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FAST SELF-SIMILAR TRAFFIC GENERATION

L.G. Samuel1,  J.M.Pitts1,  R.J. Mondragón2

Abstract
Recent measurements of high speed network traffic suggest that the traffic in such a network is self-similar.
Follow-up research has been conducted in order to obtain realistic traffic models for self-similar traffic.  Most
of these are stochastic models based on Fractional Brownian Motion.  Alternative models exist based on
dynamics rather than statistics in the form of chaotic maps.  If self-similar traffic can be generated quickly on-
line then this leads to the concept of on-line modelling of networks.  This paper presents the results of an
accelerated single map interpretation of a chaotic map which can be used to model aggregate traffic.  This
approach yields a fast generator of  self-similar traffic.

Key Words:  chaotic maps, source aggregation, traffic simulation

1.  Introduction
Recent traffic measurements show that network traffic is self-similar[1]. A self-similar process is a random
process Zt in which for a given scaling factor, k and self-similarity index H, H∈(0,1), a rescaled process, Zkt,

with time base kt, is identical in distribution to the process k
H
Zt.  Work has been undertaken in order to produce

traffic models that exhibit self-similarity in the traces that they generate.  Most of these models are based on
fractional Brownian motion (FBM) models and there have been notable successes in producing traces which
look very much like the traffic traces reported in[2].  A different approach to FBM models has been the use of
chaotic maps[3-5].  These maps are a variant of ON/OFF models that produce traffic which have correlations
which decay slowly.  It has been shown that  the aggregation of traffic from many such ON/OFF sources
produces second order self-similar traffic[2].  Recent studies[6] have developed a means whereby a single
chaotic map can reproduce the behaviour of many chaotic maps.  This paper builds on this by reporting the
range of self-similarity that the single map method possesses and that this map can be used in an accelerated
way so that the on-line modelling of networks becomes possible.

2.  Chaotic Maps as Source models
The use of chaotic maps as source models was first proposed by Erramilli and co-workers in the early 1990’s
[3-5].  Essentially the chaotic map is a variant of an ON/OFF traffic model.  Unusually for tele-traffic models
the chaotic map is based on discrete dynamics rather than the more traditional probabilistic approaches.  For
reviews on the chaotic map approach to dynamics the reader is directed to Schuster[7] and  McCaulley[8].  The
use of a discrete dynamical approach has certain advantages since the manner in which the map functions is
similar to the way the ATM data is presented, i.e. the data is as a continuous stream of discrete containerised
elements (cells).

A comparison of ON/OFF and a chaotic map model is shown in Fig.1.  The chaotic map model is a one
dimensional model in which the iterates of the map are described by
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A full cell is emitted when the iterate xn exceeds some discriminant value d.  This is more easily described by an
indicator variable yn
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Essentially the model comprises of a hidden dynamical layer, xn, and a visible dynamical layer yn.  The inter-
arrival time of the model is given by the mean sojourn time in the OFF state and this is related to the number of
iterates the map required to iterate out of the OFF region.  In the case of the ON/OFF model this is equivalent to
the retention probability of the OFF state.  Similarly the mean number of iterations required to leave the ON
region is related to the retention probability in the ON state.  The inter-arrival time of the iterates can be related
to the map’s parameters.  It is the characteristics of Long Range Dependence (LRD) and self-similarity which
are required to be exhibited by the inter-arrival times.
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Fig. 1.  ON/OFF and  Intermittency map comparative source interpretations

A lower bound to the sojourn probability can be set via the adjustment of the parameter ε, while the mean
arrival rate is related to the adjustment of the parameters m and d.  There is a connection between the Hurst
parameter (a parameter which describes the stochastic self-similarity in a time series) and the map parameters m
and ε.

3.  Map Aggregation
A chaotic map can be used to mimic traffic which is self similar.  A further plausible question would be:  what
happens when traffic streams which are self similar meet?  Studies conducted in the early 1990’s show that a
traffic stream which displays self-similarity (has a Hurst parameter in the range 0<H<1) when aggregated
remains self-similar.  This behaviour would naturally require models to exhibit this same characteristic.  In the
more traditional models, those based on Markov chains, the tendency was for these models on aggregation to
tend to white noise.  Or at least if these models were to retain bursty behaviour then the models would have a
greater number of parameters compared to their FBM counterparts.  This deficiency highlights one of the
existing problems with the Markov based models, i.e. parsimony, the use of as few parameters as necessary in
order to model the traffic accurately.  In recent studies on the use of chaotic maps as models a technique has
been developed which permits the retention of self-similarity under aggregation[6].  The  retention of self-
similarity bodes well for the chaotic control of networks since it makes possible the amalgamation of maps to
create a general picture of the behaviour at a network node (a switch).



It is possible to speed up the single map interpretation  presented in ref.[6] and still retain the self-similar nature
of the generated traffic.  Moreover the map can generate the self-similar traffic on-line.  To compare the speed
of our algorithm with others a test was carried out under conditions reported by Chen et al[9] in which the time
to generate FBM samples was compared.  In that paper the comparative performance of FBM generators is
given in tabular form, and the best performance algorithm for time and accuracy was the Maximum Likelihood
Estimator (MLE).  This generated 16384 off-line samples in 0.6 seconds on a Sun SPARC 5 workstation.  The
accelerated  single chaotic map (running on a 70MHz SPARC 5) generated 20 times more samples on-line in
the same amount of time.

4.  Experimental Results
Two types of statistical checks for self-similarity were carried out.  The rescaled adjusted range (R/S) statistic
and variance analysis.  The reader is referred to refs.[9-11] for outlines of how to perform these tests.  In the
case of the R/S analysis the Hurst parameter can be obtained directly from the slope of the doubly logarithmic
plot of R/S and the sample lag, whereas in the variance analysis the Hurst parameter is obtained via the
relationship H = 1-β/2 where β is the slope of the doubly logarithmic plot of variance against sample size.  The
results of the numerical experiments are shown in tabular form in Table 1 and Fig.2.  In Fig. 3 and Fig. 4 we
present the results of the statistical analysis for rescaled adjusted range and variance respectively.

M H (VAR) H (R/S) H (εε=0)

1 0.51 0.50 0.46
1.1 0.48 0.52 0.47
1.2 0.50 0.51 0.48
1.3 0.48 0.51 0.52
1.4 0.51 0.54 0.49
1.5 0.59 0.61 0.51
1.6 0.68 0.65 0.49
1.7 0.69 0.68 0.49
1.8 0.73 0.73 0.50
1.9 0.85 0.76 0.48
2 0.90 0.82 0.48

Table 1.  Statistical values of Hurst
Parameter
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Fig.2.  Graphs of  H against map parameter m for
various values of ε
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Fig. 3.  R/S statistic against lag, k, intermittency
 map
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Fig. 4.  Variance against lag, k, for intermittency
map



For the sake of clarity in Fig. 3 we have plotted the mean of the band of R/S values for a given lag.   In Fig. 2
we see the comparative performance of the analysis.  What we observe from this plot is that there is relatively
good agreement between both methods.  As a contrast, and to show the potential that chaotic map modelling
holds in terms of controlling a network we show the effect of altering the parameter ε away from 0.  The effect
of increasing ε is that the self-similarity is gradually destroyed.

5.  Discussion
The importance of H lies in the fact the queue length distributions are sensitive to its value[12].  The higher the
value of H the higher the probability of high queue state occupancy.  If the value of H can be controlled then the
implication of this is that congestion within the network can be controlled.  An important first step in this
direction is through the on-line modelling of network elements such as switches.  As we have seen the
accelerated single map technique enables the adjustment of H via the alteration of parameters ε and m.  We
therefore submit that an accelerated single map technique is a contribution to this direction.

6.  Conclusion
An accelerated single map interpretation of an intermittency map can be used to generate self-similar traffic on-
line with H∈(1/2,1).  Furthermore, altering the map parameter ε away from zero increasingly destroys the self-
similarity produced by the chaotic map.  These results are promising for the development of chaotic control for
networks and in relation to this mathematical control techniques based on chaos and the coupling of chaotic
maps exist[13].  These techniques rely solely on local information present at a network element, and as such
prove attractive as areas of future research.
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