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Fractals, Heavy-Tails, and the Internet 
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In a recent Business Week article (April 
2001), a mathematical concept known as 
fractals was listed as one of the top ten 
technologies of the future.  The article 
referenced many potential applications 
for fractals, including data compression 
and the Internet.  In this paper, we 
discuss the impact fractals have on the 
Internet and how fractals relate to heavy-
tailed probability distributions.  Fractals 
are applicable when the underlying 
process being mathematically modeled 
has a similar appearance regardless of 
the time or observation scale.  It turns 
out that much of the traffic riding the 
Internet can be modeled using fractals.  
Fowler (1999) presents a tutorial on 
fractals and the Internet.  Here we 
review his tutorial and develop the 
relationship to heavy-tailed probability 
distributions and problems they cause in 
analyzing Internet congestion. 
 
In the good old days of traffic 
engineering, modeling congestion in 
telecommunications networks was 
simpler than today.  There was only one 
kind of traffic of any significance, and 
that was voice.  It had (and has) well-
known characteristics; namely, Poisson 
interarrival rates (time between calls 
reaching the central office switch) and 
exponential call length distribution.  
There was no need to worry about things 
such as network layers, as they did not 
exist.  It was easy to measure critical 
values of the important parameters.  
Queueing theory permitted analysis of 
voice networks to meet any desired 
performance characteristics; for 
example, call-blocking probability.   

Erlang’s (1917) pioneering work and his 
famous loss formula and its extension 
were in wide use from the early 20th 
century. 
 
With the growth of data networks, those 
days are rapidly shrinking.  Multilayer 
protocols are here to stay and many 
complicated traffic statistics are creating 
greater difficulty in analyzing network 
traffic.  There are also a far greater 
number of applications (not just voice 
conversation), each with its own traffic 
characteristics, and new applications can 
arise at any time.  There are more 
varieties of network connectivity, 
architecture, and equipment, and, 
accordingly, different types of traffic 
flow.  There are no standard network 
topologies around which all design 
efforts can be based, and the topologies 
that exist are subject to constant change. 
 
Perhaps the most serious and most 
surprising characteristic that packet 
networks exhibit is burstiness.  
Burstiness is a qualitative concept, but it 
can be described analytically as self-
similar on multiple time scales.  Such 
behavior observed over a wide range of 
time scales suggested that fractals are the 
most appropriate mathematical tool to 
describe certain aspects of network 
behavior.  This was the astonishing 
discovery of Bellcore researchers in the 
late 1980s and early 1990s.  These 
results, originally observed in local area 
networks (LANs) (Leland et al, 1994), 
were later extended to wide area 
networks (WANs) (Paxson and Floyd,  
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1995).  The implications of this 
discovery are only beginning to be 
explored. 
 
Figure 1 was taken from Willinger and 
Paxson (1998).  It shows the fractal or 
self-similar behavior of Internet traffic 

(right column) compared to that of voice 
(Poisson) traffic.  The problem of self-
similarity can be readily understood 
from this figure, which shows the effect 
of looking at telephone traffic, which has 
Poisson arrival rates, with Internet 
traffic, which does not.  As shown in  

 

 

 
 

Figure 1.  Self-Similarity of Internet Traffic (Measured) and Not In Poisson Or 
Ordinary Telephone Traffic 
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Figure 1, packets per unit time are counted 
(vertical scale) for a given time interval 
(horizontal scale).  The time interval is then 
increased by a factor of 10 (for the second 
and third graphs) and by a factor of 7 (for 
the bottom graphs).  The unit time interval is 
increased by this same factor.  Traffic here 
is measured at the link layer.  In effect, the 
averaging intervals become longer from top 
to bottom. 
 
As the figure shows, averaging Poisson or 
voice traffic over longer intervals smoothes 
out the burstiness, whereas Internet traffic 
shows the same burstiness regardless of time 
scale.  This means that traffic peaks in voice 
networks are limited in frequency of 
occurrence and severity, and a voice 
network can be engineered to reduce ill 
effects below any desired threshold.  Such is 
not the case with the Internet, however, 
where the burstiness cannot be averaged out, 
nor can ill effects be handled by buffering.  
Indeed, the probability of loss cannot, in 
general, even be estimated, as with the voice 
traffic.  The similar appearance of the graphs 
on the right-hand side of Figure 1, regardless 
of time scale, is the telltale sign of fractal 
behavior. 
 
Figure 2 comes from Fowler (1999); it 
shows the traffic characteristic (Invariant) 
and the related probabilility distribution that 
can be used to model the invariant. 
 
The listed references are contained in 
Fowler (1999).  It is clear that two 
probability distributions that play an 
important role in modeling these traffic 
characteristics are the Pareto and Lognormal 
distributions.  They, along with the Weibull, 
come from a class of distribution that is 
known as heavy-, power-, long- or fat-tailed.   

For a precise definition of each type of 
distribution (Fischer et al, 2000).  It is 
immediate that if one wants to analyze 
Internet congestion using queueing theory, 
then one has to able to deal with the Pareto, 
Lognormal, and Weibull distributions.  In 
fact, Paxson and Floyd (1995) suggested 
that self-similar traffic processes can be 
generated by a sequence of independent and 
identically distributed Pareto observations. 
 
Why do these distributions limit the use of 
queueing theory results and what is being 
done about it?  Many of the available results 
from queuing theory require the existence of 
the Laplace transform of the underlying 
interarrival or service time distributions.  
The Pareto, Lognormal, and Weibull do not 
possess closed form mathematical 
expressions for their Laplace transform.  
Thus, standard queueing results cannot be 
applied.  Researchers have been addressing 
the problem on three fronts.  First, they have 
tried to fit the heavy-tailed distribution with 
a phase-type distribution that is amenable to 
using results from queueing theory 
(Feldmann and Whitt, 1998 or Grenier et al. 
1999).  This approach has met with some 
success, but is limited because fitting the 
distribution can get complicated.  Another 
approach being investigated is called the 
Transform Approximation Method (TAM) 
(Harris et al, 2000, Brill et al, 2001, and 
Fischer et al, 2000). With this method, the 
transform is approximated and then standard 
queueing results applied.  Research to date 
has been quite positive using TAM.  The 
final method has been in the area of using 
available simulation packages like GPSSH 
and Arena on these problems.  Initial 
analysis (Brill et al, 2000 and Gross et al, 
2001) has shown some potential, but 
requires excessive computer runtimes. 
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Invariant Protocol
level

Distribution Parameters Reference

Connection size - Lognormal Paxson
(1997)

Connection duration - Lognormal Paxson
(1997)

Requested file popularity Application Zipf Pitkow, p. 6
Requested file sizes
(overall)

Application Hybrid: Lognormal
body,

Pareto tail
(Heavy-tailed)

HTML Size µ=4-6KB
Median: 2KB
Images: 14 KB

Pitkow, p. 6

FTP transfers Application Pareto tail
(Heavy tailed)

0.9<α<1.1 Crovella,
1997, p. 14

Number of Page
Requests/Site

Application Inverse Gaussian
(Heavy-tailed)

µ=3
σ=9
mode=1

Pitkow, p. 6

Reading time/page (sec) Application Heavy-tailed µ=30
median=7
σ=100

Pitkow, p. 6

Sessions (arrivals) Session Poisson Feldman
[1998], p. 7

Session duration Session Pareto
(Heavy-tailed)

Feldman
[1998], p. 7

Session size Session Pareto
(Heavy-tailed)

Feldman
[1998], p. 7

WAN traffic at TCP level Transport Self-similar
(fractal, multifractal)

Crovella,
1997, pl 21

TCP connections/Web
session

Transport Heavy-tailed Crovella,
1997, p. 23

Interarrival time of packets Network Heavy-tailed
(LRD, fractal)

Cox model Crovella,
1997, p. 15

Interarrival (generation)
time of packets generated
by user at keyboard

Network Pareto (body)
Pareto (upper tail)

Paxson &
Floyd, 1997,
p. 6

Interarrival time of Ethernet
frames

Data Link Self-similar
(fractal)

Crovella &
Bestavros,
1997, p.

 
 
Figure 2.  Internet Traffic Invariant, Protocol Level and Related Probability Distribution 
 
 
Figure 3 demonstrates the differences in 
Internet waiting times when using the old 
rules (Erlang models) as compared with the 
use of the Transform Approximation 
Method for characterizing the self-similar 
nature of Internet traffic.  Orders in 
magnitude differences can result in using the 
two methods and thus significant care must 
be taken. 
 

In this paper, we have presented the concept 
of fractals and described how they apply to 
Internet traffic analysis.  We have related 
fractals and heavy-tailed distributions; and 
we have explained way these distributions 
severely limit the use of available queuing 
theory results.  Finally, current research to 
overcome these problems was summarized.  
Interested readers may contact the authors of 
this article or read the appropriate references 
provided below. 
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Figure 3.  Significant Longer Waiting Times Using New Rules for 
Internet Traffic Characterization as Compared with Old Rules 
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