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PAPER Special Section on Nonlinear Theory and its Applications

Criteria to Design Chaotic Self-Similar Traffic Generators

Alessandra GIOVANARDI†a), Gianluca MAZZINI†b),
and Riccardo ROVATTI††c), Nonmembers

SUMMARY A self-similar behavior characterizes the traffic
in many real-world communication networks. This traffic is tradi-
tionally modeled as an ON/OFF discrete-time second-order self-
similar random process. The self-similar processes are identified
by means of a polynomially decaying trend of the autocovariance
function. In this work we concentrate on two criteria to build
a chaotic system able to generate self-similar trajectories. The
first criterion relates self-similarity with the polynomially decay-
ing trend of the autocovariance function. The second one relates
self-similarity with the heavy-tailedness of the distributions of the
sojourn times in the ON and/or OFF states. A family of discrete-
time chaotic systems is then devised among the countable piece-
wise affine Pseudo-Markov maps. These maps can be constructed
so that the quantization of their trajectories emulates traffic pro-
cesses with different Hurst parameters and average load. Some
simulations are reported showing how, according to the theory,
the map design is able to fit those specifications.
key words: self-similar traÆc, chaotic systems, heavy-tailed
distribution, piecewise-aÆne Markov maps

1. Introduction

The traffic on Ethernet LANs shows the presence of
burstiness across a wide range of time scales, as re-
ported in [1]–[3], where measures in different time in-
stants relative to single and multiple data sources, in-
tranet and internet scenarios have been performed.
This “fractal-like” behavior, is usually referred to as
self-similarity [4]–[6].

The conventional Markov or Poisson processes can-
not model this burstiness in a satisfactory way [7] since
they give raise to the classical behavior that becomes
smoother (less bursty) as the observation time scale
increases or as the number of traffic source increases.
On the contrary, second-order self-similar processes are
nowadays one of the most credited model for such
bursty traffic.

The properties of a self-similar process, can be ex-
plained by referring to the autocovariance function of
the aggregated process. The aggregated process of or-
der m is obtained from the original one by averaging
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the original samples on non-overlapping blocks of size
m. In particular: let τ be the elementary observation
interval; let xi = x(iτ ) be the i-th sample of the sta-
tionary process X, such that xi ∈ {0, 1}; so, the i-th
sample x

(m)
i of the aggregated process X(m) is defined

as x
(m)
i = (1/m)

∑m−1
j=0 xmi+j , where x

(1)
i = xi and m

is called aggregation factor. The autocovariance func-
tion, C(m)(k), of the aggregate process is defined as
C(m)(k) = E[x(m)i x

(m)
i+k]−E2[x(m)i ], and it does not de-

pends on i in virtue of the process stationarity.
We assume that a process is asymptotically second-

order self-similar if a H ∈]0.5, 1[, an β > 0 and an
m′ > 0 exist such that if m� m′ and k is large enough:
1) C(m)(0)

C(m′)(0)
∼
(

m
m′

)2H−2

2) C(m)(k)
C(m)(0)

∼ C(m′)(k)

C(m′)(0)
∼ βk2H−2

where H, usually called Hurst parameter, gives the de-
gree of the source burstiness. The closer to 1 the H
the more self-similar the process. If H is close to 0.5
the process shows a Poisson behavior [1]. The other
parameter characterizing a self-similar traffic source is
the activity index, PON = E[xi], which represents the
activity time fraction. Let us observe that the traffic
source activity can be view as a succession of ON and
OFF states.

Many studies [8]–[11] are focusing the attention on
the generation of self-similar traffic, in order to simu-
late the performance of network systems, like queuing
systems, in different traffic conditions.

In this work we report a general framework iden-
tifying two possible criteria to build a system showing
self-similar behavior. The first criterion gives a gen-
eral condition directly derived by the polynomial trend
of the autocovariance function of the aggregated pro-
cess. The second one proves that by selecting a chaotic
system with ON or/and OFF time distributions heavy-
tailed, the first criterion is implicitly satisfied and then
the trajectories show self-similar behavior.

Let us recall that a distribution is heavy-tailed if
the complementary distribution is of the form P (K >
k) ≈ k−ΞL(k), 0 < Ξ < 2, where L(k) is a slowly
varying function at infinity [8], [13]; while it is light-
tailed if is P (K > k) ≈ γ−kL(k), γ > 0 [12], [13].

The traffic generator is based on a family of
discrete-time chaotic system which among the count-
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able piecewise-affine Markov maps. The parameters of
these maps are optimized by means of a Lagrange-based
iterative procedure to allow reproduction of asymptot-
ically arbitrary ON/OFF time distributions as well as
arbitrary PON . The resulting maps have been tested
to evaluate the theory validity.

The paper is structured as follows: in Sect. 2 the
general mathematical model is explained, in Sects. 3
and 4 the first and second self-similarity criteria are
reported and in Sect. 5 the Lagrange-based optimiza-
tion technique is described along with the generator
design procedure. In Sect. 6 such a procedure is ex-
tensively validated by means of numerical simulations.
Some conclusions are finally drawn in Sect. 7.

2. Mathematical Model

Let us consider a one-dimensional discrete-time non-
linear dynamical system, f : [0, 1] → [0, 1], such that
the iteration yi+1 = f(yi) identifies the system tra-
jectory. Let f i identify the i-th iterate of the func-
tion f . The traffic source is modeled by considering
a succession of activity (ON) and non-activity (OFF)
states, represented by the previously defined random
variable xi. This is obtained by using a trivial bi-
nary quantization function Q : [0, 1] → {0, 1}, such
that xi = Q(yi) = 1 if yi < d, with d = 1/2, and
xi = Q(yi) = 0 otherwise.

The statistical properties of the resulting process
depend on the statistical features of the trajectories
of the dynamical system f . Hence, we resort to the
well-known mathematical tools of the statistical theory
of dynamical systems [14] and note that if the initial
condition y0 is a random variable distributed according
to the probability density ρ0 : [0, 1] 	→ R

+ then the
subsequent points yi are distributed according to the
probability densities ρi that, if f is at least mixing [15],
converge to a limit probability density ρ̄ which is the
density of the invariant measure of f .

With this we may go back to the computation of
the autocovariance of the x

(m)
i process and note that

the expectation in the autocovariance is taken with re-
spect to all the possible process outcomings, then both
the starting point, y0, and the subsequent evolution
have to be considered:

C(m)(k) = lim
W→∞

1
W

W−1∑
i=0

∫ 1

0

(
1
m

m∑
n=1

Q(fmi+n(y0))

)
(

1
m

m∑
j=1

Q(fmi+j+mk(y0))

)
ρ0(y0)dy0 − P 2ON

which can be re-arranged into:

C(m)(k)

= lim
W→∞

1
Wm2

W−1∑
i=0

m∑
n=1

m∑
j=1

∫ 1

0

Q(fn(ymi))

·Q(f j+mk(ymi))ρmi(ymi)dymi − P 2ON

Then, by observing that ρmi ≈ ρ̄, for m large enough,
we have:

C(m)(k)

=
1

m2

m∑
n=1

m∑
j=1

∫ 1

0

Q(fn(y))Q(f j+mk(y))

· ρ̄(y)dy − P 2ON

=
1

m2

m∑
n=1

m∑
j=1

∫ 1

0

Q(y)Q(f |mk+j−n|(y))

· ρ̄(y)dy − P 2ON (1)

where a further shift of either n or mk + j time steps
is considered and compounded in the absolute value.

The activity index PON can be computed directly
using the Birkoff ergodic theorem [14]:

PON = lim
W→∞

1
W

W−1∑
n=0

∫ 1

0

Q(fn(y))ρ0(y)dy

=
∫ 1

0

Q(y)ρ̄(y)dy =
∫ 1

d

ρ̄(y)dy (2)

where d is the quantization threshold.

3. First Self-Similarity Criterion

Once that a suitable form for the average traffic and
the autocovariance function are derived, a necessary
condition for self-similarity generation can be obtained.

Theorem 1: The process x = Q(y) is asymptotically
self-similar if

C(k) = C(1)(k)

=
∫

Q(y)Q(fk(y))ρ̄(y)dy − P 2ON ∼ k2H−2

(3)

Proof: By assuming m and k large enough, using (1)
and (3), so that mk + j − n > 0, we have:

C(m)(k)

∼ 1
m2

m∑
n=1

m∑
j=1

(mk + j − n)2H−2

∼ 1
m2

∫ m

1

∫ m

1

(mk + j − n)2H−2djdn

∼ −m2H−2

(1− 2H)2H

[
(k − 1)2H + (k + 1)2H − 2k2H

]
∼ m2H−2k2H−2
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where the limit of the double sum has been found to
be asymptotically equivalent to an integral exploiting
Riemann upper and lower sums and where the trivial
asymptotic equivalence 2H(2H−1)k2H−2 ∼ (k−1)2H+
(k + 1)2H − 2k2H has been used.

Let us now compute C(m)(0) separating those sum-
mands in the nested sums (1) for which j = n. Actually
their contribution is of the order of PON/n and is there-
fore asymptotically negligible when compared to what
we expect to find for the whole C(m)(0). Hence, for m
large enough (1) can be rewritten as:

C(m)(0)

∼ 2
m2

m−1∑
n=1

m∑
j=n+1

∫ 1

0

Q(y)Q(f j−n(y))ρ̄(y)dy − P 2ON

=
2

m2

m−1∑
n=1

(m− n)
∫ 1

0

Q(y)Q(fn(y))ρ̄(y)dy − P 2ON

∼ 2
m2

m−1∑
n=1

(m− n)n2H−2

∼ 2
m2

∫ m

1

(m− n)n2H−2dn ≈ 1
(2H − 1)H

m2H−2

By collecting these two results the Theorem 1 holds
with a constant A = (2H − 1)H. ✷

Let us underline that Theorem 1 states that the au-
tocovariance function of the aggregate process directly
depends on the autocovariance function of the original
process.

4. Second Self-Similarity Criterion

Another criterion to create a self-similar chaotic gener-
ator is to consider a quantized system with the sojourn
distributions in the ON state, or in the OFF state or
in both heavy-tailed.

We consider a class of maps such that the state
space X = [0, 1] is partitioned into 2 disjoint intervals
S1 = [0, 1/2[ and S2 = [1/2, 1]. Each of these inter-
vals is further partitioned into a (possibly) countable
number of subintervals Xij such that Si =

⋃
j Xij .

We will additionally assume that the map M is a
Piecewise Affine Markov map with respect to the count-
able set of intervals Xij , i.e. that for any Xi′j′ and
Xi′′j′′ :

M(Xi′j′) ∩Xi′′j′′ =

{
∅
Xi′′j′′

and that M is invertible in each Xij and affine in each
Xi′j′ ∩ M−1(Xi′′j′′) 
= ∅. Note that this is a slightly
relaxed assumption with respect to the usual require-
ments that M is affine in each Xij . We assume that
for both Si two subsets can be distinguished: the re-

turning subset Si and the exiting subset
→
S i. These two

Fig. 1 Macro state schematization of the evolution of f .

subsets are such that M(Si) ⊆ Si, M(
→
S i) ∩ Si = ∅,

Si ∪
→
S i = Si, and are union of certain intervals Xij

which are labeled accordingly so that Si =
⋃

j Xij and
→
S i =

⋃
j

→
Xij .

Within this constraints the evolution of the system
is analogous to that of a countable state system (one
for each Xij). Figure 1 shows a possible macro-state
schematization of such a system in which the number
of Markov intervals Xij is not only countable but also
finite.

In general, for a infinite number of Xij the evo-
lution of the system is analogous to that of a Markov
chain only when we observe transitions between Markov
intervals. On the contrary, transitions between the
two macro states S1 and S2 can be regulated by
extremely complex laws depending on the countable

Markov chains in Si and
→
S i.

To exploit this fact we may first define the matrix
K:

Ki′i′′(k) =
µ̄(Si′ ∩

⋂k
j=1 f−j(Si′′))

µ̄(
→
S i′)

where µ̄(Si) is the measure of the interval Si. The
i′i′′-th entry of this matrix contains the probability of
moving from Si′ to Si′′ and staying at least k time steps
in Si′′ . For k = 1 this joint probability can be obviously
rewritten as

Ki′i′′(1) =
µ̄(Si′ ∩ f−1(Si′′))

µ̄(Si′)

/ µ̄(
→
S i′)

µ̄(Si′)

where we have highlighted at the numerator the classi-
cal definition of the kneading matrix. The matrix K(1)
actually collapses into a normal kneading matrix when
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the states Si are made of just one Markov interval Xij .
In fact, in this case, our assumptions will prevent the
system from assuming the same state for more than 1

time step, hence forcing Si =
→
S i.

To express the correlation we are aiming at it is
now convenient to define two other quantities, namely

Li′i′′(k) = Ki′i′′(k)−Ki′i′′(k + 1) (4)

ji′(k) =
∑

i

∞∑
j=k+1

µ̄(
→
S i)Lii′(j)

=
∑

i

µ̄(
→
S i)Kii′(k + 1) (5)

where ji′(k) is nothing but the probability of staying
at least k + 1 time steps in Si′ and then change to

any other state so that ji′(0) = µ̄(
→
S i′) and Li′i′′ is the

probability of moving from Si′ to Si′′ and staying in
the latter exactly k time steps.

Finally we may define the matrix H(k) to be such
that Hi′i′′(k) is the probability of observing the system
in the macro state Si′ at a certain time step and observ-
ing the system in Si′′ k time steps after that. It can be
easily accepted that H(k) contains all the information
we need to compute C(k).

As a general remark note that, the system remains
in the macro-state in which we have observed it for a
certain amount of time. Then, it performs a certain
number of transition sojourning in each of the interme-
diate macro state. Finally, it lands in the macro-state
in which we observe it at the end of the time lag re-
maining there at least up to the observation instant.

To write an expression for H(k) we may formalize
this remark considering that in the k time steps between
the two observations the system may exhibit 0, 1, 2, . . .
macro-state transitions and writing

Hi′i′′(k) =
∞∑

l=k

ji′(l)Ii′i′′

+
∑
l1≥0
l2>0

l1+l2=k

ji′(l1)Ki′i′′(l2)

+
∑
l1≥0

l2,l3>0
l1+l2+l3=k

∑
i1

ji′(l1)Li′i1(l2)Ki1i′′(l3)

+
∑
l1≥0

l2,l3,l4>0
l1+l2+l3+l4=k

∑
i1i2

ji′(l1)Li′i1(l2)Li1i2(l3)Ki2i′′(l4)

+ . . . (6)

where I is the identity matrix and the vector term∑∞
l=k ji′(l) accounts for the probability of beings ob-

served in the same state after k time steps when no
state transition happens, the following lines accounts

for 1 state transition, the following for 2 state transi-
tions, and so on.

We may now define an inner product between vec-
tor and matrixes as in:

{A ∗ B}i′i′′(k) =
∑
i1

∞∑
j=−∞

Ai′i1(j)Bi1i′′(k − j)

where the usual product between scalar has been re-
placed by sequence convolution. For a square matrix
function we also define A∗p(k) = A(k)∗A(k)∗· · ·∗A(k)
p times, and A∗0

i′i′′(k) = 1 if i′ = i′′ and k = 1, and zero
otherwise.

With these definitions, the expression of H can be
easily rewritten as:

H(k) = diag

( ∞∑
l=k

j(l)

)

+


diag j ∗

[ ∞∑
j=1

L∗(j−1)

]
∗ K


 (k) (7)

where the diag(·) function generates a diagonal ma-
trix whose diagonal coincides with the argument vec-
tor. Note also that we used convolution instead of finite
sums assuming that all the matrix functions vanish for
all negative arguments and that Li′i′′(0) = Ki′i′′(0) = 0
to take into account the lj > 0 conditions of (6).

We further assume that all the matrix functions we
defined are summable so that the generic z-transform:

Ã(z) =
∞∑

j=−∞
A(j)z−j

converges for |z| > 1. With this we may now write the
z-transform of H(k) as

H̃(z) =
diag[̃j(z)− zj̃(1)]

1− z

+ diag j̃(z)

[ ∞∑
j=0

L̃j(z)

]
K̃(z)

and hence

H̃(z) =
diag[̃j(z)− zj̃(1)]

1− z

+ diag j̃(z)
[
I − L̃(z)

]−1
K̃(z) (8)

Note now that from (4) and (5) we get

K̃(z) =
L̃(z)− L̃(1)

1− z

j̃(z) = zj(0)
L̃(z)− L̃(1)

1− z

so that
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H̃(z) = diag
[
− z

1− z
j̃(1) +

zj(0)
(1− z)2

(L̃(z)− L̃(1))
]

×
[
I + (I − L̃(z))−1(L̃(z)− L̃(1))

]
To proceed further we assume that f is completely

defined by the two sequences of points

a1j =
1
2

∞∑
l=j+1

∆1(l)

a2j = 1− 1
2

∞∑
l=j+1

∆2(l)

depending only on the two probability functions ∆1 and
∆2 whose significance will be soon clarified.

We also set X1j = [a1j+1, a1j ], X2j = [a2j , a2j+1]
and say that f affine in each Xij and such that f(Xij) =
Xij−1 for j > 1 and f(X10) = S2 while f(X20) = S1.

From the Markov property of f with respect to
the Xij we have that the invariant density is uniform
in each of those intervals.

From this, from the map construction, from the

fact that
→
S i = Xi0 and from the piecewise-affinity of

f we also get that, after a state transition, the state
is uniformly distributed in the new Si. Note now that

as long as x ∈ Si it passes from Xij to Xij−1 at each

time step until it reaches
→
S i. Hence, the probability of

staying exactly k time steps in Si is equal to the prob-
ability of landing in Xik−1 after the state transition.
Yet, by construction, such a probability is nothing but
(aik−1 − aik)/(ai0 − ai∞) = ∆i(k).

We may therefore restrict our attention to systems
in which

L(k) =
[

0 ∆2(k)
∆1(k) 0

]
(9)

where ∆i(k) has now the significance of probability to
stay in the state i exactly for k time steps. By con-
struction we have

∑∞
l=1∆i(l) = 1 so that, from (4) we

also get:

Ki′i′′(1) =
[
0 1
1 0

]

and thus, from (4) and defining Ti =
∑∞

l=1 l∆i(l), we
have:

j(0) =
(1, 1)

T1 + T2
j̃(1) =

(T1, T2)
T1 + T2

while simple calculations give

(I − L̃(z))−1

=
1

1− ∆̃1(z)∆̃2(z)

[
1 ∆̃2(z)

∆̃1(z) 1

]

To reflect the definition of Q we may now define
f = (1, 0) and note that C(k) = f tH(k)f − P 2ON =
(f − PON )tH(k)(f − PON ) where PON = T1/(T1 + T2)
and thus

C̃(z) = z(z − 1)−2
(
∆̃1(z)∆̃2(z)− 1

)−1
(T1 + T2)−2

×
[
(∆̃1(z)− 1)(∆̃2(z)− 1)(T1 + T2)

+ (z − 1)(∆̃1(z)∆̃2(z)− 1)T1T2
]

(10)

To investigate the asymptotic behavior, let us re-
view the following Tauberian result [16]:

Theorem 2: Let x̃(z) be the z transform of the se-
quence xk.

• If a continuous function x : R
+ 	→ R

+ exists such
that xk = x(k) and x(t) is asymptotically equiv-
alent to t2H−2 (H ∈]0.5, 1[) then x̃(eε) converges
for ε > 0 while it diverges as ε1−2H for ε→ 0+.

• If x̃(eε) ∼ ε1−2H for ε→ 0+ and xk is non-negative
and eventually monotonic decreasing then xk ∼
k2H−2 for k →∞.

Proof: Note first that for ε > 0 we have z−1 = e−ε <
1 so that x̃(eε) =

∑∞
k=0 xk

(
z−1
)k surely converges.

Define now the following subset of the real line
A(s) = {ξ = kε|0 ≤ ξ ≤ s} and note that we can
rewrite the z-transform as

x̃(eε) =
1
ε

lim
s→∞

∑
ξ∈A(s)

xξ/εe
−ξε

which is asymptotically equivalent to the Riemann’s
sum of the corresponding integral with step ε. Hence
the sum itself can be rewritten in the limit as

x̃(eε) ∼ 1
ε

∫ ∞

0

x

(
ξ

ε

)
e−ξdξ

We may now assume that x(t) is negligibly differ-
ent from the asymptotic behavior Xt2H−2 for t > t̄.
With this, the above asymptotic equivalence can be re-
cast into

x̃(eε)

∼ 1
ε

∫ t̄ε

0

x

(
ξ

ε

)
e−ξdξ +

X

ε

∫ ∞

t̄ε

(
ξ

ε

)2H−2
e−ξdξ

=
∫ t̄

0

x(t)e−tεdt−Xε1−2H
[
ξ2H−1E2−2H(ξ)

]∞
t̄ε

where the exponential integral function is defined
as E2−2H(ξ) =

∫∞
1

e−ξaa2H−2da. One may now
check that the exponential integral function is such
that ξ2H−1E2−2H(ξ) → 0 for ξ → ∞ while
(t̄ε)2H−1E2−2H(t̄ε) = t̄2H−1Γ(2H − 1) for ε → 0, Γ(·)
being the conventional gamma function.

Hence, taking the limit of the above expression for
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ε→ 0 one finally obtains

x̃(eε)∼
∫ t̄

0

x(t)dt+Xε1−2H t̄2H−1Γ(2H − 1)∼ε1−2H

Conversely, we may exploit basic Tauberian the-
ory (see e.g. [16, Theorem 8.7]) to obtain that, under
our assumptions with the exception of the eventually
decrease of xk

n∑
i=0

xi ∼
n2H−1L(n)

Γ(2H)

where L(n) is as slowly varying function for n→∞.
By adding the eventually decreasing property we

know that L(n) accounts for no oscillation around the
asymptotic trend and are allowed to write

xk ∼
k∑

i=0

xi −
k−1∑
i=0

xi ∼
k2H−2

Γ(2H − 1)

✷

Hence, we analyze the z-transform of ∆i in the
special case z = eε and ε → 0. In that neighborhood
we may obtain an expansion of a generic ∆̃i(z) noting
that ∆̃(1) = 1, that ∆̃′

i(1) = −Ti and that:

∆̃′′
i (z) = z−2

∞∑
k=1

k(k − 1)∆i(k)z−k

Hence, the behavior of ∆̃′′
i (z) for ε → 0 depends

on the asymptotic trend of k2∆i(k).
If we assume a polynomially vanishing ∆i(k) ∼

k2Hi−4, with Hi ∈]0.5, 1[, we have k2∆i(k) ∼ k2Hi−2

and thus, from Theorem 2, for z = eε and ε → 0 we
have ∆̃′′

i (z) ∼ ε1−2Hi which accounts for an expansion
of the kind:

∆̃i(z) ∼ 1− Ti(z − 1) + Ui(z − 1)3−2Hi

for some constant Ui. With the aim of comparison, let
us observe that in the case of exponentially vanishing
function, the same expression hold with Hi = 0.5.

Note that, if Hi ∈]0.5, 1[ then 3−2Hi ∈]1, 2[ so that
we may characterize the behavior of the z-transform
or either exponentially or polynomially decaying ∆i(k)
with the three parameters Ti, Ui and αi ∈]1, 2] such
that, when z = eε and ε→ 0:

∆̃i(z)∼1−Ti(z−1)+Ui(z−1)αi =1−Tiε+Uiε
αi

where we exploited also the asymptotic equivalence eε−
1 ∼ ε. With these expansions (10) may be recast to:

C̃(z) ∼ T 22U1ε
α1−2 + T 21U2ε

α2−2

(T1 + T2)2

With this, we may set α = mini{αi} to obtain:

C̃(z) ∼ εα−2 1
(T1 + T2)2

∑
αi=α

UiT
2
3−i

Note finally that, if α < 2, and the autocovari-
ance is eventually positive and monotonic, Theorem 2
implies that it obeys:

C(k) ∼ k1−α = k2H−2

where H is related to the slowest asymptotic decay in
sojourn time probabilities. Hence, when at least one
state has a polynomially decaying sojourn time prob-
ability the Pseudo-Markov system is able to produce
second-order self-similar trajectories. The scaling pa-
rameter of such trajectories is controlled by the slowest
asymptotic decay in sojourn time probabilities.

Let us note that the autocovariance function has
the same expression of (3).

5. Map Design Procedure

In this section we use the above self-similarity criteria to
build a chaotic map generating self-similar trajectories.

In order to explain the map design procedure let
us rename with pk and qk the probabilities of staying
in the ON and in the OFF states for k steps, ∆1(k)
and ∆2(k), respectively. The theory in Sect. 4 permits
to build a chaotic self-similar generator by selecting at
least one of the probabilities pk and qk polynomially
vanishing.

In particular we select two cases: the first with
pk ∼ Aγk and qk ∼ Bk2H−4 with A, B, γ > 0 and H the
Hurst parameter; the second with pk ∼ Ak2H1−4 and
qk ∼ Bk2H2−4 with A, B > 0 and H = max(H1, H2)
the Hurst parameter. These two cases permit to de-
sign two different kinds of self-similar maps with two
ON/OFF sojourn time distributions: light/heavy-tailed
and heavy/heavy-tailed.

To give a project criterion for these maps, by ob-
taining sojourn time distributions that allow a tuning
of the process average but are as close as possible to
the desired one (especially in the asymptotic trend), an
ad-hoc, Lagrangian based technique is introduced.

Let us recall the ON and OFF average times T1 =∑∞
k=1 kpk and T2 =

∑∞
k=1 kqk, respectively. We want

to assign PON = T1/(T1+T2) minimizing the deviation
of pk and qk from the nominal decay p̃k and q̃k. Hence
we must solve the following optimization problem:

min
∞∑

k=1

(
pk

p̃k
− 1
)2

+
(

qk

q̃k
− 1
)2

s.t.(PON − 1)
∞∑

k=1

kpk + PON

∞∑
k=1

kqk = 0

s.t.
∞∑

k=1

pk = 1 ,
∞∑

k=1

qk = 1 , pk ≥ 0 , qk ≥ 0 (11)



GIOVANARDI et al.: CRITERIA TO DESIGN CHAOTIC SELF-SIMILAR TRAFFIC GENERATORS
2161

To solve such a problem we first note that, since
when inequality constraints are active they set the cor-
responding probability to be zero, the functional form
of the solution of (11) can be obtained by considering
only the equality constraints. With this we obtain that
the optimal probabilities

∗
pk and

∗
qk may have only two

different functional forms, namely:

∗
pk =


 p̂k = p̃k +

λ1(PON − 1)k
2

p̃2k +
λ2
2

p̃2k

0 if p̂k < 0
(12)

∗
qk =


 q̂k = q̃k +

λ1PONk

2
q̃2k +

λ3
2

q̃2k

0 if q̂k < 0
(13)

Regrettably the value of the Lagrange multipliers
λ1, λ2 and λ3 depend on the indexes for which p̂k < 0
and q̂k < 0 and a suitable procedure must be devised
to solve the problem.

To this aim note first that, given the asymptotic
positivity of p̂k and q̂k, only a finite number of vanishing
entries exist in

∗
pk and

∗
qk.

Moreover, any generic minimization problem in a
sequence space with equality ad positivity constraints
may benefit from the following Theorem:

Theorem 3: Let the sequences v = {vk}∞k=1 and ai =
{aik}∞k=1 for i = 1, . . . , n be given along with the real
numbers bi for i = 1, . . . , n. Assume that the solution
∗
v = {∗vk}∞k=1 of the minimization problem:

min
∞∑

k=1

(vk − 1)2

s.t.
∞∑

k=1

aikvk − bi = 0 ∀i, vk ≥ 0

exist. Let also v̂ = {v̂k}∞k=1 be the solution of the
relaxation, without the constraint vk ≥ 0, which surely
exists. If v̂ 
= ∗

v then when v̂k < 0 we have
∗
vk = 0.

Proof: For any two sequences v′ and v′′ define
〈v′,v′′〉 =

∑∞
k=1 v′

kv′′
k so that

∑∞
k=1(vk − 1)2 =

〈v − 1,v − 1〉. Indicate with π the linear subspace
identified by the equality constraints 〈ai,v〉 − bi = 0
for i = 1, . . . , n. By its own definition v̂ is such
that 〈v̂ − 1,v − v̂〉 = 0 for every v ∈ π. Hence,
when v ∈ π we have 〈v − 1,v − 1〉 = 〈v − v̂,v − v̂〉 +
〈v̂ − 1, v̂ − 1〉.

Consider now a feasible point v ∈ π with vk ≥ 0
and the the gradient w = ∇v 〈v − v̂,v − v̂〉 = 2(v−v̂).
Note that 〈ai,w〉 = 0 for i = 1, . . . , n so that we may
obtain the feasible direction w′ by computing w′ =
w −

∑
vi=0
wi>0

wiei, where ei is such that eii = 1 while

eik = 0 for i 
= k.

The vector w′ is such that if vk > 0 and v̂k < 0
we have w′

k > 0 and that for some scalar φ > 0 we
have v − φw′ ∈ π, v − φw′ ≥ 0 and 〈v − v̂,v − v̂〉 <
〈v − φw′ − v̂,v − φw′ − v̂〉.

Hence, if v̂k < 0 the minimum of 〈v − v̂,v − v̂〉
(and thus of 〈v − 1,v − 1〉) cannot be achieved at any
point

∗
v such that

∗
vk > 0. ✷

Note that we may rewrite (11) to fit the assump-
tions of Theorem 3 if we set v2k−1 = pk/p̃k and
v2k = qk/q̃k that leave the positivity constraints un-
changed.

We may now address the solution of (11) and solve
the relaxed problem where the Lagrange’s multipliers
λ1, λ2, λ3 are determined by the satisfaction of the three
constraints in (11).

This procedure must be iterated until the solution
of the relaxed problem has no negative components.

Note that termination is guaranteed from the
finiteness of the number of vanishing probabilities in
the solution of (11) and from the fact that, when the
solution of the relaxed problem has no negative com-
ponents then it coincides with the solution of the non-
relaxed problem.

Once that the two probabilities distributions
∗
pk

and
∗
qk are known we may construct a chaotic map f

whose iteration causes the state x ∈ [0, 1] to switch
between the ON condition x ∈ [0, 1/2] and the OFF
condition x ∈]1/2, 1] with the given statistics for the
sojourn times.

5.1 Light/Heavy-Tailed ON/OFF Sojourn Time Map

To obtain a chaotic map with light/heavy-tailed sojourn
profiles we set: p̃k ∼ Aγk and q̃k ∼ Bk2H−4 accord-
ing with the second criterion. Thus, by following the
described map design criterion we obtain the map in
Fig. 2.

Fig. 2 Examples of the light/heavy-tailed chaotic map.



2162
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.9 SEPTEMBER 2001

Fig. 3 Examples of the heavy/heavy-tailed chaotic map.

Fig. 4 ON/OFF sojourn time distributions (theoretical, mea-
sured and asymptotic), autocovariance functions (measured and
asymptotic) relative to the light/heavy-tailed chaotic map, with
H = 0.8 and PON = 0.3.

5.2 Heavy/Heavy-Tailed ON/OFF Sojourn Time
Map

To obtain a chaotic map with heavy/heavy-tailed so-
journ profiles we set: p̃k ∼ Ak2H

′−4 and q̃k ∼ Bk2H
′′−4

according with the second criterion. Thus, by following
the described map design criterion we obtain the map
in Fig. 3.

6. Numerical Results

Some investigations have been performed to verify
the behavior of the ON/OFF sojourn distributions of
the proposed maps. In particular for both the cases
light/heavy-tailed and heavy/heavy-tailed the theoreti-
cal, measured and asymptotic trends have been sim-
ulated, has reported in Figs. 4 and 5, where the com-
plementary distributions of the ON time, FON (k), of
the OFF time, FOFF (k) and the autocovariance func-
tions, C(m)(k)/C(m)(0) and C(k)(0)/C(m

′)(0) (m has

Fig. 5 ON/OFF sojourn time distributions (theoretical, mea-
sured and asymptotic), autocovariance functions (measured and
asymptotic) relative to the heavy/heavy-tailed chaotic map, with
H′ = 0.6, H′′ = 0.8 and PON = 0.3.

Fig. 6 ON/OFF sojourn time distributions (theoretical and
asymptotic) relative to the light/heavy-tailed chaotic map, with
H = 0.8 and PON = 0.3, 0.5, 0.7.

been substituted by k to include this function in the
same graph), are reported. The theoretical trend has
been derived by means of the Lagrange-based iterative
procedure described in Sect. 5; the measured trend has
been obtained by iterating the generated maps and the
asymptotic trend is the target trend for k � 1. The
perfect match between the curves can be verified.

To numerically validate the proposed approach the
autocovariance function has been also reported, by ver-
ifying that the maps produce a self-similar traffic. Let
us observe that the asymptotic trends match perfectly
with the simulations.

In Figs. 6 and 7 only the ON/OFF sojourn distri-
butions have been reported (theoretical and asymptotic
trend), by considering different PON .

In all cases the Hurst parameter has been set to
H = 0.8 to simulate a high self-similar degree. Let
us finally note that the described procedure allows to
set independently PON and H, to simulate all possible
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Fig. 7 ON/OFF sojourn time distributions (theoretical and
asymptotic) relative to the heavy/heavy-tailed chaotic map, with
H′ = 0.6, H′′ = 0.8 and PON = 0.3, 0.5, 0.7.

traffic conditions.

7. Conclusions

By starting from the definition of second-order self-
similar processes, a methodology to design chaotic
maps able to produce self-similar trajectories with any
Hurst and activity index factors, has been presented.
This methodology is based on three steps: we first show
how the autocovariance of the process must be in order
to match the second-order self-similar definition (Cri-
terion I); then we have established a link between the
autocovariance function and the probability of staying
in the ON or in the OFF states (Criterion II); finally, we
have explained a method to construct a map in which
we can independently set the asymptotic trend of so-
journ times and the average activity.

The numerical results show that the developed
methodology allows to design a second-order self-
similar generator with good performance. Further
works are oriented to generalize the presented approach
in order to consider environment with more than two
states and higher order statistics.
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