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Abstract— Developments in telecommunications tech-
nology have outpaced progress in teletraffic methods and
practices. As a result, the planning and dimensioning of
even the latest information-age services is, by default,
commonly done on the basis of classical teletraffic meth-
ods developed for circuit switched voice networks. In
this paper, we will discuss recent traffic measurement
studies which have demonstrated that measured traffic
streams from working packet switched networks exhibit
variations and fluctuations over a wide range of time
scales. We motivate the application of fractal models
to parsimoniously represent this apparent complexity of
actual network traffic, illustrate some immediate benefits
that arise from moving beyond traditional traffic model-
ing concepts and accepting the idea of the fractal nature
of network traffic dynamics, and discuss the use of frac-
tal models to develop traffic management methods that
are accurate, practical, and based on a solid understand-
ing of the traffic observed in “real-life” packet switched
networks.

I. INTRODUCTION

Telecommunications companies worldwide are currently
investing billions of dollars in deploying broadband and wire-
less networks that will support large-scale access to informa-
tion services. While the switching and transmission tech-
nologies to enable this deployment are available, network
management methods to efficiently manage large-scale de-
ployment lag behind these technological capabilities. For
example, effective traffic management is essential for the de-
velopment of efficient telecommunications networks that can
cost-effectively meet the performance requirements of a full
range of emerging services. However, traffic management
methods — at least to the extent they are practiced — do not
adequately address the complexity of the traffic in packet-
based networks. As a result, the planning, design, and engi-
neering of the latest information-age services, is by default,
often done on the basis of classical teletraffic methods devel-
oped for circuit switched voice networks.

The challenge for the teletraffic community is to close the
existing gaps between current teletraffic theory and practice,
and to provide the theoretical foundations needed to support
large-scale deployment of emerging networks in practice. In
this paper, we will discuss (i) the existing gap between the-
ory and practice, as well as the gap between theory and
real-world complexity, and (ii) what is required of teletraffic
theory if these gaps are to be bridged. In dealing with the
complexity of traffic flows in emerging networks (as indicated
by recent traffic measurement studies), traditional modeling
approaches implicitly emphasize tractability of the models
over other considerations. Here we argue that if the gaps
between theory, practice and reality are to be closed, par-
stmony of model descriptions is an essential consideration.
In particular, we argue here that it is not necessary to re-
sort to highly parameterized models to describe the complex

nature or burstiness of broadband traffic; models based on
stochastic and deterministic fractal processes allow for parsi-
monious descriptions of the empirically observed complexity
or burstiness of measured traffic. It should be noted that
bursty or irregular phenomena have been observed in vir-
tually all branches of science and engineering, and fractal
geometry can be viewed as the mathematics of bursty or ir-
regular phenomena. Although fractal models have been used
with some success in many branches of science and engineer-
ing, they are new to teletraffic theory and represent a recent
addition to the already large class of alternative models for
describing traffic in packet switched networks. The objective
of this paper is to (i) summarize some of the fundamental
ideas behind fractal traffic modeling, (ii) provide evidence
for the viability of fractal processes in the teletraffic setting,
(i) motivate their application in teletraffic practice, and
(iv) illustrate some of the engineering insights gained from
fractal traffic modeling.

II. TrRAFFIC MODELING: THEORY VERSUS PRACTICE
A. Traditional Teletraffic Theory

Teletraffic analysis is arguably one of the most successful
applications of mathematical modeling in industry. Teletraf-
fic theory and practice have enabled enormous efficiencies
in the deployment of telecommunications networks, thereby
facilitating universal telephony through much of the indus-
trialized world. There are several reasons for the success
of teletraffic theory in traditional telephony. First, the re-
sulting models are tractable, and can be readily analyzed to
accurately predict most performance measures of interest. A
second reason is the well-known insensitivity or robustness
property of key teletraffic results, that is, model predictions
appear to be accurate in practice, even when many of the
modeling assumptions underlying the analysis do not hold.
The third (and not the least) reason is that the most widely
applied models require only a few inputs, such as arrival and
service rates, which can be readily collected and estimated
in practice.

It is widely recognized that traffic characteristics in packet
networks differ substantially from those in telephone net-
works, and that in spite of the appealing robustness prop-
erty of many key teletraffic theory results, these differences
seriously question the straightforward use of traditional traf-
fic models and conventional traffic engineering methods for
managing packet switched networks; in fact, they make
many of the conventional approaches inapplicable (e.g., see
[9], [22]). At the same time, newer methods which account
for these differences in traffic characteristics have not yet
supplanted methodologies that are firmly based on decades
worth of well-founded teletraffic theory. This is not for
lack of theoretical developments; on the contrary, there have
been major advances in teletraffic theory over the last four
decades, and we are at a point where we can analyze — in



principle — complex queueing behavior, from arrival patterns,
to resource usage, call admission policies, network controls,
routing, network structures and so on. It is instructive to
reexamine the reasons for the earlier successes to under-
stand why major advances on the theoretical front have been
largely ignored by network engineers and have typically not
been reflected in methods that are used in practice for de-
signing, managing and controlling packet switched networks.

Traffic flows in broadband networks are far more complex
than in the telephone network, mainly due to a combination
of the wide range of applications and services envisaged for
these networks and of the inherent burstiness of the traffic
generated by many of these applications. Recent advances
in teletraffic theory have almost exclusively emphasized the
tractability of the ensuing models, so that one can now an-
alyze models of considerable complexity and sophistication.
Accuracy of the models is also emphasized, though estab-
lishing the validity of a proposed model against actual traf-
fic data from working packet networks has been hampered
in the past by a lack of available data from emerging net-
works and services. Less attention has been paid to model
parsimony (i.e., the desire to describe and explain complex
traffic processes in as economical a way as possible), per-
haps because of the widespread belief that the increase in
model complexity required for accurately dealing with the in-
creasingly complicated nature of network traffic will be offset
by the sophisticated and powerful analysis techniques that
have been developed. However, the bottleneck in applying
these methods has not been tractability, but our inability in
practice to specify the inputs required by sophisticated the-
ory. Contrast this with traditional teletraffic theory, which
is based on simple inputs (arrival and service rates) that can
be readily specified, collected and estimated in practice.

B. Measurement Studies of Actual Network Traffic

While historically, the area of traffic modeling has suffered
from a permanent “drought” of actual traffic measurements,
in the recent past it has benefited from a tremendous “flood”
of high-resolution, high-quality, and high-volume traffic data
from a wide range of “live” packet networks that carry real
applications generated by real users. Subsequent measure-
ment studies (e.g., see [20], [7], [15], [5], [13], [23], [11], [1],
[28]) have contributed greatly to new insights into the nature
of traffic in actual networks, and have indicated that there
exists a considerable gap between traditional traffic models
and empirically observed traffic processes. The tractabil-
ity that is so attractive in traditional teletraffic analysis is
implicitly based on the assumption that the traffic has vari-
ations or fluctuations over a (pre)specified time scale (as, for
example, with the Poisson process) or over a limited range
of time scales (e.g., low order phase-type or Markovian pro-
cesses). In contrast, measured traffic processes consistently
show variations or fluctuations over a wide range of time
scales. This empirical finding is in full agreement with ob-
servations made in many other branches of science and engi-
neering, namely that underlying bursty phenomena typically
exhibit variations over many length or time scales (e.g., see
[19]).

Variability over many time scales can occur in several con-
texts in real traffic. First, many distributions of interest are
heavy-tailed, which is to say that the tails of these distribu-
tions often decay so slowly that the variance (or even the

mean) may not exist. This is in stark contrast to traffic
distributions commonly assumed in theory, all of which are
light-tailed, 1.e., have asymptotically exponential decays so
that all moments exist. Examples of traffic processes with
heavy-tailed distributions are: burst lengths, sojourn times
in active/inactive states, resource holding times, inter-arrival
times etc. This discrepancy between theory and reality can
have many obvious, as well as subtle, consequences for traffic
modeling, engineering and management, which are described
later.

Secondly, autocorrelations in traffic processes can span
many time scales, i.e., they display long-range dependence
or equivalently, they exhibit a power-law decay and are non-
summable. In contrast, Markovian processes will generate
traffic streams that are short-range dependent, i.e., have
asymptotically exponential decays. Time series of counts of
packets/ bytes/cells are typically consistent with the statis-
tical characteristic of long-range dependence and do not sup-
port the prevailing modeling assumption that packet traffic
is Markovian, or more general, exhibits short-range depen-
dence.

From experiences in other disciplines, phenomena that
span many length or time scales pose significant challenges
to the modeler. A popular example is the problem of es-
timating the length of a coastline; because coastlines ex-
hibit features over a very wide range of length scales, any
length measurement depends sensitively on the length of the
vardstick. To this extent, the length of a coastline is arbi-
trary, and the coastline is better represented by the notion
of a fractal dimension which is a parametric representation
of this dependence. A traffic analog of this example is the
problem of estimating the “peakedness” (strictly speaking,
the asymptotic value of the Index of Dispersion of Counts) of
actual packet traffic; because the traffic exhibits variability
over many time scales of engineering interest, the peakedness
of a given trace keeps increasing with the length of the obser-
vation interval. To this extent, traditional teletraffic notions
such as peakedness are inapplicable to describe packet traffic.
The Hurst parameter (which is commonly used as a measure
of the degree of long-range dependence or persistence in a
given data set) can be viewed as a parametric representa-
tion of the peakedness functional and is a more appropriate
description of the burstiness in packet traffic. The challenge
for teletraffic theorists is then to capture the complexity of
actual and future network traffic without a commensurate
increase in model complexity and in the number of input
parameters that must be independently specified. It is this
need to model complexity efficiently that motivates an ap-
plication of fractal models in the teletraffic arena.

III. OLD VERSUS NEW: ALTERNATIVE TRAFFIC
DESCRIPTIONS

In principle, the characteristics observed in measured net-
work traffic data can be described in a number of ways. It
is useful to separate fractal phenomena (i.e., empirically ob-
served characteristics spanning many time scales) from mod-
els used to describe them. Regarding the modeling of empir-
ically observed phenomena, one should always keep in mind
that “... no model is ever correct — all are but better or
worse approximations of reality” (see [12]).



A. Ezxtending Traditional Approaches

The prevailing approach in the teletraffic literature to
dealing with and describing the increasingly complex dynam-
ics of today’s traffic streams has been to model the observed
traffic dynamics one time scale at a time, which typically
results in Markovian models with a large number of states.
While this approach has the obvious advantage of retain-
ing, at least in principle, model tractability, we consider in
the following some of the fundamental problems associated
with using extensions of traditional Markov models to mod-
eling highly variable (i.e., heavy-tailed) and persistent (i.e.,
long-range dependent) phenomena. In principle, any empir-
ical distribution, whether heavy-tailed or light-tailed, can be
represented by mixtures of exponentials. An early example
of describing bursty processes in this fashion is the approach
commented on in [18] of modeling inter-error times in digi-
tal transmission systems. In his criticism of this approach,
Mandelbrot [18] points out several limitations and practical
problems with the proposed method. For one, the resulting
models are highly arbitrary and generally highly parameter-
ized, with the number of parameters required to obtain a
satisfactory fit increasing with the size of the data set. In
the limit, one is effectively computing the Laplace transform
of the empirical distribution, which can be viewed as an al-
ternate representation of the data, but not a very useful one
(as Mandelbrot [18] points out, a model should not explicitly
include in its input all of the features it hopes to observe in
its output). The resulting models yield little insight into the
nature of the data, may be misleading in their performance
predictions, and beyond the tractability of these models,
there is no physical basis or explanation underlying them.
In addition, there are several practical issues which limit the
usability of these models. Fitting highly parametrized mod-
els requires the collection, processing, transport and storing
of large amounts of operational data. In practice, the num-
ber and frequency of operational measurements is drastically
limited by considerations of measurements overhead, and the
capacity of operational systems. Secondly, even if the data
were available, the inference problem of fitting a large (un-
known) number of exponentials to empirical data is known to
be ill-conditioned. In practice, it is such considerations, and
not tractability, that determine the practical utility of these
models. Similar limitations and practical reservations exist
for models that attempt to capture the long-range depen-
dence phenomenon using Markovian processes that incorpo-
rate a large numbers of states. While work on these models
has emphasized the issue of tractability, the problem of sta-
tistical inference remains largely an open issue and stands in
the way to check the validity and accuracy of these models
against real traffic data.

B. Where Traditional Approaches Fail

In the recent past, the availability of high-volume/high-
quality traffic measurements from working packet networks
has seriously questioned the traditional traffic modeling ap-
proach that has been so successful for today’s telephone net-
work. In sharp contrast to the voice world, data networks
are highly dynamic entities and undergo constant changes
(e.g., network topology, user population, services and ap-
plications, network technologies, protocols). For example,
a given WAN or Ethernet LAN, monitored 1 year or just
a few months apart, can experience a significant change

in the traffic due to the emergence and popularity of new
“killer-applications” (e.g., WWW, Mbone). The traffic vol-
ume generated by these killer-applications is a perfect exam-
ple that shows exponential or even faster-than-exponential
growth rates. This observation makes life for the traffic mod-
eler difficult and challenging: how to describe and come up
with traffic descriptors (either at the source, application or
aggregate level) that (i) are robust under the dynamics of
“live” and evolving networks that continuously experience
new users asking for new services and applications, (ii) are
simple, accurate and useful in practice to support the design,
engineering and operation of these networks, and (iii) have
a physical meaning and hence contribute to a better under-
standing of the nature of traffic in modern packet networks.

Traditional traffic modeling has dealt with this challeng-
ing task by essentially avoiding the robustness issues and by
treating traffic modeling on a “case by case” basis (e.g., scene
and codec specific modeling of variable-bit-rate video traf-
fic), by concentrating almost exclusively on model tractabil-
ity and by largely ignoring issues related to model parsi-
mony, and by not asking in general any questions regarding
the physical basis of a proposed model. Consequently, our
understanding to date of the nature of real network traffic
based on the traditional modeling approaches is rather lim-
ited and often based on preconceptions, apparently inher-
ent (i.e., invariant or robust) network traffic characteristics
(e.g., Markovian properties, exponential tails) are confused
at times with technical assumptions made at the modeling
stage mostly for mathematical convenience, and there is a
common belief that modeling the unquestionably complex
nature of modern network traffic means automatically com-
plicated and equally complex traffic models. We outline be-
low an alternative approach to traffic modeling based on
fractal processes, that is based on traffic measurements from
working networks, provides new and profound insights into
the nature of actual network traffic, and identifies robust-
ness properties of the models that are closely related to the
physical explanations that exist for these models at the level
of individual sources as well as at the application level.

C. Beyond Traditional Approaches: Fractal Models

As has been demonstrated in numerous other areas in sci-
ence and engineering, it is possible to represent processes
that exhibit fluctuations and variability over a wide range of
time scales without resorting to highly parametrized mod-
els. For example, heavy-tailed phenomena can be modeled
using distributions that exhibit power-law tail behavior; in
many cases, the performance phenomena of interest are dom-
inated by the properties of the tail of the distribution. The
Pareto family of distributions, for example, can parsimo-
niously match the power-law decay observed in many prac-
tical traffic processes with two parameters:

P(T>t)=(t/k)™", k>0, a >0, t>k. (1)

For o < 2, the variance and higher moments of the distribu-
tion are unbounded. Analysis of Ethernet traces at the level
of individual source-destination pairs (see [28]) strongly fa-
vors a revision of the traditional ON/OF'F source model in
which the sojourn times are not modeled by the familiar ex-
ponential distribution, but instead by Pareto distributions
with finite means and infinite variances. An equivalent de-
scription in terms of chaotic maps is also feasible (see [10],



[25], [24]). In the chaotic map formulation, the source state
is represented by a continuous variable whose evolution in
discrete time is described by a low order, nonlinear dynam-
ical system. The packet generation process is now modeled
by stipulating that a source generates a batch of packets at
the peak rate when the state variable is above a threshold,
and is idle otherwise. Realistic ON/OF'F behavior can now
be described in terms of a small number of parameters asso-
ciated with a suitably chosen map. Either of these methods
enables us to model directly what is a plausible physical basis
of the self-similarity phenomenon observed in network traf-
fic, namely the aggregation of heavy-tailed or highly-variable
ON/OFF sources.

Likewise, self-similar models can parsimoniously capture
autocorrelations that exhibit a power-law tail behavior, i.e.,
dependencies that range over a wide range of time scales.
The Fractional Brownian Motion (FBM) traffic model, in-
troduced by [15], [22] can capture the second-order proper-
ties of bursty traffic processes over many time scales with
three parameters:

A(t) =mt ++amZ(t), t>0, (2)

where A(t) is the cumulative work up to time ¢, Z(t) is a
Fractional Brownian Motion (a Gaussian process which ex-
tends the familiar notion of Brownian Motion, characterized
by independent Gaussian increments, to dependent incre-
ments with a power law autocorrelation), and where each of
the three parameters m, H, a has a distinct physical interpre-
tation - m is the arrival rate, the Hurst parameter H charac-
terizes the decay of the auto-correlation function (or equiva-
lently, the degree of self-similarity), and ais a “peakedness”
term describing the magnitude of fluctuations.

Although the FBM model has been shown in an Ethernet
LAN environment to be fully consistent with actual traf-
fic data, not only at the level of aggregate network traffic
traces but also at the level of individual source-destination
traces (see [15], [28]), the model has several obvious draw-
backs (shared by traditional diffusion models); for example,
the “increments” of FBM can actually be negative. However,
under heavy traffic conditions, this does not significantly im-
pact the usefulness of the model and the accuracy of model
predictions. The conditions under which the FBM model is
expected to be valid in practice are described in [9] and are
(i) the “time scales of interest” for the problem coincide with
the scaling region — note that the FBM model is self-similar
on all time scales, whereas measured network traffic exhibits
self-similarity over a wide but limited range of time scales
(bounded by upper and lower cut-offs), (ii) the traffic is ag-
gregated from a large number of independent users so that
a purely second-order description is adequate, and (iii) the
effect of flow controls on any one user is negligible. For envi-
ronments in which these conditions are satisfied, such as with
Bellcore’s internal Ethernet LANs, the FBM model provides
reasonable agreement with simulation results for several per-
formance measures of interest (e.g., see [9]). In other envi-
ronments, for example, Bellcore’s connection to the outside
world, or the Australian FASTPAC network (see [21]), the
number of aggregated sources does not appear to be large
enough for a purely second-order description to be sufficient.
In both cases, the reported utilizations are quite low; as uti-
lizations increase, presumably as a result of increased aggre-
gation, agreement with the FBM model can be expected to

improve. Note that under conditions of limited aggregation,
no purely second-order description, whether based on frac-
tal or conventional Markov models, is expected to be valid.
Currently, one can therefore parsimoniously model realistic
traffic under two extreme conditions: at the single source
level, and the limiting case of a large number of aggregate
sources. The interim regime may not be readily susceptible
to a parsimonious description, though descriptions in terms
of aggregate ON/OFF sources may be more promising than
others that would explicitly model higher-order statistics.
A second caveat deals with the choice of the performance
measures of interest. Cell losses are extremely bursty pro-
cesses, and longer term measures such as cell loss rates do
not completely describe the cell loss process. In particular,
the problem of predicting/maintaining/ controlling cell loss
rates for a given utilization rate may well be ill-conditioned.
Small variations in parameter values (such as utilizations,
traffic arrival parameters) can cause large variations in cell
loss rates. For such reasons, in analysis and engineering, it
is important to select robust measures, such as setting safe
operating points and statistical multiplexing gains.

Finally, the most significant criticism of fractal processes
is that the resulting models, while powerful in their descrip-
tive capabilities, are difficult to analyze. Currently, there
are few techniques available that would allow for the routine
analysis of fractal traffic models with the myriad possible
variations of queueing systems. This is the experience in
other disciplines as well. Engineering analysis can be di-
vided into three distinct phases: description, analysis and
control. Most applications of fractal models in science and
engineering have focused on the descriptive phase, whereas
all three aspects are necessary in teletraffic modeling. The
difficulties in analyzing fractal models are not necessarily a
reflection on fractal models per se, but are representative of
the problems inherent in analyzing phenomena that involve
a wide range of time scales. In the absence of methods that
can permit the routine analysis of fractal queueing systems,
simulation methods are suggested for routine analysis. The
generation and statistical analysis of traffic with long-range
dependence/heavy-tails is an active area of current research
(see for example [14], [27], [28], [10], [24]). There are never-
theless several analytical results which provide considerable
insights into the engineering impacts of fractal traffic. These
are discussed next.

IV. ENGINEERING IMPACTS

In this section, we will briefly review current insights into
the performance and engineering impacts of the fractal na-
ture of measured network traffic. It is now recognized that
the asymptotic queue length distributions of traffic arrival
processes with long-range dependence can be significantly
heavier than the exponential decay predicted by finite state
Markov models. Note that this statement refers to the na-
ture of the decay, and does not imply, as some people argue,
that fractal models necessarily predict “worse” performance!
The relative performance predicted by a Markov or a fractal
model will depend on specific parameter choices, and time
scales of interest in the queueing system. The FBM model
predicts a Weibullian or “stretched exponential” decay of
the form

P(V > z) ~ exp[—cz’*¥], (3)



where ¢ is a decay coefficient that depends on the param-
eters of the arrival process and the capacity of the system
(see, for example [22], [4]). This result is consistent with
empirical simulation studies based on actual traffic traces
(see [9]). The same result has been obtained directly from a
superposition of heavy-tailed ON/OFF sources at high loads
by [2]. The “heavier-than-exponential” decay of the queue
length distributions has significant impacts on buffer dimen-
sioning, connection admission controls, as well as on setting
statistical multiplexing gains and safe operating points.

Even heavier queueing behavior is obtained with single
ON/OFF sources with infinite variance sojourn time distri-
butions in each state. The asymptotic queue length behavior
exhibits a power-law such that the average queue length is
unbounded. The same is true of aggregations of such sources,
provided the peak rate of an individual source exceeds the
capacity of the server (e.g., see [26] and also [17]). This
suggests that in practice traffic shapers and policing mecha-
nisms that attempt to shape the peak traffic rates of heavy-
tailed ON/OFF sources will incur large backlogs. Sources
with heavy-tailed OFF behavior, but light-tailed ON behav-
ior also exhibit correlations spanning many time scales, but
the queue length distribution decays exponentially (see for
example [24], [25]). Under aggregation, both light/heavy-
and heavy/heavy- tailed ON/OFF sources approach a purely
second-order process with similar low-frequency structure.
Asymptotically, both aggregates generate Weibullian tails
over the bulk of the queue length distribution [24]. The
heavy-tailed queueing behavior yields insights into the source
of statistical multiplexing gains within networks. The expo-
nential decay of queue length distributions driven by short-
range dependent processes can be associated with an equiva-
lent bandwidth (e.g., see [6]) that is less than the peak rate of
the source. This corresponds to the gain obtained “within
a source” by buffering the traffic during episodes when it
arrives at a rate greater than the capacity of the server. In
effect, this is an attempt to exploit the fact that traffic peaks
do not persist in a short-range dependent source, and that
the peaks can be averaged out over intervals of low traf-
fic. The gains within a source may be substantial enough to
ignore considerations of gains “across sources”, where one
attempts to exploit the fact that independent users may not
be simultaneously active. In contrast, heavy-tailed queue-
ing behavior suggests that there may not be much scope
to obtain multiplexing gains within a source, though there
is considerable potential to achieve substantial multiplexing
gains across sources ([3]).

Heavy-tailed service time distributions can also have sig-
nificant performance and engineering impacts, even in situ-
ations in which classical teletraffic results are known to be
highly robust. An example is the blocking performance of
a group of servers whose holding times can span many time
scales (see [8]). Network scenarios under which this may oc-
cur are: circuit switched data applications, full service ATM
networks supporting Video on Demand services. The Er-
lang B and Engset formulas are known to be insensitive to
the service time distribution, beyond its mean value. Nev-
ertheless, there are a number of reasons why classical tables
will not correctly predict blocking performance: convergence
to the steady state results requires of the order of 5-10 av-
erage holding times, which means that the system will not
reach steady state over an engineering period. Secondly, the

blocking for reattempts can be very high, because the state
of the system evolves slowly. Over the span of an engineer-
ing period, the arrival rates may vary, so that nonstationary
effects may have to be accounted for.

Finally, cell loss processes may also be best described by
heavy-tailed inter-loss distributions. Cell losses are so bursty
that the long-term average rate is believed to be an insuffi-
cient indicator of degradations in application performance.

V. CONCLUSION

Traffic in emerging high-speed networks is likely to be
complex, because of the wide range of applications envis-
aged, as well as the inherent burstiness in the arrival and
resource usage patterns of packet-based services. For tele-
traffic methods and practices to keep up with the rapid pace
of technological advances, this complexity must be addressed
in ways that can be applied in practice. This implies the need
for traffic models that can capture complexity realistically,
without a proportional increase in model complexity. Fractal
traffic models based on fractal processes offer some promise
in this regard. While these models do allow parsimonious
descriptions of complex traffic processes, methods to allow
routine analyses of these models, beyond simulations, are
not as yet available. To this extent, fractal and Markovian
models have complementary strengths and weaknesses. A
promising and at the same time highly challenging direction
for future research is the development of novel methodologies
that allow for direct analyses of fractal traffic and queueing
models. In the absence of such methods, a temporary solu-
tion to dealing with fractal models in practice requires new
advances in the area of statistical inference for Markov mod-
els and new research into hybrid approaches that map fractal
model descriptions onto Markov models for analysis.
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