Modeling Network Traffic in Wavelet Domain*

Sheng Ma Chuanyi Ji
Dept. of ECSE
IBM T.J. Watson Rensselaer Polytechnic Inst.
Hawthorne, NY 10532 Troy, NY 12180
Tel: (914) 784 7837 Tel: (518) 276 6534
shengma@us.ibm.com chuanyi@ecse.rpi.edu

January 1999

Abstract

A significant discovery from this work is that although network traffic has the complicated short- and
long-range temporal dependence, the corresponding wavelet coeflicients are no longer long-range dependent.
Therefore, a “short-range” dependent process can be used to model network traffic in the wavelet domain.
Both independent and Markov models are investigated. Theoretical analysis shows that the independent
wavelet model is sufficiently accurate in terms of the buffer overflow probability for Fractional Gaussian
Noise traffic. Any model which captures additional correlations in the wavelet domain only improves the
performance marginally.

The independent wavelet model is then used as a unified approach to model network traffic including
VBR MPEG video and Ethernet data. The computational complexity is O(N) for developing such wavelet

models and generating synthesized traffic of length N, which is among the lowest attained.

*To be appeared in special issue of International Journal on Chaos Theory and Applications



1 Introduction

As high speed networks aim at providing integrated services to various applications with diverse statistical
characteristics and Quality of Service (QoS) requirements, modeling different types of traffic, and generating
synthesized traffic from a model will be crucial to network design and network simulation. In this work, we
will focus on these important issues.

Two of the key issues [14] of accurate traffic modeling are performance and computational efficiency. The
former addresses the ability of a model to characterize significant statistical properties in network traffic. The
latter deals with the complexity of a model, and the computational complexity needed to develop such a model
and to generate a large volume of synthesized traffic. Both issues are important for simulating high-speed
networks with extremely low loss probability.

Although numerous studies have been conducted on traffic modeling and performance analysis (see for
example [14][33] [38][43][41] and references herein), new traffic models are needed to deal with new properties
introduced by data and video traffic. One of such significant statistical properties is the so-called long-range
dependence (LRD) recently found in Ethernet data[21] and VBR video traffic[15]. It is characterized by a
hyperbolically decaying autocorrelation which is different from an exponentially decaying autocorrelation of
Markov-type of models. The long-range dependence questions[9][31][10] the feasibility of traditional Markov
models!, especially in such applications as video-on-demand, broadcast video, and most data communications
where delay requirements are less stringent?. Furthermore, an even more complex statistical property, the
co-existence of long-range dependence (LRD) and strong short-range dependence[5][15], has been found in
VBR video traces. This means that the auto-correlation function of video traffic behaves similarly to that
of long-range dependent processes at the large lags, and to that of short-range dependent processes such as
DAR processes[17] at the small lags[5][15][21][37]. In addition, periodic statistics have been shown in the
standardized Motion Picture Expert Group (MPEG) encoded sources due to periodic appearances of different
types of frames[35]. All these suggest a complex temporal behavior of network traffic, and make accurate
traffic modeling a challenging task.

Several models have been developed to model long-range dependence in network traffic, such as Frac-
tional Gaussian Noise (FGN) processes[21], the fractal point processes[36] and methods based on chaotic
maps[12][11]. Since these models can not model strong short-range dependence (SRD) in network traffic, they
can hardly be used to model video traffic. Models, which can model both long-range and short-range depen-
dence, include FARIMA models[15], a model based on Importance Sampling[18], scene-based models[19] and
the Markov Modulated Processes[1][34]. A common feature of all these methods is that they model both long-
range and short-range dependence in the time domain. Among these methods, the scene-based modeling[19]
and the Markov Modulated models[1][34] provide a physically interpretable model to include both long-range

and short-range dependence. However, due to the dynamic and stochastic nature of network traffic, it is

1t is possible to use a Markov-type of model[1] to model long-range dependent processes. However, it usually results in a
complicated model with a complex structure and too many parameters.
% As shown in [17][37], a short-range dependent model may be sufficient to model real-time traffic in terms of a buffer loss

rate because of a small relevant critical time-scale[37]. However, long-range dependent models may be needed for non-real-time
applications. In addition, long-range dependent models may be proven to be important for estimating other quantities such as a

loss pattern in addition to a buffer loss rate [10].



difficult to accurately define and segment network traffic into different states of a Markov model. The rest
of the methods all suffer the computational complexity too high to be used for generating a large volume of
synthesized traffic[15]. A more computationally efficient method based on Fast Fourier Transform has been
proposed [32] to model Ethernet traffic in the frequency domain. Another method based on Markov models
has been proposed to model the frequency components of video traffic[23]. Both methods suggest that inter-
esting properties of either Ethernet or video traffic could be investigated in the Frequency domain. However,
none of the methods are yet able to capture the long-range and the short-range dependence simultaneously.

Therefore, the question remains open on how to develop a computationally efficient model which can
capture both long-range and strong short-range dependence in network traffic. In this work, we will tackle
this problem by developing a new method based on wavelets. Instead of modeling network traffic directly in
the time-domain, we model the statistical properties in the wavelet domain.

Our work is motivated by previous work in the signal processing community on using the independent
wavelet model to represent and model a Fractional Brownian Motion (FBM) process. Particularly, [2][3][24]
have established a general framework for multiscale representations of a random process through the dyadic
tree. [42][13][29][40] have shown that wavelets can provide compact representations for an FBM process.
Moreover, Wornell[42] has proven that the spectrum of the independent wavelet model of an FBM process is
very close to that of 1/f processes. Therefore, the independent wavelet model has been proposed to rapidly
generate FBM or FGN-like synthesized sample path.

However, since we are interested in modeling long- and short- range dependent network traffic, we need to
further address (1) whether wavelet domain modeling is suitable for modeling a mixture of short- and long-
range dependence; (2) what is the quantitative networking related performance, such as auto-correlation
function and buffer overflow probability; and (3) how to model real network traffic, such as data traffic and
video traffic. In this work®, we will first demonstrate that the wavelet coefficients of a long-range dependent
temporal process are no longer long-range dependent. Then the wavelet coeflicients can be modeled by
simple statistics corresponding to the “short-range dependence” alone. We will then show that a simple
wavelet model based on independence assumptions is capable of capturing both long-range dependence for
more general LRD processes and short-range dependence as well, and thus provides a parsimonious and
unified model to capture both long-range and short-range dependence in network traffic. In addition, since
computational complexity of wavelet transforms and inverse transforms are in the order of N with N being
the length of synthesized traffic, our wavelet models can rapidly generate synthesized network traffic with a
computational complexity O(N), and thereby provide one of the most efficient methods to synthesize high
quality network traffic. Furthermore, because wavelets have a natural link to the time-scale (multi-resolution)
representation[28], they enable time-scale modeling and provide a systematic method for modeling periodic
MPEG video traffic.

The format of the paper is as follows. In Section 2, we will provide background knowledge. In Section
3, we will give outlines of our approach. In Section 4, we will investigate statistical properties of wavelet
coeflicients, and develop as well as evaluate wavelet models for the long-range and the short-range dependent
Gaussian processes, respectively. In Section 5, we will provide statistical properties of wavelet coefficients for

real network traffic, and derive our algorithms based on these properties. We will further discuss our approach

®The early results of this work has been published in [26][27]



in Section 6, and then conclude the paper.

2 Background

2.1 Long-Range versus Short-Range Dependence

Roughly speaking, Long-Range Dependence (LRD) can be considered as a phenomenon that current obser-
vations are significantly correlated to the observations that are farther away in time. This phenomenon is of
particular interest to traffic modeling, since it has been discovered recently that both Ethernet traffic[21] and
video sources[5][15] possess long-range dependence.

One formal definition [15] of a long-range dependent stationary process can be described as that the
sum of its correlation function r(k) over all lags is infinite . This implies that the correlation r(k) decays
asymptotically as a hyperbolic function of k, ie., (k) ~ O(k=?=2H)) for k > 0. H (0.5 < H < 1) is
the so-called Hurst parameter, which is an important quantity used to characterize the LRD. Examples of
such long-range dependent processes include the Fractional Gaussian Noise (FGN) process and the Fractional
Autoregressive Integrated Moving Average process (FARIMA). The nature of these random processes is “self-
similar”, i.e., the statistical properties of these processes are invariant at different time scales [4][6]. In
particular, FGN is a Gaussian process, and can be completely specified by three parameters. FARIMA(p, d, q)
is a fractional differentiation of an Auto-Regressive Moving Average (ARMA(p, ¢)) process, where p and ¢
represent the orders of the ARMA(p, ¢) process and d (0 < d < 0.5) is a differentiation degree. The Hurst
parameter H of FARIMA(p, d, q) equals to 0.5+ d. FARIMA(p, d, ¢) has p + ¢ + 3 parameters, and is much
more flexible than FGN in terms of simultaneously modeling of both long-range dependence and short-range
dependence (SRD) in network traffic. More details can be found in [4] on FGN and FARIMA processes.
Examples of short-range dependent random processes include Auto-Regressive (AR) processes and Auto-
Regressive-Moving-Average (ARMA) processes with exponentially decaying correlation functions. That is,
r(k) ~p* (-1 < p<1).

2.2 Criteria for Measuring The Performance of A Model

Both the auto-correlation function and the buffer loss rate will be used as performance measures for wavelet
models® in this work. The auto-correlation function is an important quantity characterizing the second-order
statistics of a wide-sense-stationary process. If a model is able to capture both LRD and SRD components
in network traflic, it should be able to match the auto-correlation function of network traffic in a very long
range. The buffer loss rate is chosen as one other criterion to measure the performance of a model, since one
of important goals for traffic modeling is to help designing the buffer size of a server®, and estimating the loss
rate as a measure for the Quality of Service (QoS). Therefore, synthesized traffic generated by a good traffic

model should have a similar buffer loss rate to that of the actual traffic.

*Please see [21][15][6][4] for other definitions and properties of the LRD.
5Because the marginal distribution can be shaped to match original traffic, we do not consider it as a criterion.
A server can be modeled as a single queue with capacity C and a buffer size B.
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Figure 1: Left figure shows the Haar wavelet basis functions. Right figure illustrates the corresponding tree
diagram and two types of operations. The number in the circle represents the one dimension index of the
wavelet basis functions. For example, the equivalent notation of d3 is ds. s, v(s) and y(s) represent the one
dimension index of wavelet coeficients. «(s) is defined to be the parent node of node s. v(s) is defined to
be the left neighbor of node s.

2.3 Wavelet Transformation

The model we will develop on network traffic is based on wavelets. Wavelets are complete orthonormal bases
which can be used to represent a signal as a function of time[7]. In L%(R), discrete wavelets can be represented

as

$7(t) = 2772 p(277t — m), (1)
where j and m are positive integers. j represents the dilation, which characterizes the function ¢(t) at different
time-scales. m represents the translation in time. Because ¢;”(t) are obtained by dilating and translating a

mother function ¢(t), they have the same shape as the mother wavelet and therefore self-similar to each other.

A discrete-time process z(¢) can be represented through its inverse wavelet transform

K 2K-1_1
z(t) =) Y dTer(t)+ o, (2)
7=1 m=0
where 0 < t < 2K. @¢q is equal to the average value of z(t) over ¢ € [0,2% — 1]. d7*’s are wavelet coeflicients

and can be obtained through the wavelet transform

2K _1

a7 = > =(t)e7(t). (3)

t=0

The mother wavelet we choose in this work is the Haar wavelet. It is defined as

1, if0<t<1/2,
o) =4 —1, if1/2<t<1, (4)

0, otherwise.

The Haar wavelet basis have been illustrated in the left figure of Figure 1 for K = 3. The right figure of
Figure 1 shows the corresponding tree diagram|3]. In the tree diagram, we define the one-dimension index
of wavelet coeflicients. This will be used later. The motivation for using Haar wavelets is due to simplicity
which results in computationally efficient methods for the wavelet transform and the inverse transform. The
computational complexity of the wavelet transform and the inverse transform is in the order of O(N)[7], where
N = 2% is the length of the time series.



When (t) is a random process, which is of the interest to this work, the corresponding wavelet coefficients
d7"’s define a two-dimensional random processes (see [16][42][3] and references herein for details) in terms
of 7 and m. Due to the one-to-one correspondence between z(t) and its wavelet coefficients, the statistical
properties of the wavelet coefficients are completely determined by those of z(¢). Likewise, if the statistical
properties of the wavelet coefficients are well specified, they can be used to characterize the original random
process. This motivates our approach of using wavelets to model network traffic, i.e., to statistically model

wavelet coefficients d;’”s.

3 Outlines of Our Approach

To use wavelets to model network traffic, we will investigate the following issues: (1) Why is it good to use
wavelets? (2) What statistical properties of wavelet coeflicients are pertinent to model network traffic? (3)
How to include these important properties into wavelet models? (4) What is the performance of the wavelet
models measured both experimentally and theoretically?

As the first step, we will investigate why we should consider wavelet models, and what statistical properties
are important through investigating the correlation structure of wavelet coefficients for well-known long-range
and short-range dependent Gaussian processes. We will show that a key advantage of using wavelets is their
ability to reduce the dependence in the originally temporal process so significantly that the wavelet coefficients
only possess the “short-range” dependence in the wavelet domain. We will then develop algorithms to model
wavelet coefficients using either independent or Markov models. As empirical results show that statistically
independent wavelet coefficients will lead to an accurate model in terms of buffer loss rate, we will provide
theoretical analysis on the buffer overflow probability for the independent wavelet model when the workload
is FGN. The theoretical results will confirm that the wavelet model based on independent wavelet coefficients
is sufficient. Any model which captures dependence among wavelet coefficients will only improve the buffer
loss rate marginally.

To model real network traffic, we will extend the wavelet models developed for Gaussian processes to
incorporate the marginal distributions of the wavelet coefficients and the periodic structure of the (MPEG)
video traffic. The performance of our wavelet models will be tested experimentally on three different video

traces and one Ethernet data trace, and compared with that of other models.

4 Wavelet Modeling of Long-Range and Short-Range Dependent Gaus-
sian Processes
As the first step to investigate the feasibility and advantage of wavelets to model network traffic, we will

investigate wavelet model in this section for well-known long-range and short-range dependent Gaussian

processes, respectively.
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4.1 Theoretical Studies on The Correlation Structure of Wavelet Coeflicients
4.1.1 The Correlation Structure of Wavelet Coefficients of LRD Processes

The correlation structure of (long-range dependent) FGN process has been investigated extensively in [20][42][13],

and can be summarized as follows.

Theorem 1 (Kaplan and Kuo[20], Flandrin[13]) Let z(t) be a FGN process with Hurst parameter H
(0.5 < H <1). Let d}*’s be the (Haar) wavelet coefficients of z(t). Then

(1) for a given time-scale j, d7’s are 1.i.d. Gaussian random variables with zero mean and variance
2I(QH-1)(92(1-H) _ 1)52 where o is the variance of z(t).

(2) for (my 4 1)2% — my272 large, where j1, j2, m1 and mqy are the dilation and the translation indices of two

different wavelet coefficients respectively, the correlation between two wavelet coefficients is
my _gm 7 7 —2(1-H'
E(djlldj;) ~ O(|27'm1 — 2 my| ( ))7 (5)
where H' =1 — H.

We recall that the corresponding temporal auto-correlation of Fractional Gaussian Noise decays at a
rate O(|k|~2(1=H)), where k is the lag between two samples and 0.5 < H < 1. This rate leads to a divergent
summation of the auto-correlations. The above theorem indicates that the wavelet transformation has changed
the long-range-dependence in the time domain so significantly that the summation of the correlation of
wavelet coefficients converges to a constant. This is because that the correlation changes from mean revert
(0.5 < H < 1) in time domain to mean avert (0 < H' < 0.5) in the wavelet domain. Figure 2 illustrates how
drastic the reduction is by comparing the autocorrelation function of the original FARIM A(0, 0.4, 0) process

to the normalized auto-correlation function 7 for d* and d***8,

"It can be easily shown that the time series d7* for fixing j is stationary in terms of m. Therefore, the auto-correlation exists.
8FARIMA(O, 0.4,0) is an asymptotically self-similar process and is very similar to a FGN process.



20

o: ARIMA(1,0.4,0)
151 + AR(1)

* ARIMA(0,0.4,0)

N

)
T
€]

log2(Variance of d_j)
0
%
*

+0
*

o+ %

6
Time Scale j

Figure 3: Log 2 of Variance of d; versus the time-scale j

4.1.2 The Correlation Structure of Wavelet Coefficients of SRD processes

For short-range dependent processes, we derive the correlation wavelet coefficients given in a theorem below®

Theorem 2 Let z(t) be a zero mean wide-sense-stationary (discrete) Gaussian process with the auto-correlation
r(k), where r(k) = a?pl*l with | p |< 1, k is an integer and o? is the variance of x(t). Let d7*’s be the (Haar)
wavelet coefficients of z(t). Then

(1) for a given time-scale j, d*’s are Gaussian random variables with a zero mean and a variance o?(1+

2 — ) + 0P 7).

(2) for m12% — (mg + 1)2%2 > 0,

By =275 gm0 1 g1 T o (6)

The sketch of the proof of the theorem can be found in Appendix A. Details are given in [25].

This theorem shows that the correlation of wavelet coefficients decays exponentially as |m12% — my272|,
the shortest distance between supports of two wavelet base functions, and therefore remains to be short-range
dependent in the wavelet domain!®. Figure 2 compares the (temporal) correlation for an AR(1) process with

that of its wavelet coefficient for j; = j, = 1 to illustrate the rate of decays.

4.1.3 Implications of The Theorems

One of the implications of the two theorems is that the variances of wavelet coefficients for a long-range
dependent process are very different from those for a short-range dependent process as indicated by Theorems
1 and 2. To illustrate this, Figure 3 draws the variances of wavelet coefficients for a long-range dependent
process FARIMA(0, 0.4, 0), a mixture of long-range and short-range dependent process FARIMA(1, 0.4, 0),

and a short range dependent process AR(1). As observed from the figure, the variance of LRD increases with

9There exist no previous results on the explicit correlation structure of wavelet coefficients for discrete processes except the
bounds for some of the continuous random processes[8].
19The rate of decay is even faster than the corresponding correlation in the time domain.



Figure 4: Correlation Matrix Figure 5: Correlation Matrix Figure 6: Correlation Matrix

of “FARIMA(0,0.4,0)”. of “AR(1)”. of “Star Wars”.

7 exponentially for all j. The variance of SRD increases at an even faster rate than that of LRD when j is
small but saturates when j is large. For a mixture of LRD and SRD, the variance shows the mixed properties
from both SRD and LRD. These results indicate that the variance of wavelets are capable of distinguishing
LRD from SRD for Gaussian processes.

The second indication of the theorems is that the wavelet transform significantly reduce the temporal
dependence so that a complicated mixture of short- and long-range dependence in the time domain may be

sufficiently modeled by a “short-range” dependent process in the wavelet domain.

4.2 Empirical Studies on The Correlation Structure of LRD and SRD

What short-range dependence need to be captured among wavelet coefficients? Unfortunately, an answer
to this question can not be provided by Theorems 1 and 2, since they only hold for |(m; — 1)27 — my272|
large. Therefore, we plot the correlation matrices of FARIM A(0,0.4,0), AR(1) and a JEPG encoded video
source “Star Wars” (details will be given latter in this paper) in Figures 4, 5 and 6 respectively to visualize
the correlation structure. A pixel (¢,7) in an image represents the correlation between the ¢-th and the j-th
wavelet coefficients, where ¢ and j are the (node) one dimension index in the tree diagram (see Figure 1
details). The gray level is proportional to the magnitude of the correlation. The higher the magnitude of
the correlation, the whiter the pixel in the image. These figures show that besides the diagonal line!!, there
are 4 pairs of lines having “visible” correlations'?. They correspond to the correlation between ’yk(s) and s,
where 7(s) represents the parent of the node s (see Figure 1 for explanations on v(s)), and v*(s) denotes the
parent of the node y*~1(s) with k being 1,2, 3 and 4 counting from the diagonal line. From the figures, we can
conclude that the most significant correlation is due to the parent-child relationship. Since the complicated
correlation in the time domain actually concentrates on certain types of correlations in the wavelet domain,

we can use a parsimonious model in the wavelet domain to represent the original traffic.

In order to have enough gray level to see more subtle details, the diagonal pixels, which is always 1, is set to 0.5.
12\We only consider K = 5 which has only 5 level in the tree diagram.



4.3 Modeling The Correlation Structure

We propose several models to model partial correlations among wavelet coefficients, ranging from the simplest

to the most complex. The simplest model assumes that wavelet coefficients are statistically independent. The

most complicated model is a third order Markov model.

Model 1:

Model 2:

Model 3:

Independent model, which models the variances of wavelet coefficients!3 . d’s are modeled as indepen-

dent Gaussian variables with a zero mean and a variance o;.

The first-order Markov model, which models the correlation between vy(s) and s, i.e., the parent-child

relationship. Such a Markov model can be implemented through an AR(1) process as

ds, = ajdﬁ’(sg) + bjw;, (7)

7

where a; and b; are the parameters to be determined from data. w; is Gaussian noise with zero mean
and unit variance. This model captures the diagonal lines as well as the two whitest off-diagonal lines

in the (correlation) graph.

The third order Markov model, which models the correlation among y(s), v2(s), v(s) and s. This model
incorporates additional correlation among node s and its neighboring nodes. In the (correlation matrix)
graph, it is equivalent to matching the first two strongest lines as well as the (barely visible) line near the

diagonal, which represents the neighboring relationship. Please refer to [25] for details on the algorithm.

As for the complexity of the aforementioned models, Model 1 only needs one parameter (the variance) o;

at each level 7 and thus requires loga(N) parameters in total. Models 2 and 3 have two and four parameters

at each level, respectively.

4.4 An Algorithm for Generating Wavelet Models for Gaussian Processes

The models of the correlation structure can now be included in an algorithm to obtain wavelet models for a

Gaussian process.

Let &(t) be a trace of length N from a Gaussian process.
Algorithm 1

1. Perform wavelet transform on &(t) to obtain ci;”’s (wavelet coefficients of &(t)).

2. Estimate the required parameters in a selected wavelet correlation model (Section 4.3) from ci;"’s.

3. Generate coefficients d" from the wavelet correlation model for all m and j.

4. Do inverse wavelet transform on d*’s to get the synthesized traflic in the time domain.

To estimate the computational complexity of the algorithm, we notice that the computational complexity

of the wavelet transform (Step 1) and the inverse transform (Step 4) is O(V), respectively. The computational

complexity of Steps 2 and 3 is also O(N)!%. Then the total computational cost of the algorithm is O(N).

13The mean of d7" is zero for a stationary process.

4 Assume that O(1) time is needed to generate one Gaussian random variable.

10



Figure 8: Buffer Response. x-axis: utiliza-

Figure 7: Sample Correlations. “”. tion. y-axis: loglO(Loss probability). “”:
AR(0.9);“-”: Model 3; “.”: Model 2; “.”: AR(0.9);“-”: Model 3; “.”: Model 2; “.”:
Model 1. Model 1. The normalized buffer size (g is

0.1, 0.5, 1, 10 from top down.

R/S (FARIMA) | V — T (FARIMA) | R/S (Algorithm 1) | V — T (Algorithm 1)
FARIMA (0,0.2,0) 0.711 0.703 0.711 4 0.009 0.716 £ 0.018
FARIMA(0,0.3,0) 0.801 0.776 0.795+0.018 0.755 + 0.017
FARIMA (0,0.4,0) 0.840 0.840 0.852+ 0.014 0.830 £ 0.033

Table 1: Hurst parameters of the FARIMA models and the wavelet models.

4.5 Experimental Results

In this section, experimental results will be provided to evaluate (1) the performance of three wavelet models
discussed in Section 4.3, and (2) the capability of wavelet models to capture long-range dependence. For each
experiment, five sample paths will be generated from either AR(1) or FARIMA, one of them will be used to
obtain a wavelet model through Algorithm 1, while the other four are used to obtain averaged loss rate and
sample auto-correlation for testing the performance of wavelet models.

To compare the performance of three wavelet models proposed in Section 4.3, sample paths of length 2'8
are generated from an AR(1) process with the parameter to be 0.9. We plot the sample correlation and buffer
response in Figures 7 and 8, respectively, for all three wavelet correlation models. We observe from the figure
that the simplest wavelet model which neglects the dependence in the wavelet domain performs reasonably
well. The models which capture more correlations among wavelets only improve the performance slightly.

To further test the performance of the independent wavelet model (Model 1) on capturing long-range de-
pendence, sample paths with length 217 are generated from FARIMA(0, d,0) (LRD alone) for d = 0.2,0.3,0.4,
respectively, using a simulator in SPLUS.

Three quantities are used to test the performance: the estimated Hurst parameter, the (sample) auto-
correlation function in the time-domain and the estimated buffer loss probability estimated from the sample
paths.

Table 1 gives the results on the Hurst parameter using the R/S test and the Variance-Time (V-T) test

11



Loss vs. Load: ARIMA
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Figure 10: The vertical axis: log;y(Loss Rate). The hori-
Figure 9: Autocorrelation  functions  for zontal axis: work load. The solid lines: FARIMA(0,0.4,0).
FARIMA(0,d,0) (solid lines) and Algorithm 1 Dotted lines: Algorithm 1. The normalized buffer size (£):
(dotted lines). d=0.2,0.3 and 0.4 from the bottom up. 0.1, 0.5,1, and 10 from the top down.

15 BEach quantity obtained from Algorithm 1 is averaged over 5 different runs. The standard deviations are
also given in the table. As can be seen, the Hurst parameters from the wavelet models are very close to those
from the original FARIMA processes.

The correlation functions estimated from the sample paths are plotted in Figure 9. The loss rate is
estimated from the sample path from the original FARIMA process and the wavelet model, we plot the log of
loss rate versus the work load for the normalized buffer size 0.1,0.5,1, and 5, respectively. The results show

that the correlation function and the loss rate due to the wavelet model are very close to those due to the
actual FARIMA process.

4.6 Analysis on The Buffer Overflow Probability of Independent Wavelet Model

Although empirical results show that the independent wavelet coefficients provide a reasonably good model
for a long-range dependent process, valid buffer loss rates below 1072 are hard to obtain due to the lengthy
computational time needed in generating a long sequence for FARIMA by SPLUS. Therefore, it is important
to further confirm our observation through analyzing the buffer overflow probability. We will analyze the
buffer overflow probability of the independent wavelet model for a FGN process and compare that resulting

from the original FGN process. Our result can be summarized as follows.

Theorem 3 Let B; and B, be the buffer sizes at the t-th time slot due to the synthesized traffic obtained by
the independent wavelet model, and by the FGN process, respectively. Let C represent the capacity of a single
infinity buffer queue. The buffer overflow probability due to the synthesized (wavelet) traffic z(t) satisfies

Pr(By > B) ~ Pr(By > B),
C — u)2(B \2(-H)(1=H\2H
( 1) égz_(ﬂl_H)z( 7o) ), (8)

~ exp(-

5See [5] [21][15] for details on R/S test and V-T test.
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where “~7 represents asymptotically and logarithmically equal. N = 2% is the length of the traffic with K

being a positive integer. B is assumed to be
(c— w2k(1 - H)

B = H ) (9)

where ko is an positive integer for simplicity.

The proof of the theorem can be found in Appendix B. We would like to point out that this theoretical
result is limited by two conditions: (a) the buffer size B; is only considered at time ¢t = N instead of all ¢, and
(b) the buffer full size B is assumed to be 2% (C' — 1), which is only a subset of all possible values. In [25], we
relax the condition (a) and prove that the conclusion of the theorem 3 holds for the average buffer overflow
probability. Due to the complexity of the proof, we only give the weaker version of our theorems in [25].

This result shows that the simple wavelet model which ignores the correlations among different wavelet
coeflicients has the same Weibull decaying buffer overflow probability as that of FGN. This confirms that the
independent wavelet model is accurate enough for modeling Fractional Gaussian Noise processes, and models
which capture additional correlations only improve the buffer loss rate marginally. In what follows, we will

use the independent wavelet model to model real network traffic.

5 Wavelet Modeling of Network Traffic

5.1 The Traffic Sources

Four network traffic sources are chosen to test our wavelet models: (1) JPEG coded “Star Wars” [15], (2)
multiplexed “Star Wars”, (3) MPEG-I coded videos, and (4) Ethernet data trace with 10 ms time interval.

The trace “Star Wars” [15] is obtained by applying JPEG-like encoder to each of 171,000 frames at an
interval of i second per frame of the 2-hour movie of “Star Wars” 6. This source is used to test our model,
since the source provides rich variations in terms of scene changes.

Since modeling multiplexed video traffic is of practical importance, we combine M copies of the VBR trace
of “Star Wars” to obtain a multiplexed source as suggested in [15], where M is chosen to be 100. Each copy is
offset by a random number of frames. Upon reaching the end of the trace, each copy is wrapped around to the
beginning. Mathematically, since the multiplexed source is a summation of individual sources, and wavelet
transform is a linear operation, multiplexing video sources in the time domain is equivalent to multiplexing the
corresponding wavelet coeflicients of each source in the wavelet domain. Therefore, the marginal distribution
of wavelet coeflicients of the multiplexed traffic is very close to Gaussian.

The third data set is the MPEG coded video source constructed from MPEG-I encoded video sequences
created[35]. We choose a video called “Jurassic Park”, which has 53332 frames at an interval of 40ms. A
standard MPEG encoder generates three types of compressed frames: I, P and B. I frames are compressed
using intra-frame coding only, while P and B frame, in addition to intra-frame coding, allow using motion
compensation techniques. As a result, I frames are the largest in size, followed by P frames and B frames. In
addition, many MPEG encoders have fixed Group-of-Picture (GOP) pattern. The GOP pattern in “Jurassic
Park” consists of 12 frames as IBBPBBPBBPBB.

'®Detailed description on the “Star Wars” trace can be found in [15].
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Figure 11: Marginal distribution of d7* for j = 3. Left: Star Wars. Middle: “MPEG GOP”. Right:
Multiplexed (M=100). Up: Histogram. Down: Quantile-Quantile plots (horizontal axis: Normal
distribution.)

The fourth data set is an Ethernet traffic trace. The Ethernet trace obtained from [22]'7 is one of
benchmark data sets for traffic modeling. This data set is collected on an Ethernet in Bellcore from 11:25
August 29, 1989, and details can be found in [22]. We choose the time unit for the discrete time queuing
model to be 10ms, which leads to discrete traffic with length 176000'8.

5.2 Modeling Network Traffic
5.2.1 Marginal Probability Density Functions at Different Time-Scales

As Algorithm 1 generates wavelet models for Gaussian processes, a question to ask is whether wavelet coeffi-
cients from the real network traffic have Gaussian marginals.

The histograms and Q-Q plots'® are given in Figure 11 for the wavelet coefficients of three video sources at
7 = 320, The figure shows that the estimated marginal density functions of wavelet coefficients for individual
video sources at the given time-scale have a much heavier tail than the normal distribution, whereas the
density function for the multiplexed source fits the normal distribution well. This is due to the fact that
marginal density function of wavelet coeflicients for a single source is usually dominated by the nature of
the source itself, and can be different from Gaussian in general. The marginal of wavelet coefficients of the

multiplexed source, which are sums i.i.d. random variables, is approximately normal when the number of

17This Ethernet trace data can be obtained from http:
ita.ee.lbl.govhtmlcontribBC.html. In this database, we only report results on the data set collected in August 1989.

8 Although a multiplexer of data network works in continuous time, it is convenience to use the discrete time queuing model
for simulation[32][14].

The @ — Q plot is a standard statistical tool to measure the deviation of a marginal density function from a normal density.
The @ — @Q plots of a process with a normal marginal is a straight line. The deviation from the line indicates the deviation from
the normal density. See [15] and references herein for more details.

2%at GOP level for MPEG-I. Similar behaviors have been observed at the other time-scales. Non-Gaussian marginals are

observed for Ethernet data trace but omitted here.
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multiplexed sources is sufficiently large.

5.2.2 Shaping The Marginal Density Functions

To obtain wavelet coefficients d7*’s with the same empirical density functions as that of the network traflic,
a transformation is needed on the wavelet coefficients generated by Algorithm 1 with a Gaussian marginal
density function. Such a transformation can be done easily through a method described in [18] with little
computation. To illustrate the idea, let X be a random variable with a cumulative distribution function
Fx(z). Let Fy(:) be the desired cumulative distribution function. Then the transformation needs to be

performed on X is simply
y = Fy'(Fx(2)). (10)

It can be easily verified that the resulting random variable Y has the desired cumulative distribution function
Fy(y). In the modeling process, Fx(z) is the cumulative distribution function for an d7* generated by a
Gaussian distribution. Fy(y) is the desired cumulative distribution function, which can be estimated using
the histograms from the data. Then the transformation can be easily performed to obtain the wavelet

coefficients with a desired marginal density function. Interested readers may see [18] for more details.

5.2.3 An Algorithm for Generating Wavelet Models for Network Traffic

Adding an additional step to shape the marginal, we have Algorithm 2 for the independent wavelet model
(Model 1 in Section 4.3) as follows. Let Z(¢) be a traffic trace of length N.
Algorithm 2

1. Perform wavelet transform on &(t) to obtain cig’“s (wavelet coefficients of &(t)).

2. Compute variance ¢; at the j-th time-scale.

3. Generate wavelet coefficients d7* through a Gaussian random variable with zero mean and variance dj.
4. Perform the transformation on d7* according to Section 5.2.1.

5. Do the inverse wavelet transform on the generated wavelet coeflicients to get the synthesized traffic.

It can be seen that the total parameters needed for this algorithm is log,(N), where N is the length of
synthesis traffic, and the computational time is in the order of O(N).

5.3 Modeling MPEG-coded Video Traffic

To deal with the periodic structure of MPEG-coded video (see Figure 12 for illustration), Algorithm 2 can
be further modified for MPEG traffic by taking the advantage of wavelet modeling applicable at different
time-scales. To do so, we note that as the interframe redundancy is reduced by using P and B frames, I,
P, B frames have significantly different statistical characteristics. Therefore, I, P, and B frames should be
distinguished from one another at the frame level for modeling, whereas no such distinction is needed from the
GOP level. Therefore, we can apply Algorithm 2 directly to model the MPEG video traffic above the GOP
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Figure 12: MPEG traffic with GOP pattern IBPB and its relationship with wavelet basis function. I: Intra-

coded frame. P: predictive frame. B: bidirectional frame.

R/S (Video trace) | V — T (Video trace) | R/S (Alg. 2) | V —T (Alg. 2)
Multiplexed (M=100) 0.869 0.824 0.842 £ 0.0267 | 0.839 £+ 0.012
(Single) Star Wars 0.815 0.774 0.811+0.009 | 0.77940.017

Table 2: Hurst parameters

level. Below the GOP level?!, we treat wavelet coefficients with the same relative position in a GOP pattern
as a group with the same statistical properties. For example, the variances and the correlation (graph) of the
parent-child relationship are the same for every wavelet coefficient in the same group. We can then model

different groups of wavelet coefficients with different parameters.

5.3.1 Experimental Results

To evaluate both the performance and the computational efficiency of the wavelet models (Algorithm 2),
we apply the algorithm to obtain wavelet models for all four sources, and to generate synthesized traffic.
FARIMA models are used to model the sources as well for comparison. In particular, FARIMA models are
chosen to have 25 AR terms and 20 MA terms. A maximum-likelihood algorithm provided by SPLUS [39]
is used to determine all 45 parameters for the FARIMA models using the trace. Furthermore, the Gaussian
marginal distribution of the FARIMA process is shaped to be the same as that of trace data by the same
method described in Section 5.2.2. Synthesized traffic from both wavelet and FARIMA models are used to
obtain sample auto-correlation functions and the buffer loss rate. Since FARIMA model can not deal with
(periodic) MPEG source easily, the results are absent in corresponding figures.

The auto-correlation functions of FARIMA (25, d, 20) and of the wavelet model are plotted in Figures 13,
15, 17 and 19 for the single “Star Wars” source, multiplexed “Star Wars” source and the “Ethernet” trace,
respectively. As can been seen, the wavelet models have consistently a better match to the auto-correlation
functions than the FARIMA models, especially for single sources. The reason is possibly due to that the

wavelet model can match the marginal distribution at different time scales. Hurst parameters for “Star Wars”

2'We assume the GOP pattern is periodic as in most cases. If the length of GOP pattern is not a power of 2, we will add zero

size frames to the end of each GOP to make it a power of 2.
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and “Multiplexed” traffic are also reported in Table 2 for comparison. The results of the loss rate of a single
buffer due to each source are given in Figures 14, 16, 18 and 20, respectively. The wavelet model has a
significantly better performance at medium and large buffer sizes??.

To compare the complexity of the wavelet and FARIMA models, we note that FARIMA has 46 parameters
but the independent wavelet model has only 15 ~ 17 parameters. As for the computational time, it takes
more than 5-hour CPU time on a SunSPARC 5 workstation for an FARIMA (25, d, 20) model to estimate its
parameters from the data and to generate synthesized video traffic of length 171, 000. It only takes 3 minutes
on the same machine for Algorithm 2 to complete the same task. The computational complexity to generate

synthesized traffic of length N is O(N?) for an FARIMA model, and only O(N) for a wavelet model.

6 Discussions

6.1 Discussions on Wavelet-Domain Modeling

Why do wavelet models work so well? As conjectured in [32] that wavelets might be feasible to model
self-similar data traffic, the complicated mixture of long-range and short-range dependence in traffic can be
naturally embedded in the self-similar structure of wavelets. Since the self-similar structure of wavelets has
“absorbed” the long-range and short-range dependence in different time-scales, the wavelet coefficients corre-
spond to a “short-range dependent” process in the wavelet domain. This results in fast decaying correlation
in the wavelet domain and makes it possible to to model wavelet coefficients as independent or Markov-
dependent random variables. The resulting algorithms for generating wavelet coefficients are therefore simple.

In addition, since there exist fast algorithms for both transforms and inverse transforms[7], our method for

22 At a very small buffer size (an extreme case is a bufferless queue), the buffer loss rate is dominated by the marginal distribution.
Because both algorithms are shaped to have the same marginal distribution as that of traces, both algorithms give very good

buffer loss estimation.
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developing the models and generating synthesized traffic has been able to achieve the lowest complexity, which
is O(N) for a time-series of length N.

Another appealing property of wavelets is that wavelet basis are defined by a scaled and shifted mother
wavelet with a finite support, and thereby can be naturally linked to the time-scale analysis. This makes it
easy for wavelet models to handle the periodic structure in MPEG video.

Furthermore, since (Harr) wavelets are simple, it is possible to use the model for theoretical analysis as

shown in Section 4.6.

6.2 Comparison Among Different Traffic Models

To further illustrate the strength (and possible weakness) of wavelet models, we summarize in Table 3
strength/weakness of different models for network traffic. In the first column, “SRD/LRD” represents a
model’s capability to capture both the short-range and the long-range dependence. In the second column, we
characterize the complexity of a modeling algorithm from two perspectives: the computational complexity on
generating synthesized traffic of length N, and the implementation complexity, which refers to the amount
of efforts involved in developing an accurate model which may involve tuning different parameters. In the
table, we also include the feasibility of a model for theoretical analysis (“Analysis”), and the flexibility of the

method in terms of modeling at different time scales.

7 Conclusions

An important discovery from this work is that wavelet coeflicients of network traffic with complicated short-
and long-range temporal dependence are no longer long-range dependent. Therefore, the “short-range” de-
pendent process can be used to model traffic in the wavelet domain. This opens up new possibilities for
modeling, analyzing and controlling long-range dependent network traffic.

In this work, we have developed wavelet models for network traffic including both video and data traffic.
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SRD/LRD | Computational Complexity | Analysis | Time-Scale

/Implementation Complexity Modeling
TES[30] Yes O(N)/High Difficult No
DAR [17] Only SRD O(N)/Low Yes No
Scene-Based [19] Yes O(N)/High Yes Yes
Importance Sampling [18] Yes O(N?)/Low No No
Wavelet Modeling Yes O(N)/Low Yes Yes
FARIMA [21] Yes O(N?%)/High No No

Table 3: Comparison on traffic models.

A good performance of the model has been obtained through extensive tests on three video sources and one
Ethernet data trace using both the auto-correlation and the buffer loss rate as performance measures. The
buffer loss rate of the wavelet model has shown analytically to be similar to that of the FGN process for a FGN
workload, and thereby demonstrates the capability and the performance of the independent wavelet models.
Since the self-similar structure of wavelets naturally matches the statistical self-similarity in network traffic,
the resulting wavelet models are parsimonious and have much fewer parameters than FARIMA models. The
computational complexity for developing such a wavelet model and for synthesizing a large volume of traffic
has shown to be O(N), which is the lowest attained.

In our future work, we will further investigate the capability of independent wavelet models, and extend
the analysis to non-Gaussian traffic in order to make up for insufficient the network data at low loss rate.
We will also investigate other performance measures to account for effects of long-range dependence on loss

patterns.
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Appendix A: Proof of Theorem 2

Proof: Since the proof of 2(b) is similar to that of 2(a), in this appendix, we only sketch the proof of 2(a)
Since z(t) is stationary and d7* is obtained through the wavelet transform which is linear, d7* is stationary
in terms of m. Without the loss of generality, we only need to consider d?. From definition of Haar wavelet

coefficients, we have

Var(d?) = 279E( i z(t) — z_: z(t))? (11)
t=0 t=27—1
= 2UE( Y ) -w)P (Y @) -w?- Y 2elt) - p)alts) - W], (12)
t=0 t=21—1 t1=0 ¢,=27-1

Through straight forward algebraic manipulations (see [25] for details), we can compute the two term of

Equation (12), and thereby prove the theorem.
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Appendix B: Proof of Theorem 3.

To prove Theorem 3, we will first define the averaged aggregate-process, and establish its wavelet represen-
tation with independent wavelet coefficients generated by Algorithm 1. We will then develop three lemmas
needed for proving the main theorem. Using the lemmas, we will obtain an upper and a lower bound for the

buffer loss rate, and then show that bounds are of the same order.

Definitions
An Averaged Aggregate-Process

The averaged aggregate-process X (s) of the synthesized process z(t) generated by a wavelet model at time %

is defined as .

X(s) = %Em(to—i), (13)

=1
for 1 < s < tg. X(s) represents the average value of z(t) over [ty — s,¢9 — 1]. To facilitate the analysis, we

consider a special case that g = N.

A Wavelet Representation of The Averaged Aggregate-Process

Replacing z(t) by its wavelet representation given in Equation (2), the wavelet representation of X (s) can be
easily obtained as

K
Z a;(s)w;d;, (14)

7=1

X(s)=

» | —

for 1 < j < K, where w; = 27057 is a weighting factor. d; is a wavelet coefficient at the j-th time-scale
obtained by Algorithm 1 for independent wavelet coefficients?®. When used to model the FGN process with

a zero mean, the variance of d; is given in [42][13] as
Var(d;) = 277072H)(92(1—-H) _ 1)52(1 — o(272(1-H)KY), (15)
a;(s) is a weighting factor which depends on the aggregation length s, where

a(s) = r;, for either r} =r;_; or j =1, (16)
! 271 _ rs_1, otherwise,

with 78 = s — [s277] x 27, and |-] represents the largest integer smaller than s.
Examples of such a;(s) are given in Table 3. As can be seen from the table, a;(s) is periodic with a period

27, Furthermore, some of the properties of a;(s) can be derived directly from the Equation (16) as given below.

Properties of a;(s)

23 Strictly speaking, d; = d;nj , where m; is an index on m which depends on j. However, since there is only one such d;nj at a

particular time scale j, we drop the superscript m; for simplicity.
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js|112|3|4|5(6]7|8|9|10|11 (12|13 |14|15]|16
1 1{0(1(0)1]0]1(0]1 1 1701
2 1121012101 1 1
3 1121341321 (0]1 3141321
4 112(3(4|5|6|7|8|7| 6|5 211
5 112(3(4|5|6|7(8|9|10|11|12|13 |14 |15 |16
6 112(3(4|5|6|7(8|9|10|11|12|13 |14 |15 |16
7 112(3(4|5|6|7(8|9|10|11|12|13 |14 | 15|16

Table 4: The values of a;(s). s increases from 1 to 16 horizontally and j increases from 1 to 7 vertically.

1. For any positive integer satisfying s = 2llogs (s)] a;(s) can be represented as

{ s, if 7> loga(s)+1

0, otherwise.

(17)

a;(s) =

2. For any positive integer s > 2I°&()] we define s’ = 2llo&()l+1 and s = s’ — 5. Then s’ > s >

!

2llogz(s)] > s > 0 and 0 < i—l, < 0.5. For example, when s = 3 (s’ = 4 and s” = 1), we have

4>3>2>1a,nd55—l,/:%.

3. For s, s, s"” defined in Property 2, a;(s) can be expressed as

a;(s) = la;(s') — a;(s")], (18)
where |z| represents absolute value of z. This can be verified using Equation (16).

4. Fors,s',s"” defined in Property 2, a;(s") and a;(s') can be related as

a;()a;(s") = a2(s')5; (19)

This can be obtained using Property 1 or Equation (16).

Lemmas

Three lemmas need to be developed in order to prove the main theorem.

Let X (s) represent the averaged aggregate-process of (t). Let V(s) and V(s) denote the variances of
X (s) and X (s), respectively. V(s) can be computed directly through Equation (14) and Equation (15) as

K
V(s) = = 3 a?(s)2 7221 (920-H) _ 1)52(1 _ 0(2-2K(-H))), (20)

2
s 3

V (s) has been shown in [31] as

V(s) = 82_%02. (21)

The following lemmas will relate V' (s) with V(s). In particular, Lemma 1 shows that V(s) < V(s) for
s = 2 where k = 0,1,2,3,.... Lemma 3 shows that V(s) < V(s) for other positive integer s. Lemma 2 is
used by Lemma 3.
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Lemma 1 For s = 2“"92(5”,
V(s) < V(s).
Proof: By inserting the expression of a;(s) (Property 1) into Equation (20), we have
1 K

Vis) = 5 > s2279(2=2H) (92(1=H) _ 1)52(1 _ g(2-2(1-H)K)
S

3=logy(s)+1
— 8_2(1_H)U2(1 . 0(2—2(1—H)K)

< g 2-H)G2
From the definition of V(s) (Equation 21), we have V(s) < V (s) for s = 2lto92(s)]

Lemma 2 Define g(a) to be
g(a)=1+a*" — 20— (1 - ).

then g(a) < 0, for a € (0,0.5) and H € (0.5,1).

Proof: It can be verified easily that g(0) = ¢(0.5) = 0, and second derivation of g(«) is
¢"(@) = (2H)(2H — 1){a?H~? — (1 - 0?2},

For 0.5 < H < 1land 0 < a < 0.5, g”(a) > 0. Therefore, g(a) < 0 for o € (0,0.5).

Lemma 3 For s > 2[1092(5”,
V(s) <V(s),
i.e.,

K
s > N ak(s)2 (272 (220-H) _ ),
7=1

(22)

(28)

(29)

Proof: We will use the induction for the proof. We will start by first proving the inductive hypothesis.

We will then show the conclusion holds for s = 3 as well 24.

Inductive hypothesis: we assume Lemma 3 holds for any positive integer n satisfying 3 < n < s, i.e.

K .
n?H > a?(n)Z_J(Z_ZH)(22(1_H) —1). Now we will prove the lemma holds for s.
J=1
Using the expression for a;(s) given by Equation (29), we have

a?(s)Q—j(2—2H)(22(l—H) _ 1)

] >

.
Il
—

(aj(s") — (a5(s"))?277 =20 (220-1) _ 1)

I
]

.
Il
_

K
22 1 H Za 2 j 2 2H) (22 1 H 1) ZQUJ] I)CL II)2—j(2—2H)
7=1

22The cases for s = 1, 2 have been included in Lemma 1.
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K
J=1

s K K
(22(1—H) E a’ 2 j 2 2H) _I_ 22 1 H Ea II)2—j(2—2H), (32)
7=1 7=1

where the Equation (32) is obtained by applying Property 4 and by combining the first two terms of Equa-
tion (31). To upper bound Equation (32), we notice the first term can be upper bounded by s27(1 — 255—/,') due
to Lemma 1 for s' = 21%92()]+1 (true by the definition of s'). The second term of Equation (32) is bounded
by s"?H due to either the inductive hypothesis for s # 211°92(s")] " or Lemma 1 for s = 2ll92(s")] | Therefore,

we have

K
3" a2(s)279(22H)(220-H) _ 1) (33)
J=1
< 5'2H—}—3”2H—23'2H8—”. (34)
SI

Since ’s—l,’ = a and « € (0,0.5) due to Property 2, using Lemma 2 we can further obtain

K

> a2(s)27922H)(220-H) _ 1) (35)

7=1
< (14 o — 20) (36)
< SIZH(l _ a)ZH (37)
= §2H, (38)

Therefore, the inductive hypothesis holds for all positive integer s > 3 and s # 2llogs (s)]

For s = 3, ' = 4 and s” = 1. Since both s’ and s” satisfy the condition of Lemma 1, the proof will follow
what given from Equations (33) through (38). Then for all 3 < s < K, the hypothesis holds.

Q.ED.

Proof of the Main Theorem

Proof: Two steps are needed to prove the main theorem. First, we will prove an upper bound using the
lemmas. We will then obtain a lower bound with a Weibull-decay, and show that the two bounds are of the
same order.

Proof of The Upper Bound

The proof of the upper bound, P(By > B) < P(BN > B), is based on the lemmas developed in the

previous section. First, we note that a sufficient condition for this to hold is
P(X(s) >v) < P(X(s) > v) (39)

for any integer s (1 < s < N) and v bigger than the mean of X (s).
Since for every ¢, z(t) and &(t) are Gaussian random variable, X (s) and X (s) are Gaussian as well with

the same mean but different variances. Therefore, to show the inequality, we only need to show that the

27



variance of X (s) is no bigger than that of X(s) for all s € [0, N — 1], i.e
V(s) < V(s). (40)

This is true due to Lemmas 1 and 3. Therefore, we complete our proof for the upper bound.

Proof of the Lower Bound

To obtain a lower bound, we use a similar method to that in [31] but different quantities from the
synthesized traffic due to independent wavelet coefficients. As in [31], the probability P(By > B) can be
lower bounded as

P(By > B) > igp P(X(2%) > (C—p) +27*B). (41)

Here we consider only s = 2% with k being an integer (1 <k < K). Define
P} = P(X(2¥) > (C - p) + B27F). (42)

Since the (independent) wavelet coefficients generated by Algorithm 1 are Gaussian random variables, X (2¥)
is a Gaussian random variable with a zero mean and a variance 22(¢~1)(1=H)52(1 —O(Nwlfm}{)) forl1<k<K

as given by Equation 15. Then we can obtain

—), (43)
where f(k) = %, and Q(z) = f+°° £ exp( *Ydt.

Let k* be the the critical time-scale, Whlch indicates that the loss is more likely to happen at the 2%
time interval. We have k* = arg miny f(k), where k* = kg, with B as given in Equation (9). Then PF* >
Q((C_“JM) Furthermore, using the approximation Q(z) ~ exp(—%) for z large, and supy (PF) > PF', we

have B .
(C - w)(Bp) - HI(LFH)H

2071~ B)? ) (44)

The bound obtained above has a similar form to the buffer overflow probability for the continuous-time FGN

P(By > B) > exp(-

process[31].
Combining The Lower and The Upper Bound
g it has b h . 11 that P(B B (C—p)? (2?0 - (A ) H
ince it has been shown in [31] that P(By > B) ~ exp(— 205 (I=H)?
the upper and the lower bounds for P(By > B) are of the same order when K — k* is large. Hence, we have

) as B tends to infinity,

(C #) ( B 2(1- H)(IEJH)ZH
202(1—H)2 )

P(By > B) ~ exp(— (45)

or P(By > B) ~ P(By > B).
Q.ED.
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