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Abstract-Recently, the notion of self-similari~ has been shown 
to apply to wide-area and local-area network traffic. In this paper, 
we show evidence that the subset of network traffic that is due to 
World Wide Web (WWW) transfers can show characteristics that 
are consistent with self-similarity, and we present a hypothesized 
explanation for that self4milarity. Using a set of traces of actual 
user executions of NCSA Mosaic, we examine the dependence 
structure of WWW traffic. First, we show evidence that WWW 
traffic exhibits behavior that is consistent with self-similar traftic 
models. Then we show that the self-shnilarity in such traftic can 
be explained based an the underlying distributions of WWW 
document sizes, the effects of caching and user preference in tile 
transfer, the effect of user “think time,” and the superimposition 
of many such transfers in a local-area network. To do this, we 
rely on empirically measured distributions both from client traces 
and from data independently collected at WWW servers. 

Zndex Terms--File sizes, heavy tails, Internet, self-similarity, 
World Wide Web. 

I. INTRODUCTION 

U NDERSTANDING the nature of network traffic is critical 
in order to properly design and implement computer 

networks and network services like the World wide Web. Re- 
cent examinations of LAN traffic [14] and wide-area network 
traffic [20] have challenged the commonly assumed models 
for network traffic, e.g., the Poisson process. Were traffic 
to follow a Poisson or Mark&an arrival process, it would 
have a characteristic burst length which would tend to be 
smoothed by averaging over a long enough time scale. Rather, 
measurements of real traffic indicate that significant traffic 
variance (burstiness) is present on a wide range of time scales. 

Traffic that is bursty on many or all time scales can be 
described statistically using the notion of self-similarity. Self- 
similarity is the property we associate with one type of 
fractal-an object whose appearance is unchanged regardless 
of the scale at which it is viewed. In the case of stochastic ob- 
jects like time series, self-similarity is used in the distributional 
sense: when viewed at varying scales, the object’s correlational 
structure remains unchanged. As a result, such a time series 
exhibits bursts-extended periods above the mean-at a wide 
range of time scales. 

Since a self-similar process has observable bursts at a wide 
range of time scales, it can exhibit long-range dependence; 
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values at any instant are typically nonnegligibly positively 
correlated with values at all future instants. Surprisingly (given 
the counterintuitive aspects of long-range dependence), the 
self-similarity of Ethernet network traffic has been rigorously 
established [14]. The importance of long-range dependence in 
network traffic is beginuing to be observed in studies such as 
[S], [13], [18], which show that packet loss and delay behavior 
are radically different when simulations use either real traffic 
data or synthetic data that incorporate long-range dependence. 

However, the reasons behind self-similarity in Internet traf- 
fic have not been clearly identified. In this paper, we show 
that in some cases, self-similarity in network traffic can be 
explained in terms of file system characteristics and user 
behavior. In the process, we trace the genesis of self-similarity 
in network traffic back from the traffic itself, through the 
actions of file transmission, caching systems, and user choice, 
to the high-level distributions of file sizes and user event 
interarrivals. 

To bridge the gap between studying network traffic on the 
one hand and high-level system characteristics on the other, we 
make use of two essential tools. First, to explain self-similar 
network traffic in terms of individual transmission lengths, 
we employ the mechanism described in [30] (based on earlier 
work in [15] and [14]). Those papers point out that self-similar 
traffic can be constructed by multiplexing a large number of 
ON/OFF sources that have ON and OFF period lengths that are 
heavy-tailed, as defined in Section II-C. Such a mechanism 
could correspond to a network of workstations, each of which 
is either silent or transferring data at a constant rate. 

Our second tool in bridging the gap between transmission 
times and high-IeveI system characteristics is our use of the 
World Wide Web (or Web) as an object of study. The Web 
provides a special opportunity for studying network traffic 
because its traffic arises as the result of tile transfers from 
an easily studied set, and user activity is easily monitored. 

To study the traffic patterns of the Web, we collected 
reference data reflecting actual Web use at our site. We in- 
strumented NCSA Mosaic [lo] to capture user access patterns 
to the Web. Since, at the time of our data collection, Mosaic 
was by far the dominant Web browser at our site, we were able 
to capture a fairly complete picture of Web traffic on our local 
network, our dataset consists of more than half a million user 
requests for document transfers and includes detailed timing 
of requests and transfer Iengths. In addition, we surveyed a 
number of Web servers to capture document size information 
that we used to compare the access patterns of clients with the 
access patterns seen at servers. 
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The paper takes two parts. First, we consider the possibility 
of self-similarity of Web t&tic for the busiest hours we 
measured. To do so, we use analyses very sirniIar to those 
performed in [14]. These analyses support the notion that 
Web traffic may show self-similar characteristics, at least when 
demand is high enough. This result in itself has implications 
for designers of systems that attempt to improve performance 
characteristics of the Web. 

Second, using our Web traffic, user preference, and file size 
data, we comment on reasons why the transmission times 
and quiet times for any particular Web session are heavy- 
tailed, which is an essential characteristic of the proposed 
mechanism for the self-similarity of traffic. In particular, we 
argue that many characteristics of Web use can be modeled 
using heavy-tailed distributions, including the distribution of 
transfer times, the distribution of user requests for documents, 
and the underlying distribution of documents sizes avaiIable 
in the Web. In addition, using our measnrements of user 
interrequest times, we explore reasons for the heavy-tailed 
distribution of quiet times. 

II. BACKGROUND 

A. Dejnition of Serf-Similarity 

For a detailed discussion of self-similarity in time series 
data and the accompanying statistical tests, see [2], [29]. Our 
discussion in this subsection and the next cIosely follows those 
sources. 

Given a zero-mean, stationary time series X = (Xt; t = 
1, 2, 3, -*>, we define the m-aggregated series X(“) = 
(X~m1;k=1,2,3,--)by summing the original series X 
over nonoverlapping blocks of size m. Then we say that X 
is H-self-similar, if for all positive m, Xc”) has the same 
distribution as X resealed by mH. That is, 

Xt gmsH F Xi, foraIlmEN. 
i+-l)m+1 

If X is H-self-similar, it has the same autocorrelation function 
y(k) = E[(Xt - p)(Xt+k - p)]/02 as the series X(m) for all 
m. Note that this means that the series is distributionaffy self- 
similar: the distribution of the aggregated series is the same 
(except for a change in scale) as .that of the original. 

As a result, self-simiIar processes can show long-range 
dependence. A process with long-range dependence has an 
autocorrelation function r(k) N L-p as k 4 m, where 
0 c /? < 1. Thus, the autocorrelation function of such a 
process follows a power law, as compared to the exponential 
decay exhibited by traditional traffic models. Power-law decay 
is slower than exponential decay, and since /3 < 1, the 
sum of the autocorrelation values of such a series approaches 
intinlty. This has a number of implications. First, the variance 
of the mean of n samples from such a series does not 
decrease proportionally to l/n (as predicted by basic statistics 
for uncorrelated datasets), bui rather decreases proportionally 
to n-p. Second, the power spectrum of such a series is 
hyperbolic, rising to infinity at frequency zero-reflecting the 
“infinite” influence of long-range dependence in the data. 

One of the attractive features of using setf-similar mod- 
els for time series, when appropriate, is that the degree of 
self-similarity of a series is expressed using only a single 
parameter. The parameter expresses the speed of decay of 
the series’ autocorrelation function. For historical reasons, the 
parameter used is the Hurst parameter H = 1 -j3/2. Thus, for 
seIf-similar series with long-range dependence, l/2 < II < 1. 
As H t 1, the degree of both self-similarity and long-range 
dependence increases. 

3. Statisticpf Tests for Self-Similarity 

In this paper, we use four methods to test for self-similarity, 
These methods are described fully in [2], and are the same 
methods described and used in [14]. A summary of the relative 
accuracy of these methods on synthetic datasets Is presented 
in [273. 

The first method, the variance-timeplot, relies on the slowly 
decaying variance of a self-sisnihu series. The variance of 
X(“‘) is plotted against m on a log-log plot; a straight line 
with slope (-p) greater than - 1 is indicative of self-similarity, 
and the parameter H is given by H = I- p/2. The second 
method, the R/S plot, uses the fact that for a self-similnr 
dataset, the resculed range or R/S statistic grows according 
to a power iaw with exponent H as a function of the number 
of points included (n). Thus, the plot of R/S against 12 on 
a log-log plot has a slope which is an estimate of H. The 
thiid approach, the periudogram method, uses the slope of the 
power spectrum of the series as frequency approaches zero. 
On a log-log plot, the periodogram slope is a straight line 
with slope p - 1 = 1 - 2H close to the origin. 

While the preceding three graphical methods are useful 
for exposing faulty assumptions (such as nonstationarity in 
the dataset), they do not provide confidence intervals, and ns 
developed in [27], they may be biased for Iarge H. The fourth 
method, called the WhiffZe esrimaror, does provide a confidence 
interval, but has the drawback that the form of the underlying 
stochastic process must be supplied. The two forms thnt nre 
most commonly used are fractional Gaussian noise (FGN) with 
parameter l/2 < H < 1, and fractional ARIMA (p$ rl, r7) with 
0 < d < l/2 (for details, see [2], [4]). These two models differ 
in their assumptions about the short-range dependences in 
the datasets; FGN assumes no short-range dependence, while 
fractionaI ARMA can assume a fixed degree of short-range 
dependence. 

Since we are concerned only with the long-range depen- 
dence in our datasets, we employ the Whittle estimator ns 
follows. Each hourly dataset is aggregated at increasing levels 
m, and the Whittle estimator is applied to each m-aggregated 
dataset using the FGN modeI. This approach expIoits the 
property that any Iong-range dependent process approaches 
FGN when aggregated to a sufficient level, and so should 
be coupled with a test of the marginal distribution of the 
aggregated observations. to ensure that it has converged to the 
normal distribution. As m increases, short-range dependences 
are averaged out of the dataset; if the value of H remains 
relatively constant, we can be confident that it measures a 
true underlying level of self-similarity. Since aggregating the 
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series shortens it, confidence intervals will tend to grow as 
the aggregation level increases; however, if the estimates of 
H appear stable as the aggregation level increases, then we 
consider the confidence intervals for the unaggregated dataset 
to be representative. 

C. Heavy-Tailed Distributions 

The distributions we use in this paper have the property of 
being heavy-tailed. A distribution is heavy-tailed if 

P[X > x] N x-*, as 5400, o<o!<2. 

That is, regardless of the behavior of the distribution for small 
values of the random variable, if the asymptotic shape of the 
distribution is hyperbolic, it is heavy-tailed. 

The simplest heavy-taiIed distribution is the Pareto distri- 
bution. The Pareto distribution is hyperbolic over its entire 
range; its probability mass function is 

p(x) = cYkax--l, cr,k>O, x>k 

and its cumulative distribution function is given by 

F(x) = P[X 5 x] = 1 - (k/z)? 

The parameter L represents the smallest possible value of the 
random variable. 

Heavy-tailed distributions have a number of properties that 
are qualitatively different from distributions more commonly 
encountered such as the exponential, normal, or Poisson dis- 
tributions. If a! 5 2, then the distribution has infinite variance; 
if a < 1, then the distribution has infinite mean. Thus, as a 
decreases, an arbitrarily large portion of the probability mass 
may be present in the tail of the distribution. In practical terms, 
a random variable that follows a heavy-tailed distribution 
can give rise to extremely large values with nonnegligible 
probability (see [20] and [16] for details and examples). 

To assess the presence of heavy tails in our data, we employ 
log-Zag complementary distribution (LLCD) plots. These are 
plots of the complementary cumulative distribution P(z) = 
1 - F(z) = P[X > z] on log-log axes. Plotted in this way, 
heavy-tailed distributions have the property that 

for some 0. To check for the presence of heavy tails in practice, 
we form the LLCD plot, and look for approximately linear 
behavior over a significant range (three orders of magnitude 
or more) in the tail. 

It is possible to form rough estimates of the shape parameter 
Q from the LLCD plot as well. First, we inspect the LLCD 
plot, and choose a value for B above which the plot appears to 
be linear. Then we select equally spaced points from among 
the LLCD points larger than 8, and estimate the sIope using 
least squares regression.’ The proper choice of 0 is made based 
on inspecting the LLCD plot; in this paper, we identify the B 

‘Equally spaced points are used because the point density varies over 
the range used, and the preponderance of data points at small values would 
otherwise unduly influence the least squares regression. 
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used in each case, and show the resulting fitted line used to 
estimate cr. 

Another approach we used to estimating tail weight is the 
Hill estimator (described in detail in [30])= The Hill estimator 
uses the k: largest values from a dataset to estimate the value 
of Q for the dataset. In practice, one plots the Hill estimator for 
increasing values of k, using only the portion of the tail that 
appears to exhibit power-law behavior; if the estimator settles 
to a consistent value, this value provides an estimate of (Y. 

m. BLATED WORK 

The first step in understanding WWW traftic is the col- 
lection of trace data. Previous measurement studies of the 
Web have focused on reference patterns established based 
on logs of proxies [ll], [25] or servers 1213. The authors in 
[5] captured client traces, but they concentrated on events at 
the user interface’level in order to study browser and page 
design. In contrast, our goal in data collection was to acquire 
a complete picture of the reference behavior and timing of 
user accesses to the WWW. As a result, we collected a large 
dataset of client-based traces. A full description of our traces 
(which are avaiIabIe for anonymous FTP) is given in [6]. 

Previous wide-area traffic studies have studied PIP, TEL- 
ICI’, &fNTP, and SMTP traffic [19], [20]. Our data comple- 
ment those studies by providing a view of WWW (I-I’ITP) 
trafftc at a “stub” network. Since WWW traffic accounts for a 
large fraction of the traftic on the Internet? understanding the 
nature of WWW traftic is important. 

The benchmark study of self-similarity in network trafhc is 
[14], and our study uses many of the same methods used in 
that work. However, the goal of that study was to demonstrate 
the self-similarity of network traffic; to do that, many large 
datasets taken from a multiyear span were used. Our focus is 
not on establishing self-similarity of network traffic (although 
we do so for the interesting subset of network traffic that 
is Web-related); instead, we concentrate on examining the 
reasons behind self-similarity of network traflic. As a result 
of this different focus, we do not analyze traftic datasets for 
low, normal, and busy hours. Instead, we focus on the four 
busiest hours in our logs. While these four hours are well 
described as self-similar, many Iess busy hours in our logs do 
not show self-similar characteristics. We feel that this is only 
the result of the traffic demand present in our logs, which is 
much lower than that used in [14]; this belief is supported by 
the findings in that study, which showed that the intensity of 
sellXmilarity increases as the aggregate traffic level increases. 

Our work is most similar m intent to 1301. That paper 
looked at network traffic at the packet level, identified the 
flows between individual source/destination pairs, and showed 
that transmission and idle times for those flows were heavy- 
tailed. In contrast, our paper is based on data collected at the 
application 1eveI rather than the network level. As a result, 
we are able to examine the relationship between transmission 
times and file sizes, and are able to assess the effects of 
caching and user preference on these distributions. These 
observations allow us to build on the conclusions presented 

'See,for example.data athttp://~~~.nlanr.net/INFO/. 
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in [3OJ, and confirm observations made in [20] by showing 
that the heavy-tailed nature of transmission and idle times is 
not primariIy a result of network protocols or user preference, 
but rather stems from more basic properties of information 
storage and processing: both fiIe sizes and user “think times” 
are themselves strongly heavy-tailed. 

IV. EXAMNNG WEB TRAFFIC SELF-SDJILANTY 

In this section, we show evidence fiat WNW fraffic can 
be self-similar. To do so, we first describe how we measured 
WWW traffic; then we apply the statistical methods described 
in Section II to assess self-similarity. 

In order to reIate traffic patterns to higher level effects, 
we needed to capture aspects of user behavior as well as 
network demand. The approach we took to capturing both 
types of data simultaneously was to modify a WWW browser 
so as to log a11 user accessed to the Web. The browser we 
used was Mosaic since its source was publicly available and 
permission has been granted for using and modifying the code 
for research purposes. A complete description of our data 
cohection methods and the format of the log files is given 
in [6]; here, we onIy give a high-level summary. 

We modified Mosaic to record the uniform resource locator 
(UFtL) [33 of each file accessed by the Mosaic user, as well as 
the time the file was accessed and the time required to transfer 
the file from its server (if necessary). For completeness, we 
record all URLs accessed whether they were served from 
Mosaic’s cache or via a file transfer; however, the traffic time 
series we analyze in this section consist only of actual network 
transfers. 

At the time of our study (January and February 19953, 
Mosaic was the WWW browser preferred by nearly all users 
at our site. Hence, our data consist of nearly all of the WWW 
traffic at our site. Since the time of OUT study, users have 
come to prefer commericial browsers which are not available 
‘in sonrce form. As a result, capturing an equivalent set of 
WWW user traces at the current time would be more difficult, 

The data captured consist of the sequence of WWW file 
requests performed during each session, where a session is 
one execution of NCSA Mosaic. Each file request is identified 
by its URL, and session, user, and workstation ID; associated 
with the request is the time stamp when the request was 
made, the size of the document (inchtding the overhead of 
the protocol), and the object retrieval time. Time stamps were 
accurate to 10 ms. Thus, to provide three significant digits in 
our results, we limited our analysis to time intervals greater 
than or equal to 1 s. To convert OUT logs to traffic time series, it 
was necessary to allocate the bytes trausferred in each request 
equalIy into bins spanning the transfer duration. Although this 
process smooths out short-term variations in the traffic flow of 
each transfer, our restriction to time series with gramiIarity of 
1 s or more-combined with the fact that most file transfers 
are short [6]-means that such smoothing has little effect on 
our results. 

TABLE I 
SUMMARY STATETICS FOR TRACE DATA USED IN THIS STUDY 

Sessions 
Users 
URLs Requested 
files Transferred 
Unique Files Requested 
Bytes Requested 
Bytes Transferred 
Unique Bytes Requested 

4700 
591 

515,775 
130,140 
46,830 

2713 MB 
1849 MB 
maa MB 

To collect our data, we installed our instrumented version 
of Mosaic in the general computing environment at Boston 
University’s Department of Computer Science. This environ- 
ment consists principally of 37 SparcStation-2 workstations 
connected in a local network. Each workstation has its own 
local disk; logs were written to the local disk, and subsequently 
transferred to a central repository. Although we collected 
data from November 21, 1994 through May 8, 1995, the 
data used in this paper are only from the period January 17, 
1995 ‘to February 28, 1995. This period was chosen because 
departmental WWW usage was distinctly lower (and the pool 
of users less diverse) before the start of classes in early 
January, and because by early March 1995, Mosaic had ceased 
to be the dominant browser at our site. A statistical summary 
of the trace data used in this study is shown in Table I. 

B. Self-Similarity of WWW TrafJ 

Using the ?VWW traffic data we obtained as described in 
the previous section, we show evidence consistent wilh the 
conclusion that WWW traffic is self-similar on time scales of 
1 s and above. To do so, we show that for four busy hours 
from our traffic logs, the Hurst parameter H for our datasets 
is significantly different from l/2. 

We used the four methods for assessing self-similarity 
described in Section II: the variance-time plot, the resealed 
range (or R/S) plot, the periodogram plot, and the Whittle 
estimator. We concentrated on individual hours from our traffic 
series, so as to provide as nearly a stationary dataset as 
possible. 

To provide an example of these approaches, analysis of a 
single hour (4-5 P.M., Thursday, February 5,1995) is shown in 
Fig. 1. The figure shows plots for the three graphical methods: 
variance-time (upper left), resealed range (upper right), and 
periodogram (Iower center). The variance-time pIot is linear, 
and shows a slope that is distinctly different from -1 {which is 
shown for comparison); the slope is estimated using regression 
as -0.48, yielding an estimate for H of 0.76. The R/S plot 
shows an asymptotic sIope that is different from 0.5 and from 
1.0 (shown for comparision); it is estimated using regression 
as 0.75, which is also the corresponding estimate of H. The 
periodogram plot shows a slope of -0.66 (the regression line is 
shown), yiekling an estimate of H as 0.83. Finally, the Whittle 
estimator for this dataset (not a graphical method) yields an 
estimate of H = 0.82 with a 95% confidence interval of (0.77, 
0.87). 

As discussed in Section II-B, the Whittle estimator is the 
only method that yields confidence intervals on H, but it 
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Fig. 1. Gmphical analysis of a single hour. 

requires that the form of the undedying time series be pro- 
vided. We used the fractional Gaussian noise model, so it 
is important to verify that the underlying series behaves lie 
FGN, namely, that is has a normal marginal distribution, and 
that additional short-range dependence is not present. We can 
test whether lack of normahty or short-range dependence is 
biasing the Whittle estimator by m-aggregating the time series 
for successively large values of m, and determiuing whether 
the Whittle estimator remains stable since aggregating the 
series will disrupt short-range correlations and tend to make 
the marginal distribution closer to the normal. 

The results of this method for four busy hours are shown 
in Fig. 2. Each hour is shown in one plot, from the busiest 
hour (largest amount of total traffic) in the upper left to the 
least busy hour in the lower right. In these figures, the solid 
line is the value of the Whittle estimate of H as a function of 
the aggregation level rn of the dataset. The upper and lower 
dotted lines are the limits of the 95% confidence interval on 
H. The three level lines represent the estimate of H for the 
unaggregated dataset as given by the variance&me, R-S, and 
periodogram methods. 

The figure shows that for each dataset, the estimate of H 
stays relatively consistent as the aggregation level is increased, 
and that the estimates given by the three graphical methods 
fall well within the range of H estimates given by the Whittle 
estimator. The estimates of H given by these plots are in the 
range 0.748, consistent with the values for a lightly loaded 

network measured in [ 141. Moving from the busier hours to the 
less busy hours, the estimates of H seem to decline somewhat, 
and the variance in the estimate of H increases, which are also 
conclusions consistent with previous research. 

Thus, the results in this section show evidence that WWW 
traffic at stub networks might be self-similar when traffic 
demand is high enough. We expect this to be even more 
pronounced on backbone links, where traftic from a multitude 
of sources is aggregated. In addition, WWW traffic in stub 
networks is likely to become more self-similar as the demand 
for, and utilization of, the WWW increase in the future. 

V. EXPLAINING WEB TRAFFIC SELF-SIMILARMY 

While the previous section showed evidence that Web 
traffic can show self-similar characteristics, it provides no 
explanation for this result. This section provides a possible 
explanation, based on measured characteristics of the Web. 

A. Superimposing Heavy-Tailed Renewal Processes 

Our starting point is the method of constructing self-similar 
processes described in [30], which is a refinement of work 
done by Mandelbrot [15] and Taqqu and Levy [28]. A self- 
similar process may be constructed by superimposing many 
simple renewal reward processes, in which the rewards are 
restricted to the values 0 and 1, and in which the interrenewal 
times are heavy-tailed. As described in Section II, a heavy- 
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Fig. 2. Whittle estimator applied to aggregated datasets. 

tailed distribution has infinite variance, and the weight of its 
tail is determined by the parameter & < 2. 

This construction can be visualized as follows. Consider a 
large number of concurrent processes that are each either ON or 
OFF. The ON and OFF periods for each process strictly alternate, 
and either the distribution of ON times is heavy-tailed with 
parameter (~1, or the distribution of OFF times is heavy-tailed 
with parameter CYZ, or both. At any point in time, the value of 
the time series is the number of processes in the ON state. Such 
a model could correspond to a network of workstations, each 
of which is either silent or transferring data at a constant rate. 
For this model, it has been shown that the result of aggregating 
many such sources is a self-similar fractional Gaussian noise 
process, with H = (3 - min(crl, a~))/2 [30]. 

Adopting this model to explain the self-similar& of Web 
traffic requires an explanation for the heavy-tailed distribution 
of either ON or OFF times. h~ our system, ON t&es correspond 
to the transmission durations of individual Web files (although 
this is not an exact fit since the model assumes constant trans- 
mission rate during the ON times), and OFF times correspond to 
the intervals between transmissions. So we need to ask whether 
Web file transmission times or quiet times are heavy-taiIed, 
and if so, why. 

Unlike traffic studies that concentrate on network-level 
and transport-level data transfer rates, we have availabIe 
application-level information such as the names and sizes of 
files being transferred, as weU as their transmission times. 
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Thus, to answer these questions, we can analyze the char- 
acteristics of onr client logs. 

B. Examining Transmission Emes 

I) Tke DisA-in’bufion of Web Transmission i%tes: Our first 
observation is that the distribution of Web file transmission 
times shows nonnegligible probabilities over a wide range of 
file sizes. Fig. 3(a) shows the LLCD plot of the durations of 
all 130 140 transfers that occurred during the measurement 
period. The shape ‘of the upper tail on this plot, while not 
strictly linear, shows only a sIight downward trend over 
almost four orders of magnitude. This is evidence of very 
high variance (although perhaps not infinite) in the underlying 
distribution. 

From this plot, it is not clear whether actual ON times in 
the Web would show heavy tails because our assumption 
equating file transfer durations with actual ON limes is an 
oversimplification (e.g., the pattern of packet arrivals during 
fiIe transfers may show large gaps). However, if we hypothe- 
size that the underlying distribution is heavy-tailed, then this 
property wouId seem to be present for values greater fhan 
about 0.5, which corresponds roughly to largest 10% of all 
transmissions (log,,(P[X > 2)) < -1). 

A least squares tit to evenly spaced data points grenter 
than -0.5 (B” = 0.98) has a slope of -1.21, which yields 
& = 1.21. Fig. 3(b) shows the value of the Hill estimator for 
varying k, again restricted to the upper 10% tail. The Hill plot 
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Fig. 3. (a) Log-log complementary distribution and (b) Hill estimator for 
transmission times of Web files. 

shows that the estimator seems to settle to a relatively constant 
estimate, consistent with & M 1.2. 

Thus, although this dataset does not show conclusive evi- 
dence of infinite variance, it is suggestive of a very high or 
infinite variance condition in the underlying distribution of ON 
times. Note that the result of aggregating a large number of 
ON/OFF processes in which the distribution of ON times is 
heavy-tailed with a = 1.2 should yield a self-similar process 
with H = 0.9, while our data generally show values of H in 
the range 0.7-0.8. 

2) Why Are Web Transmission Emes Highly Variable?: To 
understand why transmission times exhibit high variance, we 
now examine size distributions of Web files themselves. First, 
we present the distribution of sizes for file transfers in our 
logs. The results for all 130 140 transfers are shown in Fig. 4, 
which is a plot of the LLCD and the Hi11 estimator for the set 
of transfer sizes in bytes. Again, choosing the point at which 
power-law behavior begins is difficult, but the figure shows 
that for file sizes greater than about 10 000 bytes, transfer size 
distribution seems reasonably well modeled by a heavy-tailed 
distribution. This is the range over which the Hill estimator 
is shown in the figure. 

A linear fit to the points for which file size is greater than 
10 000 yields & = 1.15 (R2 = 0.99). The Hill estimator shows 
some variability in the interval between 1 and 1.2, but its 
estimates seem consistent with d x 1.1. 
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Fig. 4. LLCD and Hill estimator for sizes of Web file transfers. 

Interestingly, the authors in [20] found that the upper tail 
of the distribution of data bytes in FTP bursts was well fit to 
a Pareto distribution with 0.9 5 Q 2 1.1. Thus, our results 
indicate that with respect to the upper tail distribution of file 
sizes, Web transfers do not differ significantly from FI’P traffic; 
however, our data also allow us to comment on the reasons 
behind the heavy-tailed distribution of transmitted files. 

An important question then is: Why do file transfers show a 
heavy-tailed distribution? On the one hand, it is clear that the 
set of files requested constitutes user “input” to the system. It 
is natural to assume that file requests therefore might be the 
primary determiner of heavy-tailed file transfers. If this were 
the case, then perhaps changes in user behavior might affect 
the heavy-tailed nature of file transfers, and by implication, 
the self-similar properties of network traftic. 

In fact, in this section, we argue that the set of file requests 
made by users is nor the primary determiner of the heavy-tailed 
nature of file transfers. Rather, file transfers seem to be more 
stongly determined by the set of files available in the Web. 

To support this conclusion, we present characteristics of 
two more datasets. First, we present the distribution of the 
set of all requests made by users. This sei consists of 575 775 
files, and contains both the requests that were satisfied via the 
network and the requests that were satisfied from Mosaic’s 
cache. Second, we present the distribution of the set of unique 
files that were transferred. This set consists of 46 830 files, all 
different. These two distributions are shown in Fig. 5. 
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Fig. 5. LLCD of {a) file requests and (b) unique files. 

The figure shows that both distributions appear to be heavy- 
tailed. For the set of file requests, we estimated the tail to start 
at approximately sizes of 10000 bytes; over @is range, the 
slope of the LLCD plot yields an 8 of about 1.22 (B2 = 0.99>, 
while the Hill estimator varies between approximately 1.0 and 
1.3. For the set of unique files, we estimated the tail to start 
at approximately 30000 bytes. The slope estimate over this 
range is 8 of about I.12 (R’ = 0.99>, and the Hill estimator 
over this range varies between 1.0 and 1.15. 

The relationship between the three sets can be seen more 
clearly in Fig. 6, which plots all three distributions on the 
same axes. This figure shows that the set of file transfers is 
intennediare in characteristics between the set of file requests 
and the set of unique files. For example, the median size of 
the set of file transfers lies between the median sizes for the 
sets of file requests and unique files. 

The reason for this effect can be seen as the natural result 
of caching. If caches were infinite in size-and shared by all 
users, the set of file transfers would be identical to the set 
of unique files since each tie would miss in the cache only 
once. If finite caches are performing well, we can expect 
that they are attempting to approximate the effects of an 
infinite cache. Thus, the effect of caching (when it is effective) 
is to adjust the distributional characteristics of the set of 
transfers to approximate those of the set of unique files. In 
the case of our data, it seems that NCSA Mosaic was able 
to achieve a reasonable approximation of the performance of 

-4- 

-5 _ 

Unique Files - 
Fife Transfers ..-- 
File Requests ......... 

Fig. 6. LLCD plots of the different distributions. 

Available Files I.-.- 
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Fig. 7. LLCD plots of the unique files and available files. 

an infinite cache, despite its finite resources: from Table I, 
we can calculate that NCSA Mosaic achieved a 77% hit rate 
(l-130 1401575 7751, while a cache of infinite size (shared by 
all users) would achieve a 92% hit rate (1 - 46 830/575 775). 

What, then, determines the distribution of the set of unique 
files? To help answer this question, we surveyed 32 Web 
servers scattered throughout North America. These servers 
were chosen because they provided a usage report based on 
www-stat 1.0 1231. These usage reports provide information 
sufficient to determine the distribution of file sizes on the 
server (for files accessed during the reporting period). In each 
case, we obtained the most recent usage reports (as of July 
1995), for an entire month if possible. While this method is 
not a random sample of files available in the Web, it sufficed 
for the purpose of comparing distributional characteristics. 

In fact, the distribution of all of the available files present 
on the 32 Web servers closely matches the distribution of the 
set of unique files in our client traces. The two distributions 
are shown on the same axes in Fig. 7. Although these two 
distributions appear very similar, they are based on completely 
different datasets. That is, it appears that the set of unique files 
can be considered, with respect to sizes, to be a sample from 
the set of all files available on the Web.. 

This argument is based on the assumption that cache mnn- 
agenient policies do not specifically exclude or include files 
based on their size; and that unique files are sampled without 
respect to size from the set of available files. While these 
assumptions may not hoId in other contexts, the data shown 



CROVELLA AND BESTAVROS: SELF-SIMILARFY IN WWV TRAFFIC 

-4- AllFiles - 
Image Files -- 

_._ . . ..-. 
-5 - 

Audio Fjes 
Video Files -- 

Text Files - 
-6 

0 1 2 3 4 5 6 7 8 
Logf O(File Size in Bytes) 

Fig, 8. LLCD of file sizes available on 32 Web sites, by file type. 

in Figs. 6 and 7 seem to support them in this case. Thus, we 
conclude that as long as caching is effective, the set of files 
available in the Web is likely to be the primary determiner of 
the heavy-tailed characteristics of tiles transferred-and that 
the set of requests made by users is relatively less important. 
This suggests that available files are of primary importance in 
determining actual traffic composition, and that changes in user 
request patterns are unlikely to result in significant changes to 
the self-similar nature of Web traftic. 

3) Why Are Avaiiabie Files Heavy-Taifed?: If available 
files in the Web are, in fact, heavy-tailed, one possible 
explanation might be that the explicit support for multimedia 
formats may encourage larger file sizes, thereby increasing the 
tail weight of distribution sizes. While we find that multimedia 
does increase tail weight to some degree, in fact, it is not the 
root cause of the heavy tails. This can be seen in Fig. 8. 

Fig. 8 was constructed by categorizing all server files into 
one of seven categories, based on file extension. The categories 
we used were: images, text, audio, video, aichives, prefer- 
matted text, and compressed jles. This simple categorization 
was able to encompass 85% of all files. From this set, the 
categories images, text, audio, and video accounted for 97%. 
The cumulative distribution of these four categories, expressed 
as a fraction of the total set of files, is shown in Fig. 8. In 
the figure, the upper line is the distribution of all accessed 
files, which is the same as the available fiIes line shown in 
Fig, 7. The three intermediate lines are the components of 
that distribution attributable to images, audio, and video. The 
lowest line (at the extreme right-hand point) is the component 
attributable to text (I-ITML) alone. 

The figure shows that the effect of adding multimedia files 
to the set of text files serves to translate the tail to the right. 
However, it also suggests that the distribution of text files 
may itself be heavy-tailed. Using Ieast squares fitting for the 
portions of the distributions in which log,,,(~) > 4, we find 
that for all files available & = 1.27, but that for the text files 
only, d = 1.59. The effects of the vat-ions multimedia types 
are also evident from the figure. In the approximate range. 
of 1000-30000 bytes, tail weight is primarily increased by 
images. In the approximate range of 30 000-300 000 bytes, 
tail weight is increased mainly by audio files. Beyond 300 000 
bytes, tail weight is increased mainly by video tiles. 
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Fig. 9. Comparison of Unix tile sizes with Web file sizes. 

The fact that file size distributions have very long tails 
has been noted-before, particularly in tile-system studies [l], 
[9], [17], 1221, 1241, [2151; however, they have not explicitly 
examined the tails for power-law behavior, and measurements 
of Q! values have been absent. As an example, we compare 
the distribution of Web tiles found in our logs with an overall 
distribution of files found in a survey of Unix file systems. 
While there is no truly “typical” Unix file system, an aggregate 
picture of file sizes on over 1000 different Unix file systems 
was collected by Irlam in 1993? In Fig. 9, we compare the 
distribution of document sizes we found in the Web with those 
data. The figure plots the two histograms on the same log-log 
scale. 

Surprisingly, Fig. 9 shows that in-our Web data, there is a 
sfronger preference for small files than in Unix file systemsP 
The Web favors documents in the 256-512 byte range, while 
Unix files are more commonly in the l-4 kbyte range. More 
importantly, the tail of the distribution of Web files is not 
nearly as heavy as the tail of the distribution of Unix files. 
Thus, despite the emphasis on multimedia in the Web, we 
conclude that Web file systems are currently more biased 
toward smalI files than are typical Unix file systems. 

In conclusion, these observations seem to show that heavy- 
tailed size distributions are not uncommon in various data 
storage systems. It seems that the possibility of very large 
file sizes may be nonnegligible in a wide range of contexts, 
and that in particular, this effect is of central importance in 
understanding the genesis of self-similar traffic in the Web. 

C. Examining Quiet Emes 

In Section V-A, we attributed tbe self-similarity of Web 
traffic to the superimposition of heavy-tailed ON/OFF processes, 
where the ON times correspond to the transmission durations 
of individual Web files and OFF times correspond to periods 
when a workstation is not receiving Web data. while ON times 
are the result of a positive event (transmission), OFF times are 

3Tbese data are available from http: //www.base.com/gordoni/ 
ufs93.html 

4However; not shown in tbe figure is the fact that while there are virtually 
no Web files smaller tbao 100 bytes, there is a significant number of Unix= 
files smaller than 100 bytes, including many zero- and one-byte files. 
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Fig. 10. LLCD plot of OFF times showing active and inactive regimes. 

a negative event that could occur for a number of reasons. 
The workstation may not be receiving data because it has 
just finished receiving one component of a Web page (say, 
text containing an inlined image), and is busy interpreting, 
formatting, and dispraying it before requesting the next com- 
ponent (say, the inlined image). Or, the workstation may not 
be receiving data because the user is inspecting the results 
of the last transfer, or not actively using the Web at all. We 
wiI1 call these two conditions “active OFF" time and “‘inactive 
OFF" time. The difference between active OFF time and inactive 
OFF time is important in und&tanding the distribution of OFF 
times considered in this section. 

-II 
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Fig. 12. Histogram of interarrival time of URL requests, 

indicates that the heavy-tailed nature of OFF times is primarily 
due to inactive OFF times that resuIt from user-induced delays, 
rather than from machine-induced delays or processing. 

To extract OFF times from our traces, we adopt the following 
definitions. Within each Mosaic session, let a; be the absolute 
arrival time of IJRL request i. Let q be thi: absolute comple- 
riun time of the transmission resulting from URL request i. 
It folIows that (Q - ai) is the random variable of ON times 
(whose distribution was shown in Fig. 3), whereas (ci+l - cr) 
is the random variable of OFF times. Fig. 10 shows the LLCD 
plot of (&i+1 - r$. 

Another way of characterizing these two regimes is 
through the examination of the interarrival times of URL 
requests-namely, the distribution of a;+1 - ai. Fig. 12 shows 
that distribution. 

In contrast to the other distributions we study in this paper, 
Fig. 10 shows that the distribution of OFF times is not well 
modeled by a distribution with constant Q. Instead, there seem 
to be two regimes for o. The region from 1 ms to 1 s forms one 
regime; the region from 30 to 3000 s forms another regime; 
in between the two regions, the curve is in transition. 

The difference between the two regimes in Fig. 10 can be 
explained in terms of active OFF time versus inactive OFF 
time. Active OFF times represent the time needed by the client 
machine to process transmitted files (e.g., interpret, format, 
and display a document component). It seems reasonable that 
OFF times in the range of 1 ms-1 s are not primarily due 
to users examining data, but are more likely fo be strongly 
determined by machine processing and display time for data 
items that are retrieved as part of a multipart document. This 
distinction is illustrated in Fig. 11. For this reason, Fig. 10 
shows the 1 ms-1 s region as active OFF time. On the other 
hand, it seems reasonable that very few e&e&d components 
would require 30 s or more to interpret, format, and display. 
Thus, we assume that OFF times greater than 30 s are primarily 
user-determined, inactive OFF times. 

The “dip” in the distribution in Fig. I2 reflects the presence 
of two underlying distributions. The first is the interarrival of 
URL requests generated in response to a single user request 
(or-user dick). The second is the interarrival of URL requests 
generated in response to two consecutive user requests, The 
difference between these distributions is that the former is 
affected by the distribution of ON times and the distribution 
of active OFF times, whereas. the latter is affected by the 
distribution of ON times, active OFF times, and inactive OFF 
times. A recent study 173 confirmed this observation by ann- 
lyzing and characterizing the distribution of document request 
arrivals at access links. This study, which was based on two 
datasets different from ours,s concluded that the two regimes 
exhibited in Fig. 10 could be emphically modeled using a 
Weibull distribution for the interanival of URL requests during 
the active regime, and a Pareto distribution for the inactive 
OFF times. 

For self-similarity via aggregation of heavy-tailed renewal 
processes, the important part of the distribution of OFF times is 
its tail. Measuring the vahre of 01 for the tail of the distribution 
(OFF times greater than 30 s) via the slope method yields 
& = 1.50 (R* = 0.99). Thus, we see that the OFF times 
measured in our traces may be heavy-tailed, but with lighter 
taiIs than the distribution of ON times. In addition, we argue 

This delineation between active and inactive OFF times 
explains the two notable slopes in Fig. 10; furthermore, it 

SNamely, the Web traffic monitored at a corporate firewall during two 2-h 
sessions. 

ONtime Active OFFtime hctive OFF time 

I- -t- 
User Ciick Service Done 

Fig. I I. Active versus inactive OFF time. 
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that any heavy-tailed nature of OFF times is a result of user 
rKrzk rime rather than machine-induced delays. 

Since we saw in the previous section that ON times were 
heavy&ted with Q = 1.0-1.3, and we see in this section that 
OFF times are heavy tailed with Q N” 1.5, we conclude that ON 
times (and, consequently, the distribution of available files in 
the Web) are more likely responsibIe for the observed level of 
traffic self-similarity, rather than OFF times. 

VI. CONCLUSION 

In this paper, we have shown evidence that tmftic due 
to World Wide Web transfers shows characteristics that are 
consistent with seIf-similarity. More importantly, we have 
traced the genesis of Web traffic self-similarity aIong two 
threads: first, we have shown that transmission times may be 
heavy-tailed, primarily due to the distribution of available file 
sizes in the Web. Second, we have shown that silent times 
also may be heavy-tailed, primarily due to the influence of 
user “think time.” 

Comparing the distributions of ON and OFF times, we find 
that the ON time distribution is heavier tailed than the OFF time 
distribution. The model presented in [30] indicates that when 
comparing the ON and OFF times, the distribution with the 
heavier tail is the determiner of actual trafIic self-similarity 
levels. Thus, we feel that the distribution of file sizes in 
the Web (which determine ON times) is likely the primary 
determiner of Web traffic self-simihuity. In fact, the work 
presented in [18] has shown that the transfer of files whose 
sizes are drawn from a heavy-tailed distribution is sufficient 
to generate self-similarity in network traffic. 

These results seem to trace the causes of Web traffic 
self-similarity back to basic characteristics of information 
organization and retrieval. The heavy-tailed distribution of file 
sizes we have observed seems similar in spirit to Pareto dis- 
tributions noted in the social sciences, such as the distribution 
of lengths of books on library shelves, and the distribution 
of word lengths in sample texts (for a discussion of these 
effects, see [16] and citations therein). In fact, in other work 
[6], we show that the rule known as Zipf s law (the degree 
of popularity is exactly inversely proportional to the rank 
of popularity) applies quite strongly to Web documents. The 
heavy-tailed distribution of user think times also seems to be 
a feature of human information processing (e.g., [21]). 

These results suggest that the self-similarity of Web trafhc 
is not a machine-induced artifact; in particular, changes in 
protocol processing and document display are not likely to 
fundamentally remove the seIf-similarity of Web traffic (al- 
though some designs may reduce or increase the intensity of 
self-similarity for a given level of traffic demand). 

A number of questions are raised by this study. First, the 
generalization from Web traftic to aggregated wide-area traffic 
is not obvious. While other authors have noted the heavy-tailed 
distribution of FTP transfers [20], extending our approach to 
wide-area traffic in general is difficult because of the many 
sources of traffic and determiners of traffic demand. 

A second question concerns the amount of demand required 
to observe self-similarity in a traffic series. As the number of 
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sources increases, the statistical confidence in judging self- 
similarity increases; however, it is not clear whether the 
important effects of self-similarity (burstiness at a wide range 
of scales and the resulting impact on buffering, for example) 
remain even at low levels of tic demand. 

ACKNOWLEDGMENT 

The authors thank M. Taqqu and V. Teverovsky of the 
Department of Mathematics, Boston University, for many 
helpful discussions concerning long-range dependence. The 
authors also thank V. Paxson and an anonymous referee 
whose comments substantially improved the paper. C. Cunha 
instrumented Mosaic, collected the trace logs, and extracted 
some of the data used in this study. Finally, the authors also 
thank the other members of the Oceans Research Group at 
Boston University for many thoughtful discussions. 

[1] M. G. Baker, 3. H. Hartman, M. D. Kupfer, K W. Shhriff, and J. K. 
Ousterhout, “Measurements of a distributed file system,” in Proc. 13th 
ACM Symp. Open Syst. Principles, Pacific Grove, CA, Oct. 1991. pp. 
198-212. 

121 J. Beran, Statisics for Lon.e-Memory Processes Nonouavhs on Statis- _ _ 
tics and Applied Kobabiliiy). London: Chap&t andHaIl. 1994. 

[3] T. Berners-Lee, L. Masinter, and M. McCabill, UniJbrm Resortme 
.Lmurors, RFC 1738. Dec. 1994. 

141 P. J. Bmckwell and R. A. Davis. lime Series: Theorv and Methods - _ 
(Springer Series in Statistics), 2nd ed. New York: Springer-Verlag. 
1991. 

[5] L. D. Catledge and J. E. Pitkow, “Characterizing browsing strategies in 
the World-Wide Web,” in Proc 3rd WWW Con/.. 1994. 

[6] C. R. Cunha, A. Bestavms, and M. E. Crovella, “Characteristics of 
WWV client-based traces,” Dept. Comput. Sci.. Boston Univ., Boston, 
MA, Tech. Rep. BU-CS-95-010, 1995. 

[7] S. Deng, “Empirical model of WWV document arivals at access links.” 
in Proc. 1996 IEEE ht. Con& Conunun., June 1996. 

[S] A. Ermmiili, 0. Narayan, and IV. Willinger. ‘Experimental queueing 
analysis with long-range dependent packet traffic,” IEEELACM Trans. 
Ne&orking, vol. 4, no. 2. pp. 209-2!?3. Apr. 1996. 

[9] R A. Floyd. ‘Short-term tile reference patterns in a UNIX environment,’ 
Dept. Comput. Sci.. Univ. Rochester,Rochester, NY, Tech. Rep. 177, 
1986. 

[lo] Mosaic software, National Center for Supercomputing Applications, 
Univ. Illinois Urbma-Cbampaigu. 

[ll] S. Glassman, ‘A caching relay for the world wide web,” in Proc. 1st hr. 
Conf: World-mde Web, CERN, Geneva, Switzerland, Elsevier Science, 
May 1994. 

[12] B. M. Hill, “A simple general approach to inference about the tail of a 
distribution,” Ann Srurist.. vol. 3. pp. 1163-l 174. 1975. 

[13] W. E. Leland and D. V. Wilson. “High time-resolution measurement 
and analysis of LAN traflic: Implications for LAN interconnection,” in 
Proc. IEEE NFOCOM’91. Bal Harbour, FL, 1991. pp. 1360-1366. 

[14] W. E. Lcland. M. S. Taqqu. W. Wtllinger, and D. V. Wilson. “On the 
self-simitar nature of Ethernet traffic” (extended version). IEEE/ACM 

.- Truns. Nenvorking, vol. 2. no. 1, pp. 1%. 1994. 
1151 B. B. Mandelbmt, “‘Long-tun lincatitv. locallv Gaussian urocesses. H- _ _ 

spectra and infinite va&nces,” Int. &on. Rx, vol. 16. pp. 82-113, 
1969. 

Ml -, The Frucful Geometry ofNurure. San Francisco, CA: Freeman, 
1983. 

1171 J. K. Ousterhout, H. Da Costa, D. Harrison, J. A. Kunze. M. Kupfer, 
and J. G. Thompson, “A trace-driven analysis of the UNIK 4.2 BSD file 
system,” in Proc. 10th ACM Symp. Oper. Syst. PrincipIes, Orcas Island. 
WA, Dec. 1985, pp. 15-24. 

[18] K. Park, G. T. Kim, and M. E. Cmvella. “On the relationship between 
file sizes. transport protocols. and self-similar network traffic.” in Proc. 
4th ht. Cant fier&rk Protocols (ICNP’96). Oct. 1996. pp. i71-180. 

Cl91 V. Paxson. ‘Emairicallv-derived an&tic models of wide-area TCP _ _ 
connections.” IE&LACh Trans. Nefivoiking, vol. 2. pp. 316-336, Aug. 
1994. 



846 IEEWACM TRANSACUONS ON N!ZlWORKING, VOL. 5. NO. 6. DECEMBER 1997 

[2O] V. Paxson and S. Floyd, “Wide-area traffic: The failure of Poisson 
modeling,” IEEELACM Trans. fiehvorkng, vol. -3. pp. 226-244, June 
1995. 

{2I] I. E. Pitkow and M. M. Reeker, “A simple yet robust caching algorithm 
based on dynamic access patterns,” in Efecfron. Pruc. 2nd WWW Co@, 
1994. 

Mark E. Crovella (M’95) received the T&S, dc- 
gree fmm Cornell University, Ithaca, NY, the MS, 
degree fmm SUNY Buffalo, and the PhD, degree 
From the University of Rochester, Rochcstcr, NY, 
in 1994. 

From 1984 IO 1994 he was a Senior Camputcr 
[22] K. K. Ramakrishnan, P. Biswas. and R. Karedia. “Analysis of file 

j Iq 

’ i e 
I/O traces in commercial computing environments,” in Proc. SfGME’F- f “3i 
RICS’92, June 1992, pp. 78-90. A! 

[23] WWW-stat 1.0 software, Regents of the University of California, 
available from Dept. Inform. Comput. Sci., Univ. California, Irvine, 1 

..---.- ..- r- ___.. 

CA 92697:3425. 
and evaluation of pr 

He is a c&u&r nf the flwnns rewnn-h nrnit 

Scientist at Calspan Corporation. Since 1994 he hns 
been Assistant Professor in the Computer ScIencc 
Department at Boston University. His research In- 

mrllel computers and nclworks. 
--- -- _.*- ----.. 1 .-_ ---.. r.~, cct which has produced over 20 
rerformance measurement, annlysis, and redesign of the World [24] M. Satyanarayanan, “A study of file sizes and functional lifetimes,” in 

Proc. 8th ACM Symp. Oper. Sysr. Princ$tes, Dec. 1981. 
papers on the i 

rs.r, 1 n.>-~ ~~ LI.II..--- ..I .~.I1 ~._~~ IL., .-.. . - ~~. . . -.-P ‘tlide Web and 
1~21 J. aeaayao, ~- -1v10sanz w*n ml my n~wor~t -+ruoymg neovor~ oamc 

oatterns of Mosaic use,” in Eiectnm. Proc. 2nd World Wide Web 

related issues in wide area networking. 
Dr. Croveha is a member of ACM. 

‘conJI’94: Mosaic and the Web, Chicago, IL, Oct. 1994. 
1261 A. J. Smith, “Analysis of long term file reference oatterns for aoolication 

to file migration aigori~hms,“JEEE Trans. sofnvk? Eng., voLLk-7, pp. 
403-410. JuIy 1981. 

[27] M. S. Taqqu, V. Tevemvsky, and W. Willinger, “Estimators for Iong- 
range dependence: Au empirical study,” Frucials. vol. 3, no. 4, pp. 
785-798, 1995. 

[2X] M. S. Taqqu and J. B. Levy. ‘Using renewal processes to generate long- 
range dependence and high variability,” in Dependence in Prubabiiity 
and Sfaristics, E. Eberlein and M. S. Taqqu, Eds. Birkhauser, 1986, 
pp. 73-90, 1986. 

Azer Beshvros (M’87) received the SM. nnd Ph.D. 
degrees from Harvard University. Cambridge, MA, 

[29] W. WiIIinger, M. S. Taqqu, W. E. Leland, and D. V. Wilson, “Self- 
similarity in high-speed packet &a&: Analysis and modeling of Eth- 
ernet traffic measurements,” Statist. Sci., vol. IO, no. 1, pp. 67-85. 
199s. 

He is a Computer Science faculty member at 
Boston University, where he conducts research on 
real-time computation and communication systems 
and on large-scale networked information systems, 
He has authored in excess of 60 refereed publicn- 
lions. 

[30] W. WiIlinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self- Dr. Bestavms is a member of ACM, He Is cur- 
similarity through high-variability: Statistica analysis of Ethernet LAN 
traffic at the source IeveI,” IEEElACM Trans. Nehvorking, vol. 5, pp. 

rentIy tbe Editor-in-Chief of the Newsletter of ~lrc 
’ 

71-86, Feb. 1997. 
IEEE-CS TC on Real-lime Systems and the PC 

Chair of the IEEE Real-Time Technology and Applications Symposium. 


