buffer space. In [8],
we provide a brief queuing analysis for individual queues of
such a multiple source queuing system. Traffic pattern of each
source includes the packets generated by a number of ON-OFF
chaotic maps. An ON-OFF source model is generating traffic
at a peak rate when it is active and becomes active as soon as
the state variable of the describing chaotic map goes beyond
a threshold value. The source becomes passive as soon as the
state variable goes below the threshold value. We utilize double
intermittency map in our packet generation process as it gener-
ates a self-similar traffic pattern according to what is described
in [3]. We propose using different initial conditions for a fixed
threshold value to obtain different traffic patterns for different
sources. As an alternative, one may use different threshold val-
ues with fixed or variable initial conditions to achieve varying
traffic patterns for different sources.
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We now apply our neural network modeling scheme to pre-
dict the total number of generated packets and utilize the pre-
diction results in estimating the queuing delay for the packets
generated by a number of traffic sources. Consider a multi-
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Fig. 2. The structure of a multiple source queuing system.

ple source queuing system such as the one shown in Figure (2)
with three sources sharing the space available in a central buffer.
Assume that the aggregated traffic pattern of each individual
source consists of the traffic patterns of 120 sources generating
ON-OFF packet traffic according to double intermittency map
model. The buffer size is assumed to be fixed, large enough to
prevent any loss. In addition, suppose that the system is utiliz-
ing complete sharing buffer management, Statistical Time Di-
vision Multiplexing (STDM) scheduling, and First Come First
Serve (FCFS) service discipline schemes as described in [8].
Utilizing the prediction results of our neural network modeling
scheme, we can estimate the packet arrival rate of the central
buffer. For a given service rate and a known buffer occupancy,
the queuing delay of a packet can be measured as the average
number of time units it spends in the queue before leaving the
buffer.

Figure (3) displays our simulation results for the system de-
scribed above. It shows the Measured Average Latency (MAL)
and the Estimated Average Latency (EAL) versus service time
diagram for the triple source queuing system over the intervals
in which the arrival rate predictions are of acceptable accuracy.
The average latency has been calculated over the time periods
in which the neural network has been able to follow the arrival
pattern of the central buffer. For the relative error defined asU V"W;X �ZY W;X[UV"W;X , Figure (3) shows that the estimation results are
within the 3% relative error range pending the following con-
ditions are held. First, the averaging period is long enough in
order for the neural network to be able to follow the traffic pat-
tern for a number of times within the specified error bounds
and second, the buffer service rate does not exceed an existing
threshold value. Although not shown in the simulation results,
we have observed that the average packet latency drops sharply
by choosing service rates beyond the threshold value. In the
latter case, the neural network latency estimation findings are
not acceptable as the result of having high service rates and low
average latencies. The service rate threshold generally depends
on the dynamics of the system and for the triple source system
of our experiment is the normalized value 13.

We finish this section by mentioning that a typical sequence
of learning and recalling phases consists of few hundred thou-
sand samples and hundreds of samples respectively. In addi-
tion, all of the convergence results are strongly affected by the
choice of initial conditions of the weighting functions of the
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Fig. 3. Estimated average latency (EAL), and measured average latency
(MAL) versus normalized service rate for the triple source queuing system.

neural network. As a practical finding, setting the initial values
of the weighting functions of the neural network at  4  �& typi-
cally yields good results. Our justification for both of the above
phenomena is the fact that the proposed neural network is try-
ing to learn complicated dynamics of chaotic maps exhibiting
extreme sensitivity to variations of initial conditions.

IV. CONCLUSION

In this paper, we introduced a novel approach for estimat-
ing queuing latency in multiple source queuing systems as an
application of neural network modeling of self-similar packet
traffic. We relied on the prediction power of neural networks to
estimate arrival rates and packet latencies in multiple source
queuing systems accommodating self-similar traffic patterns.
We evaluated the performance of our estimation technique by
comparing estimated average latency with measured average
latency and concluded that the scheme is able to provide an
acceptable estimate with a less than 3% relative error below
a specified service rate threshold for moderately and heavily
loaded systems with no significant loss.
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