
The last decade has seen a radical shift
in thinking about dynamic behavior
of data networks. Classical teletraffic
theory has yielded to empiricism, as

detailed traffic measurements reveal self-similar
correlations of aggregate traffic and multifractal
scaling behavior.1-4 Empirical routing analyses
have found ubiquitous route instabilities across
many time scales that subvert static network
topology concepts. 5 This research is very recent
and still incomplete—practical network engi-
neers are only beginning to appreciate it.

Moreover, the lack of a good model of the In-
ternet makes it difficult to analyze empirical
data. For example, so-called congestion storms
have yet to be properly characterized; these non-
local phenomena are anecdotally associated with
sudden routing changes, random flow aggrega-
tions, and user’s behaviors that might be impos-
sible to correlate using limited, localized mea-
surements.

The greatest challenge, however, is that the
Internet is an “immense moving target.” 6 It not
only grows at an exponential rate, it undergoes
dramatic qualitative changes over time as well.
These changes include paradigm shifts in use

(recently, the Web) and gross topology (recently,
peering patterns among domains). In such a sit-
uation, we want to make predictions based on
detailed, alternative-future scenarios.

Constructing appropriate global Internet
models that can meet these challenges has
proven extremely difficult, and so far, no project
has gone beyond small models focused on lim-
ited problems. The principal difficulties include
the large number of heterogeneous network el-
ements (100,000 or more nodes) to be modeled,
the long time scales required to model phenom-
ena with long-range correlations, and the re-
quired level of detail, including the use of stan-
dard protocols and empirical traffic sources.
Whether such models can be significantly sim-
plified is currently the subject of a vigorous de-
bate, which only cross-verification of detailed
and simplified models can resolve.

This article focuses on simulation research. It
describes the software designs that let us con-
struct and run appropriately large models. After
several years of research, we have developed a
scalable network-modeling framework, a scal-
able simulation framework (SSF), and scalable
parallel discrete-event simulators capable of
modeling the Internet at unprecedented scales.

Modeling requirements

What is the global Internet? In July 1998, it was
a collection of about 4,000 interconnected rout-
ing domains (autonomous systems, or ASs): node
groups under common administration and in-
tradomain routing confined within a domain.
These domains can be roughly classified into
network providers and end users. Interdomain

30 COMPUTING IN SCIENCE & ENGINEERING

MODELING THE GLOBAL INTERNET

A new scalable modeling framework and scalable parallel simulations make it possible to
analyze the detailed behavior of large, multidomain, multiprotocol Internet models.

C O M P U T A T I O N I N
C O M M U N I C A T I O N

JAMES H. COWIE

Cooperating Systems Corp.
DAVID M. NICOL

Dartmouth College
ANDY T. OGIELSKI

DIMACS and WINLAB, Rutgers

1521-9615/99/$10.00 © 1999 IEEE

JANUARY–FEBRUARY 1999 31

routing reflects the peering arrangements nego-
tiated among domain owners. Last July, about
37 million named hosts, such as dimacs.
rutgers.edu, existed (http://www.nw.com/zone/
WWW/top.html). The exponential growth ex-
trapolates to 100 million hosts in the year
2000—a conservative estimate that misses ma-
chines hidden in private networks.

Clearly, a major downscaling is inevitable in
any approach to Internet modeling. The details
of acceptable simplification are an open question
that comparisons of simulations with empirical
data will help answer. A reasonable guess is that
a model should describe a set of domains, char-
acterize their interconnection topology, and
simulate user behavior or packet traffic at a
large-enough scale to accommodate spatial cor-
relations that might arise in the real network. A
large-enough model has a chance to exhibit
“rare” critical fluctuations that seem to emerge
regularly in the real Internet.

This resembles scaling conditions in statisti-
cal physics. In short, interesting phenomena
arise only in sufficiently large networks, with a
sufficiently large number of traffic flows. To find
adequate model sizes, investigators should eval-
uate simulation behavior across three to four or-
ders of magnitude, noticing the sizes where qual-
itatively new behaviors take place. This strategy
requires a simulation model range extending to
several hundred thousand hosts and routers, dis-
tributed across 100 or more domains.

Computing requirements
Network simulations of 100,000 multiprotocol
hosts and routers are unprecedented in scale and
pose two immediate challenges: the magnitude
of the computing resources required and the in-
vention of modeling techniques for managing
the complexity of hundreds of thousands of sim-
ulated network elements. The first challenge is
actually the easy part, thanks to Moore’s law and
commodity multiprocessor technology. As we
show, the computing requirements are already
within reach.

To estimate the minimum computing require-
ments of a model with 100,000 multiprotocol
hosts and routers, assume a simple, semirealistic
scenario in which the majority of nodes are Web
clients receiving Internet protocol (IP) packets
at the average rate of 100 packets/s for 1% of to-
tal time. If packets traverse 10 routers on aver-
age, about 1010 network events (such as packet
generation, routing, and receipt) are generated
to produce traffic statistics for one hour of sim-

ulated network operation. One simulated hour
is not overkill—too-short runs can generate mis-
leading results in the presence of long-lasting
transients and long-range correlations.7

We attack this computa-
tional challenge by employing
parallel simulator kernels that
can configure and simulate
100,000 nodes at rates of 106

network events per second.
This puts simulations that
generate 1010 events well
within practical reach today;
by Moore’s law, our software
will simulate the same net-
work in real time by the year
2002. By comparison, the sim-
ulation tools used today in engineering practice
cannot handle models of this size at all. They are
actually performance-limited to a few tens of
thousands of network events per second on
much smaller models.

Modeling software requirements
The breakthrough was finding the right software
design. A usable parallel simulation engine needs
a lean, self-configurable modeling API, and a
framework of scalable design patterns for net-
work modeling above it. Modeling scalability is
critically important. It is needed to solve the
known (if not widely discussed) difficulty of ac-
tually configuring and managing heterogeneous
network models with 10,000 to 100,000 nodes
or more, each with its own protocol graph. Such
a task cannot be easily performed manually (as
is done in existing modeling and simulation
tools) because network graphs generally lack
regularity. For small or structurally simple mod-
els, practically any network-modeling method
might be adequate. However, as model size and
complexity increase by orders of magnitude,
most commonly used modeling methods rapidly
begin to break down. Having crawled out of the
wreckage several times ourselves, we feel quali-
fied to comment on a few of the good ideas that
simply haven’t worked in practice.

Models hand-tuned to utilize multiple proces-
sors become instantly useless outside of their
original design context because of inattention
to standard API design, lack of component con-
figurability, or both. The abstraction level
clearly has to increase—but this leads to other
problems.

The temptation to create one more simulation
language is intense. While new languages offer

The abstraction level

clearly has to

increase−−but this

leads to other

problems.

32 COMPUTING IN SCIENCE & ENGINEERING

the hope of increased modeling power by virtue
of a raised abstraction level, more often than not
they impose a modeling view that gets in the way
of constructing scalable model elements.

Object orientation—universally applied, but
improperly understood—has not fared much
better. Modelers’ first instincts tend toward deep
inheritance chains, which defeat component

reuse and model reconfiguration. What works
instead is hierarchical composability from sim-
ple to complex objects, according to well-tested
design patterns.

Scalable simulation framework

An object-oriented framework (a collection of
codesigned class interfaces with prototype im-
plementations) offers an appropriate alternative
to building either a new programming language
or a library of inheritable components. By con-
structing the smallest, most generic framework
interface possible, we could sidestep the lan-
guage pitfall of imposing a restrictive worldview
on all derivative models. Because the framework
is embedded in a standard object-oriented lan-
guage, implementing new protocols or network
elements is straightforward, as is simple black-
box submodel manipulation.

The scalable simulation framework is such a
modeling framework. The SSF application pro-
gramming interface (SSFAPI) is the next-gen-
eration core-modeling interface; it provides a
compact, high-level target for simulator imple-
menters, hiding all details of simulator internals
(threads, processors, event queues, and syn-
chronization) from the modeler.

SSFAPI defines just five base classes: Entity,
inChannel, outChannel, Process, and Event (see
the “SSF at a glance” sidebar). These five classes
form a self-contained design pattern for con-
structing process-oriented, event-oriented, and
hybrid simulations.

The SSF standard has both C++ and Java
bindings, which resemble each other as closely
as possible in both syntax and semantics so that
model components might be ported from one to
the other. An SSF model is a standard C++ or
Java program that derives new component
classes that extend Entity, Event, and Process
and uses the framework to establish channel
mappings and deliver events.

Heuristic parallelization
The modeler might guide the framework in re-
alizing available concurrency by specifying
which entities are coaligned (tightly coupled) in
model time and the minimal transmission laten-
cies associated with channels connecting loosely
coupled component collections. These heuris-
tics are sufficient to allow a clever SSF imple-
mentation to partition a given model over avail-
able processors and perform appropriate
model-time event-exchange synchronization

SSF at a glance
The scalable simulation framework provides a maximally compact
interface for building discrete-event simulations; it contains just
five core classes, with just a couple dozen methods altogether.

Entity is the base class for all simulation components; it serves pri-
marily as a container mechanism for defining alignment relations
among a model’s pieces. Entities that the modeler has coaligned
will presumably interact at close quarters through event exchange
on channels with low or zero intrinsic minimal delay. The underlying
simulator might take this presumption into account when mapping
entities to processors.

Event is the base class for the quantum of information
exchange.

InChannel and OutChannel are communication endpoints for
event exchange; each instance of InChannel and OutChannel be-
longs to a specific Entity. SSF supports multicast in-channels (many
to one communication) as well as multicast out-channels (one to
many) and bus-style channel mappings (many to many). Each
OutChannel might have associated with it an intrinsic minimal
transmission delay (ascribable, for example, to device latencies or
transmission delay on a simulated link), which is automatically
added to the per-write delays of individual events sent on it.

Process is the base class for describing Entity behavior. Each in-
stance of Process is normally associated with a specific Entity; it
might wait for input to arrive on the channels of that Entity, wait
for some amount of simulation time to elapse, or do both in turn.
The simplest Process waits for an event to arrive on a channel, re-
sponds to it, and then goes back to sleep. The binding of Process
to Entity is not tight; a Process might wait on channels or access
methods of all Entities that are coaligned with the Process’ nomi-
nal owner.

These five base classes are truly generic—sufficient to model not
only telecommunications networks, but also any other domain
that can be described as a collection of objects that communicate
via event exchange. As described in this article, additional compo-
nent layers (SSF packages) are positioned atop SSF to model spe-
cific domains. These can be regarded as derivative frameworks
that provide their own, more specific metaphors to extend those
offered by SSF. This strategy promotes independence of models
from the simulation fabric, and of the simulation fabric itself from
the specifics of parallel discrete-event simulation engines. This is a
prerequisite for building models of the size and complexity
required to support Internet research.

JANUARY–FEBRUARY 1999 33

without further modeler guidance.
Specifically, an SSF model might be compiled

against sequential, shared-memory parallel, and
distributed-memory clustered SSF implementa-
tions without rewriting. SSF models are stan-
dard C++ or Java programs that use or derive
from the five core classes. To move an SSF
model from the desktop to a parallel enterprise
server, therefore, the modeler simply recompiles
the model using g++ or javac, and links with a
high-performance SSF library such as DaSSF
(the Dartmouth SSF implementation), which we
describe later.

Modeling layers
Minimizing the amount of time needed to start
on a new modeling project requires that the pro-
gramming interface be as small and simple as
possible. Even more important for portability
and scalability, a small API encourages con-
struction of multiple simulator implementations
and facilitates the process of verifying their con-
formity to the SSF specification.

Because SSF is general, and the interfaces are
simple (in class count and method count), we tai-
lor it to more specific modeling domains such as
network analysis by augmenting it with a layer
of domain-specific, open-source standard com-
ponents known as SSF packages. Using the
know-how acquired with scalable modeling in
earlier projects, these packages abstract the soft-
ware patterns with which modelers actually tend
to approach new network-entity and protocol
design. 8 Not coincidentally, they incorporate
model-design techniques that have been proven
to give good parallel performance.

One package, SSF.DBMS, provides standard
configuration-database support for building very
large models. Another, SSF.Net, provides stan-
dard models for familiar network components:
hosts, routers, LANs, and links. A third,
SSF.OS, provides a standard class basis for
building protocol graphs in the spirit of the x-
kernel,9 together with implementations of stan-
dard protocol modules.

SSF components can be distributed as stan-
dard component libraries without releasing their
source code. Because SSF models can be linked
with any compliant SSF library after recompila-
tion, developers are insulated from dependence
on any single simulation software supplier. The
net effect is to give modelers high confidence
that their models will run unmodified on multi-
ple platforms with predictable performance and
reproducible results.

Implementations
Java SSF, developed at Cooperating Systems,
supports prototype development of moderately
large network models. What Java lacks so far in
mature performance it makes up for in portabil-
ity, ease of use, and standard library support for
threads, networking, and graphics. Using native
threads to implement multiple simulation time-
lines, Java SSF has demonstrated scalability un-
der Solaris on multiprocessor Sun servers. CSSF,
also developed at Cooperating Systems, is a se-
quential C++ implementation of SSF. It cur-
rently runs on Linux/x86 and Sun/Solaris plat-
forms, and additional Unix ports are planned.

For high-performance simulation, users can
compile their models against DaSSF, a C++ im-
plementation of the SSF API developed at Dart-
mouth College.

DaSSF parallel simulator—
implementation techniques

DaSSF was designed from the first to provide
scalable high performance on very large models
using parallel processing. Recent demonstrations
show incredible performance on multiprotocol
big Internet models with tens of thousands of
complex network entities: over one million net-
work events per second. In other experiments
designed to test the DaSSF framework, over
three million simple network entities have been
simulated in parallel, yielding event processing
rates that scale linearly with the number of
processors and remain constant with increasing
problem size, up to the available memory limit.

DaSSF achieves its scalability and high perfor-
mance with a few techniques. To conserve mem-
ory, it implements the threads called for by SSF
at the source-code level, meaning that SSF mod-
els are transformed into C++ programs that do
not use standard user-thread packages. Instead
they implement threaded functionality within the
context of a single-threaded process. This puts
memory use under our control; we allocate only
what is needed to save thread state, when it is
needed, and no more. A simple DaSSF thread
might consume only a few tens of bytes for state,
whereas standard threads packages require or-
ders of magnitude more. Self-threading also gives
us complete control over scheduling mechanisms
and overhead. We don’t have to build a tempo-
ral scheduler on top of some other package’s
thread scheduler, nor do we pay the price for
thread-scheduling features we don’t use. For ran-
dom number generation, in addition to a stan-

34 COMPUTING IN SCIENCE & ENGINEERING

dard Lehmer generator, DaSSF provides a high-
quality random number generator—the
Mersenne Twister by Takuji Nishimura—with a
period of 219,937 – 1.

DaSSF synchronizes processors conserva-
tively, using a technique that has been mathe-
matically proven to scale.10 The method is glob-
ally synchronous, meaning that all processors
synchronize periodically to exchange events.
Within a synchronization period, a processor
might execute without any additional synchro-
nization with any other processor. All overhead
associated with synchronization is limited to es-
tablishing the synchronization window. This
cost depends only on the frequency of synchro-
nization; being independent of the model size or
model behavior, it allows a fixed cost to amor-
tize over the considerable amount of computa-
tion one typically finds in a big Internet simula-
tion. For instance, suppose the processors
synchronize with each other once per 10 simu-
lated milliseconds. This can be accomplished if
the model is partitioned and assigned to proces-
sors so that the only links the partition cuts are
those at the scale of long-distance trunk lines.
Consider a model with 106 hosts, each of which
offers one packet per 10 ms; each packet requires
10 events to be executed. This yields 107 events
to be executed, in parallel, every synchroniza-
tion step. Even if the event granularity is as low
as one microsecond per event, it is an ample
workload for more than 100 processors on ei-
ther a shared-memory or message-passing par-
allel computer.

The DaSSF simulator is highly portable. The
current implementations encompass SGI IRIX,
Sun Solaris, DEC/OSF, Linux, and Windows.

A case study

Choosing an appropriate Internet model depends
very much on objectives. To study the dynamics
of IP traffic over wired networks, we can work at
the logical IP-network level. The model then
consists of realistic IP hosts and routers, ab-
stracted LANs, and wide-area links, but ignores
the details of link-level transmission beyond gross
characterizations of the bandwidth and transmis-
sion delays on long-distance links. Consequently,
the simulation quantum is an IP packet.

With the exception of certain major service
providers, real network maps are conspicuous in
their absence from the literature, either for rea-
sons of security or embarrassment. We rely on
network-generation tools and intuition about

the nature of networks to produce subject net-
work topologies. We start by augmenting the
output from the gt-itm graph-generation tool
with autonomous system (AS) numbers for each
node, attach LANs to selected nodes, assign a set
of hosts to each LAN, and perform assignment
of CIDR-compliant IP addresses to each net-
work and host interface. 11 We also augment net-
work graph edges with bandwidths and delays
appropriate to the links they represent. Most of
these operations have been automated.

Simulation entities are then constructed
(routers, hosts, and LANs) and configured with
traffic sources and Internet protocols for rout-
ing and transport. The intradomain (OSFPv2)
and interdomain (BGP-4) routing protocols are
implemented according to Internet standards
documents. Finally, the connections between
hosts and LANs, LANs and routers, and be-
tween routers are established and initialized. For
the SSF performance evaluation, we configured
a network model family as follows: Each non-
transit AS contains 100 routers plus 700 hosts
(10 per LAN). Every AS-internal router is on
some OSPF source-destination path, and each
AS has one designated BGP router, which has
exactly one link to a single router in the transit
AS. A transit domain models connectivity be-
tween autonomous systems: a random graph of
100 routers, with strong connectivity (individ-
ual link probabilities of 0.75). At most, one AS
is attached to each transit domain router; the
SSF entities modeling a single AS are coaligned,
with the intent that each will be allocated to a
single processor if resources permit. Figure 1
shows a graph of a 100-router AS.

Links within an AS model fast Ethernet (100
Mbps, nominally 9,000 IP packets per second at
full capacity), and interdomain links model OC-
48 speeds: 2,488 Mbps, or 207,000 IP packets
per second. We assume transmission delays of 1
ms between the OSPF routers within each AS,
and 10 ms between BGP routers (on links into
and within the transit domain).

We consider two traffic scenarios, one for a
lightly loaded network, and one for a heavily
loaded network. Each host runs a stochastic
on/off process generating IP packet trains, with
on and off periods alternating with durations
given by independent random variables. In the
off period, the host sleeps for an exponentially
distributed interval with a two-second mean for
the light load, and a 0.25-second mean for the
heavy load. In the on period, the host emits a
train of packets at 1-ms intervals; the number of

JANUARY–FEBRUARY 1999 35

packets in the train is Pareto-distributed, with
an average of 101 packets. We used the inverse-
transform method on the complementary cu-
mulative distribution function Prob{X > t} =
1/(ta). In this case a = 1.01, and the formula used
to sample packet-train length is

(int)(1.0/pow(U(),1.0/1.01),

where U() samples a uniform (0,1) random
number stream.

All the packets in a single burst are directed to
the same destination host, with 0.95 probability
the host is in the same AS. Hosts within the cho-
sen AS are chosen uniformly at random. A packet
traverses between five and six hops, on average.
Router output is buffered on each outgoing link,
with the buffer size equal to the product of the
link bandwidth and delay. Under the light-traffic
model, the long-time average offered load on in-
traAS links is about 500 packets/sec for a capacity
of 9,000 packets/sec; in the heavy-traffic model,
the average offered load is 4,000 packets/sec.

To evaluate scalability, we
constructed a sequence of such
models consisting of 10, 20, 50,
and 100 ASs and a transit do-
main; they contain 8,100,
16,100, 40,100, and 80,100
hosts and routers, respectively.
We consider two measures of
performance that relate to net-
work modelers: the model-time
advance rate and the packet-
event rate.

Model-time advance rate is
defined as the ratio of model-
internal time (called logical
time in the simulation commu-
nity) to the time elapsed during
simulation execution (com-
monly called the wallclock
time). A rate of one or greater
indicates a capability to per-
form real-time simulation.

A packet event is any packet
production, forwarding, or re-
ception simulator action; the
packet event rate is the number
of packet events executed per
second of wallclock time. This
indicates the simulator’s raw
horsepower, in terms under-
standable to the network mod-
eler. Execution time depends on

implementation overheads hidden in the mea-
sured execution time; this metric can reasonably
compare different simulators’ performance.

We conducted all experiments on a 14-proces-
sor Sun Enterprise 4000 with 250-MHz ultra-
Sparc CPUs, running Solaris 2.6. In parallel sim-
ulations, the network is partitioned in a simple
way by dividing the whole ASs among the
processors as evenly as the numbers permit.

Figure 2 illustrates the model-time advance
rate under light and heavy traffic. For a suffi-
ciently large number of processors, our simula-
tions of 8,000- and 16,000-node models run
faster than real time under light traffic condi-
tions; that is, model time advances faster than
the wallclock time during simulation.

Figure 3 illustrates the packet-event rate un-
der heavy traffic. Performance approaches one
million packet events per second, and the scala-
bility is clearly evident, both with increasing
model size and with an increasing number of
processors (parallel speedup). Packet-event rate
under light traffic is shown in Figure 4.

45

46

47

48

49

50

51

52

54

53

32

33

34

35

55

56

57

58

59

60

0

1

2

34

3637

38

39

40

41

42 4344

85

8788

89

90

91

92

86

93

94

95

96

97

98

99 16

17

18

1920

5

6

9

10 11

12

13

14

157

8

69

70

71

72

73

74

75

76

77

79

80

82 83
84

78

81

62

63

64

65

66

68

61

67

22

24

25

26

27

28

29

30

31

21 23

LEGEND OSPF router with LAN

OSPF router without LAN

BGP router

Figure 1: Topology of a single domain (autonomous system) used in the case study,
containing 100 routers and 700 hosts. We have simulated networks composed of
from 10 to 100 such domains (8,000 to 80,000 hosts and routers), interconnected via
a transit domain with 100 BGP routers.

36 COMPUTING IN SCIENCE & ENGINEERING

Additionally, the performance the packet-event
rate measures is comparable for light and heavy
traffic conditions, and it actually slightly im-
proves with heavier packet traffic. On problems
of this size, the simulator’s delivered performance
is largely insensitive to network load conditions,
in contrast to many other studies of parallel sim-

ulation where performance is quite sensitive to
offered load. We are reaching almost one million
packet events per wallclock second, using all 14
available CPUs. Even on the largest models, the
model-time advance rates are within a manage-
able factor away from real-time execution.
Moore’s law, or larger machines, or both together

0 2 4 6 8 10 12 14

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
od

el
-t

im
e

ad
va

nc
e

ra
te

Processors

8,100 nodes

80,100 nodes

16,100 nodes
40,100 nodes

(a)

8,000 24,000 40,000 56,000 72,000
0

200,000

400,000

600,000

800,000

1,000,000

1 proc

12 proc

10 proc

14 proc

8 proc

6 proc

4 proc

2 proc

Number of network nodes

P
ac

ke
t e

ve
nt

s
/ s

ec
on

d

0 2 4 6 8 10 12 14

Processors

8,100 nodes

80,100 nodes

16,100 nodes

40,100 nodes

(a) (b)

0 2 4 6 8 10 12 14

0.05

0.10

0.15

0.20

0.25

Processors

M
od

el
-t

im
e

ad
va

nc
e

ra
te

8,100 nodes

80,100 nodes

16,100 nodes
40,100 nodes

(b)

Figure 3. Two complementary views on scalability with model size and with the number of processors under heavy traffic
conditions: (a) Simulated packet events per wallclock second plotted versus the number of network nodes, for different
numbers of processors used; note the stability of execution rates with increasing model size. (b) The same data plotted
versus the number of processors, for different model sizes; note the linear speedup for larger models.

Figure 2. Model-time advance rate, equal to seconds of simulated model time advanced per second of
execution (wallclock) time, for various network sizes: (a) light traffic conditions, and (b) heavy traffic
conditions. Note that for the rate greater than one, the simulated model runs faster than real time.

JANUARY–FEBRUARY 1999 37

will soon bring real-time execution within reach
even for heavy traffic and larger models.

While our simulator can deliver
the computational output we
need, a great deal of work re-
mains. We prototyped the

framework for database-assisted self-configuring
model classes and are beginning to explore its po-
tential to increase heterogeneity in models. We
are working to improve resource-management
automation within DaSSF itself, and are looking
toward the challenges posed by executing in a
distributed-memory environment. We hope to
stress DaSSF by running it on the very-large-
scale parallel machines that exist under the ASCI
project (Blue Mountain and Blue Pacific).

We are just beginning to exploit the capabili-
ties of our tool in pure networking research. Our
early targets include developing models in com-
parison and conjunction with experimental data
to evaluate traffic models. The empirical model
of the HTTP/TCP Web traffic, Surge, has been
ported to SSF. 12 We will use our simulation ca-
pabilities to look for congestion phenomena and
its causes, looking first at correlated TCP losses.
We are interested in the problem of convergence
of various traffic statistics in the presence of
long-range dependent traffic.9 This is a critical
problem—to evaluate simulation output we have
to understand what it represents mathematically.

Furthermore, because we have the computa-
tional capacity to simulate them at the finest lev-
els of detail (direct-execution simulation of the
protocol code itself), we are in a position to de-
velop simpler models and study the trade-offs
between model fidelity and model behavior on
a large scale.

This is an exciting time: synergy of research
on simulation techniques, protocol modeling
(such as the work of our colleagues in project
VINT (http://netweb.usc.edu/vint)), and empiri-
cal traffic modeling is opening a new era in net-
work research. With scalable tools to build real-
istic-scale Internet models in hand, we can ride
Moore’s law as far as it will take us, opening up
new vistas of exploration in networking.

Acknowledgments
We particularly wish to acknowledge the effort put into
this project by our students Xiaowen Liu, Anna Poplawski,
and Brian Premore at Dartmouth, and Philip Kwok and
Bryan Cooley at DIMACS.

We acknowledge Mark Crovella from Boston University
for valuable discussions on defining the SSF big Internet
models. Richard Fujimoto and Kalyan Perumalla from
Georgia Tech contributed many helpful discussions in the
early stages of defining the SSF API. SSF owes much of its
strength to our earlier experience with the modeling
framework TeD, developed by Kalyan Perumalla and
others, and to feedback from dozens of network modelers
using TeD and other simulators.

This work is partially supported by DARPA Contract
N66001-96-C-8530 and by NSF Grant NCR-9527163.

References
1. W.E. Leland et al., “On the Self-Similar Nature of Ethernet Traffic”

(extended version), IEEE/ACM Trans. Networking 2, Vol. 2, No. 1,
1994, pp. 1–15.

2. V. Paxson and S. Floyd, “Wide Area Traffic: The Failure of Poisson
Modeling,” IEEE/ACM Trans. Networking, Vol.3, No. 3, June 1995,
pp. 226–244.

3. W. Willinger and V. Paxson, “Where Mathematics Meets the In-
ternet,” Notices of the Amer. Mathematical Soc., Sept 1998, pp.
961–970.

4. A. Feldman, A.C. Gilbert, and W. Willinger, “Data Networks as Cas-
cades: Investigating the Multifractal Nature of Internet WAN Traf-
fic,” Proc. ACM/Sigcomm, ACM Press, New York, 1998, pp. 25–38.

5. C. Labovitz, G.R. Malan, and F. Jahanian, “Internet Routing In-
stability,” IEEE/ACM Trans. Networking, Vol. 6, No. 5, Oct. 1998,
pp. 515–528.

6. V. Paxson and S. Floyd, “Why We Don’t Know How to Simulate
the Internet”, Proc. Winter Simulation Conf., IEEE Press, Piscat-
away, N.J., 1997, pp. 1037–1044.

0 2 4 6 8 10 12 14
0

200,000

400,000

600,000

800,000

1,000,000

Processors
P

ac
ke

t e
ve

nt
s/

se
c

8,100 nodes

80,100 nodes

16,100 nodes

40,100 nodes

Figure 4. Simulated packet events per wallclock
second plotted versus the number of processors
under light traffic conditions for different model
sizes. Note the linear speedup for larger models,
leveling off at the larger number of processors
when the work per processor diminishes.

38 COMPUTING IN SCIENCE & ENGINEERING

7. M.E. Crovella and L. Lipsky, “Long-Lasting Transient Conditions
in Simulations with Heavy-Tailed Workloads,” Proc. Winter Simu-
lation Conf., 1997, pp. 1005–1012.

8. K. Perumalla, R. Fujimoto, and A. Ogielski, “TeD—A Language for
Modeling Telecommunications Networks,” Performance Evaluation
Review, Vol. 25, No. 4, 1998, pp. 4–11.

9. S.W. O’Malley and L.L. Peterson, “A Dynamic Network Archi-
tecture,” ACM Trans. Computer Systems, Vol. 10, No. 2, May
1992, pp. 110–143.

10. D.M. Nicol, “Scalability, Locality, Partitioning, and Synchroniza-
tion in PDES,” Proc. Workshop Parallel and Distributed Simulation,
IEEE Computer Society Press, Los Alamitos, Calif., 1998. pp. 4–11.

11. E. Zegura, K. Calvert, and M. Donahoo, “A Quantitative Com-
parison of Graph-Based Models for Internet Topology,” ACM/IEEE
Trans. Networking, Vol. 5, No. 6, Dec. 1997, pp. 770–783.

12. P. Barford and M.E. Crovella, “Generating Representative Web
Workloads for Network and Server Performance Evaluation,”
Proc. Performance 98/ACM Sigmetrics 98, ACM Press, 1998, pp.
151–160.

James H. Cowie is the director of technology devel-
opment at Cooperating Systems Corporation, Deer-
ing, New Hampshire, where he has led software de-
velopment projects for high-performance compilers
and runtime systems, distributed factorization, and
parallel discrete-event simulation. He received a BS in
computer science from Yale University, and cofounded
Cooperating Systems. Contact him at Cooperating
Systems Corp., RR1 Box 201-B, Deering, NH 03244;
cowie@cooperate.com.

David M. Nicol is a professor of computer science at
Dartmouth College. He received a BA in mathematics
from Carleton College and a PhD in computer science
from the University of Virginia. He serves as Editor-in-
Chief of the ACM Transactions on Modeling and Com-
puter Simulation, and is a Senior Member of the IEEE.
He has published extensively on topics in performance
analysis and parallel processing. Contact him at the
Dept. of Computer Science, 6211 Sudikoff Laboratory,
Dartmouth College, Hanover, NH 03755; nicol@cs.
dartmouth.edu.

Andy T. Ogielski is a research professor with a joint ap-
pointment at DIMACS and WINLAB, Rutgers University.
He was a member of the technical staff in physics re-
search and in mathematics research at Bell Laboratories,
then joined Bellcore, where he was a director of parallel
computing and algorithms research, and later of Inter-
net communications research. He received his MSc in
physics and his PhD in theoretical physics, both from
the University of Wroclaw, Poland. He has conducted
research, written software, and published in network-
ing, applied mathematics, scientific computing, and
physics. His current research focuses on modeling,
analysis, and simulations of networks. Contact him at
DIMACS Center, Rutgers Univ., 96 Frelinghuysen Rd.,
Piscataway, NJ 08854-8018; ato@winlab.rutgers.edu.

