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Abstract—Long-range dependence has been observed in many recent In-
ternet traffic measurements. In addition, some recent studies have shown that
under certain network conditions, TCP itself can produce traffic that exhibits
dependence over limited timescales, even in the absence of higher-level vari-
ability. In this paper, we use a simple Markovian model to argue that when
the loss rate is relatively high, TCP’s adaptive congestion control mechanism
indeed generates traffic with OFF periods exhibiting power-law shape over
several timescales and thus introduces pseudo-long-range dependence into
the overall traffic. Moreover, we observe that more variable initial retrans-
mission timeout values for different packets introduces more variable packet
inter-arrival times, which increases the burstiness of the overall traffic. We
can thus explain why a single TCP connection can produce a time-series that
can be misidentified as self-similar using standard tests.

Keywords— Congestion Control, Long-Range Dependence, Self-
Similarity.

I. INTRODUCTION

S
ELF-SIMILARITY has been observed in a large number
of Internet traffic measurements (for example, [1, 2, 3]).

Self-similarity refers to the condition in which the second-
order statistics of traffic decay very slowly with increas-
ing the aggregation level, compared to traditional Markovian
(memory-less) models. Self-similarity is closely associated
with the phenomenon of heavy-tailed distributions, which are
distributions whose tails decline via a power law with small
exponent (less than 2). The presence of heavy tails in lengths
of individual flows can be shown to induce self-similarity in
network traffic [4]. Heavy-tailed properties have been found
in file sizes and user thinking time [1], flow (session) dura-
tion [5], as well as packet inter-arrival time [4] distributions in
the Internet.

To date, the best-accepted hypothesis for the genesis of self-
similarity on timescales from seconds to an hour is the heavy-
tailed distribution that is typical of flow lengths in the Inter-
net [1, 4]— the majority of flows are found to be very short,
many are long, and some are very long. However, a number
of studies have shown that interesting scaling properties can
arise even when flow lengths are not highly variable [6, 7].

In particular, recent work by Veres et al. [7] shows that even
without any variability in terms of flow lengths or network de-
lays, TCP itself can sometimes exhibit “chaotic” behavior and
produce traffic series that shows properties similar to those of
self-similar traffic generated by synthetic methods. In this pa-
per, we explain why this can happen, using a simple Marko-
vian analysis. This explanation shows that such scaling behav-
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ior only exists over a finite range of timescales; thus, it should
not be categorized as self-similarity in the underlying traffic.
By means of ns simulation [8], we confirm that packet interar-
rival time from TCP flows appear to be drawn from a discrete
power-law distribution over a limited range of timescales, un-
der certain conditions. We show that larger loss rates bring
longer-timescale dependence into the traffic. In addition, we
show in this paper that, because short connections do not have
enough packet samples to accurately estimate the time they
need to wait for acknowledgments, the conservatively cho-
sen value can introduce very large gaps between packets, thus
making the traffic generated by (short) TCP connections even
more bursty, or in other words, extending burstiness to larger
timescales.

Heavy-tailed Distribution, Self-Similarity and Long-
Range Dependence: Here we briefly review some concepts
related to fractal traffic properties. A more detailed descrip-
tion can be found in [9, 10] and references therein.

Many of the distributions shown in today’s Internet traffic
have the property of being heavy-tailed. We say a distribution
is heavy-tailed if the asymptotic shape of the distribution is
power-law with exponent less than 2 regardless of the behavior
of the distribution for small values of the random variable, i.e.,

P [X � x] � x��; as x!1; 0 < � < 2

The reason that such distributions are called heavy-tailed
is that, compared to those more commonly used distributions
such as exponential and normal distributions, a random vari-
able that follows a heavy-tailed distribution can give rise to
extremely large values with non-negligible probability. As a
consequence, such random variable shows infinite variance
when � < 2. It is important to notice that heavy-tailedness
is a property on the tail distributions.

Note that the heavy-tailed property, and its associated in-
finite variance property, only exist when the distribution’s
power-law shape extends to infinity. When a distribution has a
power law shape that does not extend to infinity, we say that it
is “power law over a limited range.” Random variables whose
distributions are power-law over a limited range may exhibit
unusual scaling properties, but these properties do not persist
to arbitrarily long timescales.

It has been shown in [4] that the aggregation of i.i.d.
ON/OFF processes produces self-similar time-series, if either



ON or OFF periods of each process follow a heavy-tailed dis-
tribution. We say a time-series is (asymptotically) self-similar
if the autocorrelation function of the new time-series produced
by aggregating the original time-series is (asymptotically)
equal to the original autocorrelation function. That is, given
a stationary time-series X = (Xt : t = 0; 1; 2; :::), we define

the m-aggregated series X(m) = (X
(m)
k : k = 1; 2; 3; :::) by

summing the original seriesX over non-overlapping blocks of
size m. Then if X is self-similar, it has the same autocorrela-
tion function r(k) = E[(Xt � X)(Xt+k � X)] as the series
X(m) for all m, where X = E[X].

As a result, self-similar processes show long-range depen-
dence. A process with long-range dependence has an autocor-
relation function r(k) � k�� as k ! 1, where 0 < � < 1.
Thus the autocorrelation function of such a process decays hy-
perbolically (as compared to the exponential decay exhibited
by traditional Markovian traffic models).

One of the attractive features of using self-similar models
for time-series, when appropriate, is that the degree of self-
similarity of a series is expressed using only a single parameter
called the Hurst parameter H = 1 � �=2. For self-similar
series, 1=2 < H < 1. As H ! 1, the degree of self-similarity
increases. Thus the fundamental test for self-similarity of a
series reduces to the question of whether H is significantly
different from 1=2.

Due to the long-range dependence property, it is hard to
apply traditional methods to analyze self-similar traffic, e.g.,
queueing analysis based on Markovian assumption. There-
fore, sometimes a long-range dependent series can be approx-
imated by the aggregation of short-range dependent series [11,
12]. Such synthetic series are sometimes called “pseudo-self-
similar” or “pseudo-long-range-dependent” series due to the
fact that the scaling property disappears at large timescales.

Related Work: There has been a large body of work attempt-
ing to explain the causes of heavy-tails and self-similarity
in Internet traffic. Broadly, they either attribute the causes
to application/user-level variability (e.g., [13],[14],[1]) or to
system/network-level complexity (e.g., [15],[7],[16],[17]).

Willinger et al. [13] examined Ethernet traffic at the packet
level, identified flows between individual source/destination
pairs, and showed that transmission and idle times for those
flows are heavy-tailed. Paxson and Floyd [14] traced In-
ternet traffic and observed that burst sizes in FTP trans-
fers, and TELNET packet inter-arrival times (appearance of
“keystroke”) show heavy-tailed distributions. In [1], Crov-
ella and Bestavros examine Web traffic. They observe that file
size distributions in Unix systems as well as in Web databases
are heavy-tailed. In addition, heavy-tailed distributions are
found in HTTP session time and request inter-arrival time
(user “thinking” time). They propose that these heavy-tailed
distributions might be the primary causes of the self-similarity
in Web traffic.

Other studies have argued that the chaotic nature of network

protocols and variability of system conditions may also con-
tribute to the self-similarity in traffic, especially at smaller
timescales. Supported by ns simulation, Veres et al. [7]
claimed that under severe network conditions, TCP conges-
tion control protocol shows chaotic nature, and starts to gen-
erate self-similar traffic. However, they only show evidence
of such chaotic nature, and do not explain why it shows up
only when the network is highly congested. In [16], Peha uses
simulation to argue that packet retransmission and congestion
control mechanisms could cause self-similarity when conges-
tion does happen in the network. However, no theoretical ev-
idence is given in that paper. More recently, Veres et al: [17]
observe from real measurements that short TCP connections
produce self-similar traffic, which they attribute to the reac-
tion of TCP congestion control to the self-similar background
traffic.

Our Contribution: By carefully analyzing our extensive sim-
ulation results, we find that the “chaotic” property of TCP traf-
fic only appears under certain network conditions. Moreover,
since such chaotic property only appears over at most 4 or-
ders of magnitude of timescales, the associated traffic should
be described as “pseudo-self-similar.” Our work is different
from previous work in that we seek to discover the causes of
protocol-induced chaos based on analytical arguments. More
specifically, we illustrate in this paper that the exponential-
backoff algorithm, used by TCP’s congestion control mecha-
nism under severe network congestion conditions, can cause
“chaotic” behavior. Our analytical model encompasses gen-
eral loss conditions, which may be due to contention among
several TCP connections (as in [7]), or due to self-similar
cross-traffic (as in [17]). However, our model also indi-
cates that such “chaotic” behavior only appears in limited
timescales, and thus, it is erroneous to identify the time-series
as “self-similar”.

Our analytical model considers the two most crucial phases
of operation of TCP, namely slow-start and exponential-
backoff, during which TCP generates highly variable traffic
(cf. Section II). Recently, Figueiredo et al: [18] extended
our model to include the congestion-avoidance phase as well.
They show that TCP also exhibits power-law correlation struc-
ture in this phase, albeit in a very limited timescale range (less
than 2 orders of magnitude).

The paper is organized as follows. In Section II we briefly
review TCP’s congestion control mechanism. In Section III
we propose a Markovian model to describe its behavior un-
der certain network conditions and analytically explain why
the inter-arrival times of TCP packets follow a power-law dis-
tribution over limited timescales. We use simulation to con-
firm our analysis in Section IV and show that: (1) Under se-
vere congestion conditions, TCP traffic exhibits high variabil-
ity over small and medium timescales (1 RTT to 100 RTTs);
and (2) such variability disappears at larger timescale. We dis-
cuss extensions to our analysis and future work in Section V.



II. CONSERVATIVE NATURE OF TCP AND ITS

PATHOLOGICAL EFFECT

The objective of TCP congestion control is for each source
to determine how much capacity is available in the network,
so that it knows what rate it can safely send at. Therefore,
the data transfer of TCP starts from a stage, called slow-start,
in which TCP tries to increase its sending rate exponentially,
until it encounters the first loss. At this point, TCP interprets
packet loss as an indication of reaching the upper limit of the
available bandwidth of the bottleneck link. Thus, from this
point on (or following another slow-start period, depending
on the implementation of TCP), it switches to another stage,
called congestion-avoidance, in which TCP employs the Ad-
ditive Increase, Multiplicative Decrease (AIMD) mechanism
to slowly adapt to the available bandwidth.

Another important stage of TCP congestion control happens
when the network is heavily loaded, during which some of the
TCP connections should keep silent so as to clear congestion.
This stage, referred to in this paper as exponential-backoff,
is the regime that Karn’s algorithm [19] deals with. In this
regime, when TCP does not receive an acknowledgment for a
packet after some timeout period, it assumes that this packet is
lost, and then retransmits that packet and doubles its retrans-
mission timeout value (RTO) for detecting packet loss. This
process continues until the packet is successfully transmitted
and acknowledged, up to some upper limit (usually 64 times
the smallest timeout). Essentially, TCP tries to clear conges-
tion by cutting its sending rate in half (or exponentially de-
creasing its rate).

Figure 1 shows a schematic view of the TCP congestion
window behavior at different stages (black points on the top
indicate packet losses). The value of the congestion window is
proportional to the sending rate, which is roughly equal to the
size of the window divided by the round-trip time (RTT). To
simplify our analysis, we focus on the behavior of TCP Tahoe,
and we assume that the receiver has an unlimited buffer, so
there’s no TCP flow control (the upper limit on the window
size). We should point out that all versions of TCP behave the
same when packet loss is detected by a retransmission timeout;
TCP reduces its window to 1 packet and goes to slow-start
phase until it reaches half the previous window, where it starts
the congestion-avoidance phase. Some versions of TCP (e.g.
TCP Reno, New-Reno [20]) attempt to prolong their operation
in congestion-avoidance, but eventually go back to slow-start
on a retransmission timeout.

Ideally, TCP would operate in the congestion-avoidance
stage to efficiently utilize the network resources. From the
traffic characteristics point-of-view, TCP generates more sta-
ble traffic in this stage than the other two stages (slow-start and
exponential-backoff). Unfortunately, two factors drag TCP
away from the congestion-avoidance stage: (1) Internet mea-
surements [21] show that most flows (both TCP and UDP) are
short in size (less than 100 packets). As mentioned earlier,
TCP’s adaptive control mechanism requires a certain period
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Fig. 1. Behavior of TCP congestion control

of time to learn the state of the network, such as the round-trip
time and average share of the available bandwidth. Because
most of the TCP connections are too short to generate enough
packet samples to obtain such detailed knowledge, most of
their packets are sent out at a conservatively estimated rate
during slow-start; and (2) an even worse situation is that some
parts of the current Internet can be highly congested [22, 23],
and thus the packet loss rate is relatively high. Loss rates as
high as 17% have been observed in portions of the Internet.
High loss rate makes consecutive packet losses possible and
retransmission timeouts force many TCP connections to stay
in the exponential-backoff stage.

Under these conditions, a single TCP connection may spend
most or all of its time in slow-start or exponential-backoff
stages. This is the situation we explore in the next section.

III. MODELING TCP BEHAVIOR IN SLOW-START AND

EXPONENTIAL-BACKOFF STAGES

In this section, we use a discrete-time Markov chain to
describe the behavior of TCP in slow-start and exponential-
backoff stages and explain why it generates power-law dis-
tribution in packet inter-arrival times. To this end, we as-
sume that TCP’s window adaptation policy depends only on
the last value of the congestion window. We can then draw
a Markov chain as shown in Figure 2. We define the state

kk−1−k −k+1 −1 0 1

Exponential Backoff Slow Start

−k
Packet Inter−departure Time in state k = 2    RTT

Fig. 2. Modeling short TCP congestion control

of the Markov chain to be the negation of the binary loga-
rithm of the packet inter-departure time, normalized by the
average round-trip time, for each outgoing packet. For ex-
ample, the �1 state means the current packet is going to be
sent out 2 round-trip times after the previous packet. Notice
that for slow-start phase (state index k > 0), there are more
than one (up to the current window size W ) packet samples
for each state. To simplify our analysis, we assume that all
packets in the window are emitted evenly over the round-trip
time. Thus each state actually contains W mini-states, each of
which corresponds to one packet in the current window, with



inter-departure time equals to 1=W round-trip time. However,
for simplicity, we ignore the transition between these mini-
states, but rather analyze the aggregated state with state index
log2W .

A. Modeling Slow-Start

Figure 3 illustrates the Markov chain for TCP slow-start
stage. During this stage, TCP increases its window size by one

k k+1k−1

(1−p)2
k−1 2k(1−p)

1− 2k(1−p)
1− (1−p) 2k+1

0

Fig. 3. Markov chain for slow-start

every time it gets an acknowledgment. Therefore essentially
TCP doubles its window size every round-trip time if none of
the packets in the previous window gets lost during the pre-
vious round-trip time. Assuming loss event is independent of
the TCP behavior and the loss rate is constant p, then the prob-
ability of not losing any packet is (1 � p)W , where W is the
previous round’s window size. Recall that we define state k to
denote a TCP window size of 2k, or equivalently a rate of 2k

packets per RTT. Thus, the probability of transition from state
k to (k+ 1) equals to (1� p)2

k

, as shown in Figure 3. On the
other hand, when packet loss is encountered,1 TCP reduces
its window size to 1, and goes to slow-start again. Thus, the
transition probability from state k to state 0 is 1� (1� p)2

k

.
Denote by �k the probability that TCP is in state k, then

we can write the following balance equations of the Markov
chain:

�k = (1� p)2
(k�1)

�k�1 for k > 0

Therefore, we have

�k = (1� p)2
(k�1)

�k�1

= :::

= (1� p)2
k(k�1)=2

�0 for k > 0 (1)

B. Modeling Exponential-Backoff

The other part of the Markov chain is shown in detail in Fig-
ure 4. In this stage, TCP tries to retransmit the packet lost in

−k −(k−1)−(k+1)

p

1−p
1−p

p

0

p

Fig. 4. Markov chain for exponential-timeout

the previous round. The window value is kept at 1, and TCP

1This is how TCP Tahoe always behaves upon detecting a packet loss.

employs Karn’s algorithm to estimate the round-trip time, or
the maximum time it needs to wait for the acknowledgment of
the retransmitted packet. Instead of using the sampled round-
trip time, TCP backs off the retransmission timeout (RTO)
exponentially until the packet is acknowledged, usually start-
ing from the latest RTT sample for a new (not-retransmitted)
packet. If no RTT samples have yet been received, RTO is
usually set to an initial default value.

During exponential-backoff, if TCP does not receive the
acknowledgment of the retransmitted packet before RTO ex-
pires, either because the packet or its acknowledgment is lost
(with probability p), or because the actual RTT is greater than
RTO, then TCP doubles RTO and repeats the above process.
The transition probability from state �(k � 1) to �k in Fig-
ure 4 corresponds to this case.2

We can derive the state probabilities from the following bal-
ance equations:

�
�k = p�

�(k�1) for k > 0

Therefore, we have:

�
�k = p�

�(k�1)

= :::

= pk�0 for k > 0 (2)

C. Comments and Observations on the Analysis

Note that in Figure 2, we do not include the congestion-
avoidance stage. Our objective here is to model short TCP
connections. Many Internet measurements [5, 21] have shown
that most of the Internet flows are short-lived. Since TCP
needs to conservatively adapt to the available bandwidth in
the network, it is often the case that short TCP connections
end their transmission before they really enter the congestion-
avoidance stage. Current versions of TCP try to avoid being
too pessimistic when a packet loss is encountered. They em-
ploy the fast retransmit and recovery [20] mechanism to avoid
going to exponential-backoff stage too often. To do this, if
the TCP sender receives the Kth duplicate acknowledgment
packet before the timer expires,3 the sender will behave as
if a timeout has occurred and retransmits while remaining in
congestion-avoidance. However, for short connections, since
they rarely have a chance to open their window big enough
to have the fast retransmit mechanism workable, most of their
lifetime is spent in exponential-backoff and slow-start. Thus,
the model in Figure 2 is more suited for short TCP connec-
tions, which constitute the majority of TCP flows in the Inter-
net today.

The steady-state probability distribution function for the
states in the Markov chain is plotted in Figure 5:
2Note that in Karn’s algorithm, if a packet has been sent more than once, the

initial RTO for the next packet is set to the RTO of the previous transmission,
not the estimated round-trip time. In other words, TCP stays in state �k
instead of going back to state 0. We ignore this detail to keep our Markovian
analysis simple.
3K is usually 3.
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Observing the part of the curve for the exponential-backoff
stage (the left side), when p is large enough (e.g. p > 12%),
the distribution of packet inter-arrival times from the single
TCP source starts to exhibit a tail consistent with infinite
variance (if it is extended to infinity). This is shown in the
following analysis. We have noticed from equation (2) that
�
�k = pk�0, where �

�k corresponds to the probability of
inter-arrival of (retransmitted) packets equals 2k RTT. Denote
by T the random variable which describes the packet inter-
arrival time in the exponential-backoff stage, then we have:

Pr[T = t = 2k] = �
�k

= pk�0

= (2k)� log2(1=p)�0

= t� log2(1=p)�0

= t�(�+1)�0 (3)

where � is the slope (exponent) of the corresponding comple-
mentary cumulative distribution, and is obtained by:

� = log2(1=2p) (4)

If the Markov chain were infinite, i.e., k had no upper
bound, the distribution would have been categorized as heavy-
tailed when 1 < � < 2, or 1

8
< p < 1

4
. Furthermore,

the aggregation of such time-series would have shown self-
similarity [4]. However, the TCP protocol defines an upper
bound on the timeout value, which is max(64 RTO; TM ),
where the value of TM depends on the implementation. Thus,
usually k � 6. When combined with other source of variabil-
ities, e.g., variability in initial RTO values (c.f. Section IV-D),
this means such power-law shape can span about 3 decimal or-
ders of magnitude of timescales. Therefore, it is more appro-
priate to classify such traffic as “pseudo-self-similar” because
the scaling property would disappear at larger timescales.
Moreover, as the loss rate increases, the chance to have longer
silent period increases, and so does the variability and the
timescale it spans.

IV. SIMULATION WITH PATHOLOGICAL TCP
CONNECTIONS

A. Demonstrating Pseudo-self-similarity by Simulation

We use a simple experiment with the ns [8] simulator to
validate the above observation. As in many other similar stud-
ies [7, 23], we simulate the case in which TCP connections
pass through a bottleneck link. However, because we are inter-
ested in the behavior of a single TCP flow, instead of simulat-
ing the case of many TCP flows competing for the bottleneck
resource, we simulate only a single connection transmitting
over a lossy link. The topology is shown in Figure 6. Node S

S RL
50ms 50ms

Fig. 6. Simulation topology

is the sender, node R is the receiver, the two-way propaga-
tion delay between S and R is set to 200 msec. We put a loss
module inside node L, which drops incoming (new or retrans-
mitted) packets uniformly with probability p. The packet size
is set to be fixed at 576 bytes. The link capacity, buffer size
and receiver window size are set to very large values so that
only the loss module affects TCP’s performance. The size of
each TCP connection is set to be fixed at FlowSize packets.
A terminated connection is immediately replaced by a new
connection (with all TCP parameters reset). We use the Tahoe
version of TCP.4

We traced packet arrival events both at the upstream link
(S;L) and downstream link (L;R) of node L.5 Figure 7
shows four time-series plots of the traffic on the upstream link.
The plots are produced by aggregating packet traffic into dis-
crete bins of 0.2, 2, 20, or 200 seconds. We observe that traffic
is bursty over all timescales shown, and that the variability
does not decline rapidly as the timescale increases. This is
suggestive of an unusual scaling property in the traffic trace.

To demonstrate that this traffic can exhibit properties that
might be misidentified as self-similarity, we apply two popular
methods used for assessing self-similarity. For these tests we
used a 55-hour packet trace from a simulation with parameters

4We also simulated TCP Reno. The simulation results are very similar to
TCP Tahoe. Note that in the regime of high and bursty packet losses we are
considering in this paper, TCP Tahoe is actually more robust to multiple losses
than TCP Reno. Moreover, our model has no dependence on the congestion
avoidance phase of TCP and the differences between Tahoe and other versions
are not significant for this loss regime, even with a maximum window size
or delayed ACKs. This is especially true for short TCP flows with small
window size, which is likely not to trigger the fast retransmit and recovery
mechanisms.
5All the data shown in this paper are collected at the upstream link (S;L),

i.e., the data includes all packets, including those that are later lost at node L.
Excluding those (eventually lost) packets affects the distributions (packet
inter-arrival times, burst sizes) at small timescales, but does not affect the
tail shape of the distributions (i.e., at large timescales). Thus the major con-
clusions of this paper still hold for packet traces collected on the downstream
link (L;R), for which results are not shown.
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Fig. 7. Traffic burstiness over four orders of magnitude

p = 0:15 and FlowSize = 15 packets.6 Figure 8 shows the
results. Roughly, with the Aggregated Variance method, for
a self-similar process, the variance of the time average goes
to zero very slowly as the bin size, or aggregation level, be-
comes larger. In Figure 8(a), the sample variance is plotted
versus bin size on a log-log plot. For a self-similar process,
the result should be a straight line with a slope of 2H � 2. If
the time-series has no long-range dependence, then H = 0:5
and the slope should be -1 [24]. With the Wavelet Analysis
Method, for a self-similar process, the degree of variability,
or burstiness, decreases very slowly at larger timescales. In
Figure 8(b), this variability is represented by “energy” esti-
mates with 95% quantiles, computed using the tool of Veitch
and Abry [25]. The plot of energy versus timescale should be
a straight line with a slope of 2H � 1.7 Observe from these
graphs that the traffic time-series shares properties similar to
a self-similar signal, but only over the timescales from few
RTTs to hundreds of RTTs.
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Fig. 8. LRD analysis on packet trace with loss rate = 15%, (a) Aggregated
Variance Method H = 0.76, (b) Wavelet Method H = 0.785 (0.783,0.787)

B. Power laws in Packet Inter-arrivals: How and Why

Greiner et al: show in [27] that a renewal process where
the interarrival times have a heavy-tail yields self-similar scal-
ing behavior. Our simulation results, which closely match our
analysis in Section III, show that packet inter-arrivals under
TCP can indeed have a power-tail, causing scaling behavior
in the overall traffic over limited timescales. Figure 9 shows

6For different simulation setups, the packet trace contains hundreds of thou-
sands to few millions of packets transmitted over the upstream link.
7Note in Figure 8(b), the “dip” in the Wavelet plot reflects the strong cor-

relation introduced by the network round-trip time (of 200 msec. here), as
explained in [26].

simulation results for p = 0:15 and FlowSize = 15 packets.
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Fig. 9. The inter-arrival time and burst size distribution of TCP in (a)

exponential-timeout (CDF), (b) slow-start stage (pdf)

We consider packets whose inter-arrival time is less than
2 times the packet transmission time (about 1 millisecond in
our simulation) to constitute a burst. Bursts are only emit-
ted in slow-start, so their presence does not affect the heavy
tails in our Markov chain model. The probability of a state
�k (k > 0) can be thought of as the probability of a burst of
size 2k in our ns simulation. Therefore, we use two plots to
represent the inter-packet arrival behavior. Figure 9(a) shows
the log-log complementary distribution (LLCD) plot for those
inter-arrival times bigger than 1 millisecond, and Figure 9(b)
shows the distribution of packet arrival in bursts. Roughly,
Figure 9(a) describes TCP behavior in the exponential-timeout
stage (and part of the slow-start stage), while Figure 9(b) de-
scribes the slow-start stage. Note that Figures 9(a) and (b)
are plotted in log10-log10 and log10-log2 scales, respectively.
Also note that each burst corresponds to an aggregated state in
the Markov chain (with state index k > 0).

We observe that the inter-arrival time distribution in Fig-
ure 9(a) clearly has a tail that shows hyperbolic shape. The
function given by the linear least-squares fit has the shape
� = log2 3:33 = 1:74 (implying high variance). The shape
of the tail matches the value obtained by analysis from equa-
tion (4) in Section III-C. However, as discussed in our analy-
sis, TCP defines a bound on the maximum timeout value, thus
the tail of the inter-arrival time distribution is cut off at this
upper bound and therefore the distribution can not be catego-
rized as heavy-tailed. As a result, the scaling property would
disappear at larger timescale.

The burst size distribution in the slow-start plot in Fig-
ure 9(b) also shows a shape similar to our analysis given in



Figure 5, where it decays very fast due to the relatively high
loss probability.

C. Effect of Loss Rate

We also vary the loss rate p in our simulation experiments.
Figure 10 plots the Wavelet analysis and the inter-arrival time
distribution for p = 0:1 and p = 0:2. Observe that the slopes
of the linear least-squares fit obtained by simulation closely
match those obtained by analysis (cf. equation (4)).
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Fig. 10. Simulation with loss rates p = 0.1 (a,b), and p = 0.2 (c,d): (a) p =

0.1, Wavelet Method H = 0.761, (b) LLCD of inter-arrival times, slope =
� log2 5 = -2.32, (c) p = 0.2, Wavelet Method H = 0.803, (d) LLCD of
inter-arrival times, slope =� log2 2:5 = -1.32.

When the loss rate is relatively low, the scaling property
exhibited by the time-series is less significant. This is because
the tail of the inter-arrival time (or the OFF period) distribution
is less heavy and thus at larger timescales, the traffic starts to
show less variance. On the contrary, with higher loss rate, the
tail of the OFF periods is heavier and the statistical scaling
property is more significant.

Since the time-series is not self-similar, it is meaningless to
estimate the Hurst parameter. However, we can still compute
a similar measurement over the time-series, if we assume that
there were no upper bound on the maximum timeout value, so
that the power-law tail extended to all larger timescales. Such
“pseudo-Hurst” parameter is estimated from the linear square
fit in the wavelet plot over the timescales that the scaling prop-
erty shows up, and is shown in the figures. As we observed
in our analysis, when loss rate goes up, the burstiness, rep-
resented by the “pseudo-Hurst” parameter increases, and the
timescale over which the scaling property shows up increases
too.

D. The Variability of Initial Retransmission Timeout Value

There are two reasons to have variable initial timeout. The
first is brought by variable queueing delays. TCP includes the
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Fig. 11. Simulation with file sizes F lowSize = 63 (a,b), and F lowSize =

65535 (c,d): (a) Wavelet Method H = 0.780, (b) LLCD of inter-arrival
times, slope = -log2 3:33 = -1.74, (c) Wavelet Method H = 0.782, (d)
LLCD of inter-arrival times, slope = -log2 3:33 = -1.74.

variance of the RTT in its RTT estimate, which is then used
to compute the retransmission timeout value. The second fac-
tor, which is more significant in our model, is that for the first
packet, the initial timeout value is set to a default value be-
cause TCP does not have any packet sample to estimate the
round-trip time. This default value is suggested to be 3 sec-
onds in [28], and is set to 6 seconds by default in the ns sim-
ulator. Recall that the two-way propagation delay in our sim-
ulation is 0.2 second, so if TCP had enough packet samples
to accurately estimate the round-trip time, the initial retrans-
mission timeout value would have been set to a value close to
0.2-0.4 second.8 This huge difference (about 15 times) results
in some packet inter-arrival times to be as high as 64 � 6 =
384 seconds, if the transmission of a packet fails 6 times start-
ing from a default RTO of 6 seconds. The effect of the default
initial timeout value is less significant in two cases: when its
value is closer to the estimated value, and when the connection
size is large. For these two cases, we conducted the following
two experiments.

D.1 Effect of File (Flow) Size

We compare the packet traces generated from sending dif-
ferent file sizes over TCP. We fix the loss rate at 15%. Fig-
ure 11 shows both the Wavelet analysis on the packet trace
and the packet inter-arrival time distribution for FlowSize =
63 packets and 65; 535 packets.

We observe that as the file size increases, the time-series
shows less variations at larger time scales; this is apparent
from the less heavy tail of the LLCD plot and the Wavelet plot
bending down at large timescales. We attribute this reduced

8Observe that Figure 9 shows a minimum packet inter-arrival time of
0.2 second.



variability to the more accurate information TCP learned from
increased packet samples.9

D.2 Effect of Default Initial Timeout Value

We conducted two experiments to reduce the difference be-
tween the default initial timeout value and the normal time-
out value. In the first experiment, we increase the two-way
propagation delay from 0.2 second to 1 second. In the second
experiment, we reduce the default initial timeout value from
6 seconds to 0.5 second. Figure 12 shows the Wavelet analy-
sis of the time-series produced by the captured packet traces
for FlowSize = 15 packets and p = 0:15.
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Fig. 12. Reducing the difference between timeout values: (a) increase round-

trip propagation delay to 1 second, H = 0.731, (b) decrease default time-
out value to 0.5 second, measured H = 0.686.

As the variance of the timeout values becomes smaller,
the pseudo-long-range dependence in the time-series becomes
less significant.10

E. Explaining “Chaotic” TCP behavior

In [7], Veres et al. show that when 40 TCP connections are
squeezed into a small pipe (with 1Mbps bandwidth and 30ms
two-way propagation delay, so that on average, each connec-
tion can transmit less than one packet in one round-trip time),
the time-series produced by each connection shows pseudo-
long-range dependence. We repeated this experiment and plot
the Wavelet analysis of the traffic produced by one of the TCP
connections in Figure 13.

Notice that Veres’ experiment produces pseudo-self-
similarity as well. We can now explain this phenomena based
on our analysis. The average packet loss rate measured in
this experiment is around 16%. At this loss level, the bursti-
ness measure have a value similar to our experiment results
shown in Figures 8 and 11. The difference is that in Veres’
experiment, each connection has infinite packets to transmit,
so the effect of large initial timeout value should have van-
ished. However, the timescale over which the scaling property

9We note that this result does not contradict those in [17] regarding long
TCP flows propagating self-similar traffic in the presence of self-similar back-
ground traffic. Veres et al: [17] do not explain the origin of this background
self-similar traffic. Our results provide high loss rate leading to exponential
backoffs in short TCP flows as a contributing factor. Note that a number of
measurements show that the majority of TCP flows are short.
10This observation agrees with [16], in which Peha observes that for

larger or more random timeouts, self-similar behavior is observed at larger
timescales.
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Fig. 13. Veres’ experiment result over larger timescale range, H = 0:786.

shows up in Veres’ experiment is longer than what we get in
the long TCP connection case (c.f. Figure 11(c)). We attribute
such longer timescale to the variabilities in timeout estima-
tions brought by variable queueing delays, which have similar
effect as different initial timeout values observed in our experi-
ments with small file sizes. We observe that it is these two fac-
tors that contribute to pseudo-heavy-tailed packet inter-arrival
times, or the “chaotic” nature of the TCP congestion control.

F. Effect of TCP Congestion Control on Transmission Times
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Fig. 14. Validation of high variability in transmission time, F lowSize = 15,

p = 15%

In [29], the authors noted that the omnipresence of heavy-
tails in file size distribution in the majority of file systems
is not the only reason behind the heavy-tailed distribution of
HTTP file transfers. They pointed out that the network con-
dition is also important by observing that there is no strong
correlation between file transmission time and file size. How-
ever, that paper made no attempt to explore alternate reasons
for heavy-tailed transmission times.

We observe that in addition to these reasons, TCP’s adap-
tive congestion control mechanism in the presence of severe
network conditions can be another major contributor to power-
law tails, over a limited range. We run simulations on both the
ns simulator and the Markov chain described in Section II to
validate this observation. Figure 14 shows the LLCD plot of
the transmission time distribution for transferring a 15-packet
file over a lossy channel with 15% loss rate. The stair-step
shape of the plot is due to the small file size (15 packets) lead-
ing to a small set of possible packet-loss events and thus trans-
mission times. Nonetheless it shows an approximate power-
law shape (the general trend apart from the stair-stepping) that



is indicative of heavy tails in transmission times. Larger files
would presumably show a smoother curve. This surprising
effect means that under certain network conditions, huge dif-
ference in transmission times can occur even in the absence of
any variability in file sizes.11

V. CONCLUSION AND FUTURE WORK

The principle of TCP congestion control is to avoid over-
loading the network while still maintaining network usage ef-
ficiency. The TCP control algorithm is simple but effective.
However, this simplicity does not come for free. The behav-
ior of TCP becomes less predictable or even chaotic when
the network condition is out of TCP’s control. In this paper,
we have demonstrated that when a TCP connection is going
through a highly lossy channel and the loss condition is not
affected by this single TCP connection’s behavior, TCP starts
to produce packet trains that show pseudo-self-similarity. We
used a simple Markovian model to demonstrate why limited-
range power-laws show up in packet inter-arrival times and file
transmission times. Our analysis sheds some light on the re-
lationship between TCP conservative control mechanism and
pseudo-self-similarity observed in Internet traffic, especially
over small timescales [7, 16, 17].

Our future work includes extending our analytical model
to consider the variability in round-trip time estimation, and
verifying our analytical model in more complex network set-
tings. We also plan to study possible improvements to TCP
congestion control mechanism under severe network condi-
tions. We are also planning to investigate the relationship
between network-level self-similarity and application-level
self-similarity (especially for network-aware adaptive appli-
cations).
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