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A measurement study of ATM WAN traffic has been carried out and it is shown that the
recorded data exhibit self-similar features. The conclusions are supported by a compre-
hensive analysis examining four statistical methods. Our results are validating one of the
most striking findings of the present teletraffic research: a broad range of packet network
traffic has fractal-like behaviour. We also investigate three self-similar traffic models for
the measured traffic together with their performance analysis. Finally, we discuss issues
on shaping and simulated queueing performance of the ATM traffic and show the strong
robustness of self-similar properties identified.

1. INTRODUCTION

In the last decade a number of extensive studies of high resolution traffic measure-
ments from a wide range of packet traffic networks have been reported [1,6,7,10,11,14,22].
The most important finding of these studies is the identified fractal-like behaviour im-
plying the so called long-range dependence and self-similarity properties. As a result of
intensive research at Bellcore a series of papers reported these findings in Ethernet LAN
[7,9,11,12]. The comprehensive study of Leland’s group with the conclusion that this
traffic is self-similar was published in detail in [11]. The study of Duffy et al. [6] revealed
the self-similarity traffic property in common-channel signalling network. Meier-Hellstern
et al. [14] found that the Pareto distribution with infinite variance is applicable for char-
acterizing the D-channel traffic in N-ISDN. Paxson et al. [20,22] reported the self-similar
features of TCP traffic. The fractal properties also appeared in the analysis of video traf-
fic (see the work of Garett et al. [10], and Beran et al. [1]). These traffic measurements
demonstrated a tremendous traffic burstiness at several time scales with the properties of
self-similarity. In fact, there are various open issues and living discussions in teletraffic re-
search about these findings and still there is no definite conclusion about that the observed
traffic are self-similar in nature or these properties can be explained by non-stationarity
of the processes in larger time scales [5].

The modeling of self-similar traffic appeared as an emerging and challenging field of
the present teletraffic research. It seems that there are different promising approaches to
capture this complex fractal-like behaviour. Norros [17,19] used a Gaussian self-similar
process known as the Fractional Brownian Motion. Willinger et al. [27] applied the
superposition of on/off sources with heavy-tailed on and off periods. Erramilli et al.



[8,25] studied different chaotic maps. Another hot topic of the present research is to
investigate the impacts of different network control mechanisms (e.g., shaping [16,23]) on
self-similarity properties and the dimensioning aspects of fractal traffic.

The purpose of this paper is threefold. First, we present an analysis study based on mea-
surements taken from a WAN ATM network with four methods testing for self-similarity.
We show that the self-similar properties are present in this traffic. Our conclusions do not
provide new results but validating these findings by the analysis of actual ATM traffic in
a real WAN network. Second, we investigate the mentioned three promising self-similar
modeling approaches to capture the observed properties, namely, the fractional Brownian
traffic [17,19], superposed on/off sources [13,26] and chaotic maps [8,25]. Third, we give
analysis results of shaped self-similar traffic. We investigate the practically important
question: can self-similarity be removed from the traffic by shaping or not? Queueing
analysis of the shaped and original traffic are also presented about the robustness of the
self-similarity property.

2. ATM TRAFFIC MEASUREMENTS

2.1. The FUNET network

The measurements were made on the FUNET WAN ATM network. “FUNET” stands
for “Finnish University and Research Network” which network is built on Telecom Fin-
land’s ATM-network. All the Nordic national networks (FUNET, DENnet, ISnet, SUNET
and UNINETT) are connected to the Nordic Backbone Network (NORDUnet) which has
a connection point in Stockholm, Sweden. NORDUnet has connections to the US back-
bones, the European backbones and to networks in central and eastern Europe.

2.2. Measuring tool and configuration

The measurement was made in the logical center of the whole network at the Center
for Scientific Computing (CSC) in Espoo, Otaniemi. All the international links start
from here, including the main crosslink to Stockholm. Our measurement equipment was
inserted between the network and the high-capacity ATM switch situated in Espoo. At
this point all the ATM traffic from the FUNET network transported through the switch
and the traffic generated at the CSC and transmitted to the rest of the world could
be monitored. The measurements were made by an HP Broadband Series Test System
equipment.

2.3. The measured data

The measured traffic was the aggregated traffic at the most heavily loaded point of the
network. During the measurements, two types of data collections were made. In the first
scenario the measured data was the time stamp (with resolution 0.01us) of the arrival
time instant for every single cell on the 155Mbps link. Because of the upper limit for the
number of captured cells each measured data file contains 131,072 time stamps only, which
was about 3-6 seconds according to the network load. For the long-term analysis longer
measurement periods were needed, so in the second measurement scenario the recorded
data was the number of cells received in one second intervals. In this case the time interval
of the observation could take several minutes long. A summary description of these data
sets is given in Table 1.



Table 1
Data sets characteristics and estimated Hurst parameters

Filename #cells Length (sec) Rate (Mbps) Hise Hyar Hrs Hper
FUNET1 131,072 3.9 14 0.69 0.69 0.68 0.68
FUNET?2 131,072 5.1 11 0.67 0.67 0.67 0.73
FUNET3 131,072 4.4 13 0.66 0.66 0.68 0.68
FUNET4 131,072 6.4 9 0.72 0.72 0.74 0.78
FUNETSTA.T3 14,807,546 425 15 0.70 0.70 0.82 0.94
FUNETSTA.T4 43,768,430 1964 9 0.67 0.67 0.79 0.90

The files FUNET1-3 contain traffic data captured from the incoming traffic, and the
FUNET4 measurement was made on the outgoing link. In case of the last two measure-
ments in Table 1, the registered data was the number of cells received in every second on
the incoming link.

3. THE SELF-SIMILARITY PHENOMENA AND ITS TESTING

In the following, we summarize the definitions and properties related to self-similarity.
Consider a weakly stationary discrete time stochastic process X = (X1, Xy, X3,...) with
constant mean, finite variance and autocorrelation function (k). Further, let X(™ denote
a new time series obtained by averaging X over non-overlapping blocks of size m. That
is, for £ = 1,2,3... the time series ka) = (1/m)(Xgm-mt1 + - + Xgm) and let r(™)
denote the autocorrelation function of X ™). The process X is called strictly self-similar
with self-similarity (or Hurst-) parameter H if mX (™ has the same finite dimensional
distributions as m? X for all m > 1. (The process X is exactly second-order self-similar
if 7™ (k) = r(k), (k > 0) and asymptotically second-order self-similar if r™ (k) — r(k)
as k,m — 00.)

3.1. Properties
A self-similar process has several properties:

e Long-range dependence: A self-similar process with parameter H < 0.5 is long-
range dependent. By definition, the process X is called long-range dependent
if 302, 7(k) = oco. Otherwise it is called short-range dependent [3]. This non-
summability results in a hyperbolically decaying autocorrelation function.

e 1/f-noise: Long-range dependence manifests itself in the frequency domain as the so
called 1/f-noise, which is the term used to refer to a sharp divergence in the power
spectrum near the origin.

e Slowly decaying variances: The variance of the arithmetic mean decreases more
slowly than the reciprocal of the sample size: var{X (m)} ~am 220 as m — oo,
where a is a finite positive constant independent of m, and 0.5 < H < 1.

e Hurst effect: The rescaled-adjusted range statistics (see next section) is characterized
by E{R(d)/S(d)} ~ const-d" as d — oo with 0.5 < H < 1.



Since we are always dealing with finite data sets, it is in principle not possible to check
whether by definition a traffic trace is self-similar or not. Instead, we check for different
features of self-similarity present in actual packet traffic based on the properties listed
above [2,7,11]. The following most popular self-similarity tests are used to capture some
of the listed properties:

3.2. Tests

Indices of dispersion A commonly used measure for capturing the variability of traffic
over different time scales is provided by the index of dispersion for counts (IDC) [4], i.e.,
IDC(L) = var{¥}_; X;}/E{¥}, X;}. Self-similar processes produce a monotonically
increasing IDC. Plotting log IDC(L) against log L, this property results in an asymptotic
straight line with slope 2H — 1 [11]. A similar dispersion index is also defined based on
the interarrival times of the cell stream referred to as index of dispersion for intervals
(IDI) [4] and given by IDI(k) =k -var{X}_, Y;}/E*{3}_, Y;} where {Y;} is the series
of interarrival times. It can be used to observe different phenomenons more easily, e.g.,
to check how close a process is to a renewal process.

Variance-time plot This method is based on detecting the slowly decaying variance
property of self-similar processes (see Section 3.1). The so-called variance-time plots are
obtained by plotting log var(X (™) against logm and by fitting a simple least squares line
(with slope 2 — 2H) through the resulting points, ignoring the small values of m [11].
Checking self-similarity by variance-time plot is mathematically equivalent to testing the
IDC curve.

R/S analysis Given an empirical time series (Xj : £ = 1,...,N) of length N, the
rescaled adjusted range statistics R(d)/S(d) for a number of values d is given by R(d) =
max{0, Wy, Wy, ..., Wy} — min{0, Wy, Wy, ..., Wy}, with W}, = (X7 + Xy +--- + X)) —
kX(d), (k = 1,2,...,d), S*(d) is the sample variance, and X (d) is the sample mean.
One computes these R/S samples for logarithmically spaced values of d, and plotting
log R(d)/S(d) vs. logd results, also known as pox diagram. Next, a least squares line is
fitted to the points of the R/S plot, where both the R/S samples of the smallest values of
d are not considered (because they are dominated by short-range correlations) and those
R/S samples of large values of d where the number of samples are less than say 5 (because
they are statistically insignificant). The slope of the regression line for these R/S samples
is an estimate for the Hurst parameter H [11].

Periodogram-based analysis Let (-) denote the sample periodogram (i.e., estimated
power spectrum using a Fourier transform) defined by I(\) = (1/27N)| XL, XA,
A € [0,7). As mentioned in the properties list, the spectral density of self-similar processes
obeys a power law near the origin. Thus, the first idea to determine the Hurst parameter
H is simply to plot the periodogram in a log-log grid, and to compute the slope of a
regression line which is fitted to a number of low frequencies. This should be an estimate
of 1—2H. Note, that in most of the cases this will lead to a wrong estimate of H since the
periodogram is not appropriate to estimate accurately the spectral density. Thus, more
sophisticated methods have to be applied to obtain useful estimates of H [11]. However,
this method can reveal the power spectrum near the origin.



4. ANALYSIS

IDC and IDI plots Figure 1 shows the IDC curve corresponding to the trace FUNET1.
The sequence of cell counts in every 100us interval was analyzed. The IDC curve for the
FUNETT1 file increases monotonically throughout a time span that covers 3-4 orders of
magnitude and shows an asymptotic slope that is strictly different from the horizontal line
resulting in an estimate H of 0.69. This behaviour is in stark contrast to conventional
traffic models such as Poisson processes, where the IDC is constant (H = 0.5). The
positive correlations present in the FUNET1 data is also indicated by the increasing IDI
curve (Figure 2). To verify the result, plot the IDC diagram for the ”shuffled” traffic
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Figure 1. IDC diagrams for the original-, Figure 2. IDI diagrams for the original-,
shuffled-, and shaped FUNET1 data. shuffled-, and shaped FUNET1 data.

trace which was generated by mixing the sequence of the cell interarrival times randomly
and rebuilding the cell stream (see Figure 1 S-FUNET). The curve starts as in the case
of the FUNET1 plot but soon it stops increasing and remains constant for values of log L
greater than 1. This means that removing the long-range dependencies from the data
set, the self-similar feature disappears. But the resulting process is still different from the
Poisson process. For the values of L lower that 10 the slope of the curve is positive which
indicates the presence of short-range dependence. For the values of L greater than 10 the
slope of the diagram is zero but the IDC value is about 10. This means that the traffic is
bursty but not self-similar. This property is also illustrated by the almost horizontal IDI
curve at a value of higher than 10, which equals to the squared coefficient of variation of
the cell stream (a good measure of burstiness), plotted in Figure 2. (For a Poisson process
the log IDI is a horizontal line at the value of 0.)

The same analysis was made for all the data sets from the FUNET measurements (see
Table 1). As can be seen from the table, the values of H;qe are pretty much the same
for all the data sets. It is remarkable, that in case of the last two data sets the analyzed
process was the sequence of cell counts in each seconds instead of 100us as in the case of
the first four sets. In spite of the fact that the time scale was four orders of magnitude
higher the Hurst-parameter remained the same.

Variance-time plots The variance-time plot for the FUNET1 and the shuffled data
sets can be seen in Figure 3. The estimated values of H,,,. are listed in Table 1. Since



the variance-time plots and the IDC diagrams are closely related statistical methods, the
results obtained from this method are the same as in the previous subsection.
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Figure 3. Variance-time plot for the original-, shuffled-, and shaped FUNET1 data.

R/S diagrams Figure 4 shows the R/S plot for the FUNET1 data. The analyzed
process was the sequence of cell counts in every 100us. The estimated value of H for this
data set is 0.68, which is nearly the same as the values calculated by the two previous
methods.

The same analysis was made for all the FUNET measurement data sets. The resulting
values for parameter H are listed in Table 1. For the first four data sets we get what we
expected. But in case of the last two data sets, the estimated value of H is higher. The
difference between the results and expected values could follow from the fact that these
data sets do not contain statistically appropriate amount of data.
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Figure 4. R/S plot for FUNET1. Figure 5. Periodogram plot for FUNET1.

Periodogram plots Figure 5 presents the periodogram plot for the FUNET1 data set,
where the analyzed time series was the number of cells in every 1 msec. The slope of
the low frequency part is clearly different from zero, and yields H = 0.68. This result
corresponds to the previously calculated values of H.

The analysis was made for all the data sets again, the results are listed in Table 1.

For the FUNET1 and FUNET3 data sets the estimated value of H is the same as was



before. But for sets FUNET2 and FUNET4 the values of H are a little bit higher than
the previous estimates. As for the last two data sets, the same holds as in the case of the
R/S statistics.

Discussion We can conclude, that for the FUNET measurements the estimated value
of H is about 0.7 for all the data sets and the measured WAN traffic definitely exhibit
the features of self-similarity. To estimate the self-similarity parameter H more precisely,
more refined statistical methods with confidence intervals for H and longer measurements
with more data are needed.

5. MODELING

In this section three different self-similar traffic generators based on different modeling
approaches are presented briefly. These models are all evaluated in the next section.

Fractional Brownian traffic This model was first introduced in [17] and published in
[18]. The fractional Brownian traffic is a process of the form A, = mt + y/amZ;, where
A; is the amount of traffic in [0,¢), and Z; is a normalized fractional Brownian motion,
i.e., a strictly self-similar process. The process has three parameters: the mean input rate
m, the variance coefficient a and the Hurst-parameter H of Z; [19]. We generated the
self-similar sample path known as fractional Gaussian noise as presented in [21], and it is
referred to as ‘FGN’ in this paper.

Superposed on/off sources The model was first introduced by Mandelbrot [13] and
later extended by Taqqu and Levy [26]. The basic idea of the model is the construction of
self-similar processes based on aggregating many simple on/off processes with heavy-tailed
on and off periods [26]. This sequence is referred to as the ‘ON/OFF’ data.

Chaotic maps FErramilli and Singh proposed chaotic maps for fractal traffic modeling.
The underlying idea is based on a nonlinear map that describes the evolution of a state
variable over discrete time [8,25]. We used a simple, two parameter nonlinear chaotic
map, the intermittency map to generate the ‘CHAOS’ data.

6. PERFORMANCE EVALUATION OF THE MODELS

The analysis results for the synthetic traffic traces generated by the above mentioned
traffic models are presented in this section. The whole methodology and the statistical
algorithms used are the same as were in case of the analysis of the FUNET measurement
data sets. Figure 6 presents the IDC plots calculated from the ON/OFF, CHAOS and
FGN data sets. The resulting diagrams seem to be nearly ideal. For all the plots, the
linear parts are clearly visible and it is easy to fit the regression line to the points and
to calculate its slope. Table 2 lists the estimate of parameter H for all three cases. (The
Hurst-parameter for all the models was set to 0.75.)

The IDI curves (Figure 7) reveal more differences among the models. The IDI curve
of the on/off model has similar increasing tendency as in the FUNET1 data showing the
presence of positive correlations. This tendency cannot be seen in the CHAOS curve
which is horizontal. The reason for this is that the IDI reflects correlations among cell
interarrival times and not among the number of cells in a given time interval as in the case
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Figure 6. IDC plots for the models. Figure 7. IDI plots for the models.
Table 2

Summary of test results estimating the Hurst-parameter of synthetic traffic traces

=

Filename H;y, Hyqyr H rs H per
ON/OFF 0.73 0.73 0.75 0.80
CHAOS 0.80 0.80 0.75 0.83
FGN 0.v1 0.71 0.71 0.72

of IDC. The CHAOS model generates cell streams with uncorrelated interarrival times

and it results in a constant IDI curve.
Figure 8 shows the variance-time plots calculated from the ON/OFF, CHAOS and FGN
data sets. As can be seen from Table 2, the results obtained are the same as previously.

0
gl
£ 1
> —FUNET1 (H=0.69) ..
o272 | — ONJ/OFF (H=0.73) :
o — CHAOS (H=0.8)

5 L FGN (H=0.71)

0 1 2 3
logmm

Figure 8. Variance-time plots for the models.

Table 2 lists the calculated values of H from the R/S diagrams for all models. For the
ON/OFF and CHAOS data sets the calculated value is 0.75, which was the input self-
similarity parameter for the model. The value of H of the FGN trace is lower than the
expected 0.75, but the results is in good agreement with the values estimated previously.

The results obtained from the periodogram plots clearly indicate the presence of long-
range dependence in each case (see Table 2). The values of H for the ON/OFF and
CHAOS sets are higher than before.



6.1. Discussion

As for the traffic model based on the superposition of independent on/off sources, we
can say that the generated synthetic traffic trace—as far as the above analyzed statistical
properties are concerned—is a good approximation of the modeled traffic. The synthetic
traffic trace possesses the self-similar feature, and the calculated self-similarity parameter
H (apart from the periodogram) is nearly the same as was the model input parameter.

The chaotic map model possesses the self-similar property also, but the other statistical
features—based on our preliminary studies [15]—are different from the expected ones. The
model could be a good source model for a single traffic source emitting self-similar cell
streams, but not appropriate to model aggregated network traffic.

The most promising modeling approach in our case is the FGN traffic model. The
synthetic traffic trace generated by the model has nearly the same statistical properties
and self-similar features than the measured traffic trace.

7. SHAPING AND QUEUEING ANALYSIS

From engineering point of view there are various impacts of self-similarity in ATM
networks. An important issue is the buffer sizing. A heavier than exponential decays of
queue length distributions are expected which imply larger buffer requirements. It has
great importance concerning ATM switch designers because the first generation ATM
switches have under-dimensioned buffers. In this section queueing analysis results are
reported to investigate this issue.

Another important question is related to the robustness of self-similar features as the
traffic flows through several queueing stages in the network. Moreover, an important
question is whether the self-similarity can be removed from the traffic by shaping it or
not. This question is important because if self-similarity can be removed or reduced by
shaping at the entrance of the network then engineers could be free from the complex
problem of self-similarity in the network concerning buffer sizing, traffic and congestion
control, protocol design, etc. We analysed shaped self-similar traffic and report these
results in the following.

7.1. Analysis of shaped self-similar traffic

Our shaping method was the leaky bucket shaping which forces to delay non-conforming
cells. Consider a leaky bucket with leak rate R and bucket size M. Cells which find the
bucket content smaller than M are directly admitted to the network; otherwise, they are
queued with FIFO discipline and admitted to the network with rate R.

The FUNET1 data (with average rate 14Mbps) was shaped with parameters M = 128
cells, R = 20Mbps (F1-8-128) and R = 15.5Mbps (F1-10-128). The analysis results of
the shaped data sets are illustrated in Figure 1, 2 and 3. The correlation of the shaped
cell streams are slightly affected due to the shaping procedure. The IDI curve is shifted
down but also shows the same correlation structure (Figure 2). The IDC and variance-
time plots (Figure 1 and 3) demonstrate the remained long-term correlation. Our results
concerning the robustness of self-similar features are in agreement with the the shaping
studies in [16,23]. However, the shaping effect surprisingly resulted in even higher values
for the estimated Hurst parameter (See Figure 1 and 3). The estimated Hurst parameter is
increased due to shaping. It can be explained as follows. On short time scales the shaping



procedure smooths out the cell stream. That is why the variance of the number of cells
in a given window is decreasing which results in a shifting IDC curve to smaller values.
However, on large time scales there is no significant effect of the shaping so there is no
change in the IDC curve as can be seen in the figures. Therefore, it is obvious that the
estimated Hurst parameter will be higher. This result is questioning the interpretation of
the estimated Hurst parameter because it is believed as a measure of burstiness. On the
contrary, our example shows that if we are smoothing the traffic the Hurst parameter is
increasing. If the process is a pure self-similar process there is a good interpretation of the
Hurst parameter (see e.g. [24]), but in practice where the traffic structure is modified by
several mechanisms (shaping, queueing, multiplexing, etc.) the process is not pure self-
similar. The question is, what is the interpretation of the estimated Hurst parameter?
These results motivate our future research in that direction.

7.2. Queueing analysis

A queueing analysis based on simulation with the original (FUNET1) and the shaped
cell stream (F1-8-128) was also performed. The investigated cell stream was fed to a FIFO
queue with service rate »r = 17Mbps and r = 15.5Mbps and the complementary queue
length distributions are plotted in Figure 9. For comparison the distributions related to
the Poisson process with the same mean rate and the shuffled FUNET1 cell streams are
also plotted. As we can see, both the original and the shaped cell streams resulted in sig-
nificantly higher queue lengths compared to the Poisson or shuffled cell arrival processes.
These queueing results also support the conclusion that the self-similarity properties (e.g.,
the long-term correlation) are quite robust and cannot be removed by shaping.

0 500 1000 1500 2000 2500 3000

1E+00 ‘ ‘
_ ————~—_ — FUNETI (=15.5Mbps) |
= 1E-01 K& — —
A 3 — ——
'Q L | \\
S 1E- POISSON —~
0 1E-02 a F1 8 128 —=—x
Y (r=15.5Mbps) — - = ——
~ —t— (r=15.5Mbps)
L 1E-03
S =
S S-FUNET1 —i Fls s
= 1E-04 =15. . —S_ ———
& (=I5:5MbPS) == ((—{7Mbps) =——
1E-05

X

Figure 9. Queue length distributions for the original-, shaped-, and shufled FUNET1
data and for a simple Poisson process.

Our results are consistent with the engineering intuition that FIFO queues behave as
low-pass filters and the long-range correlations of the self-similar traffic (having power
spectra divergence at low frequencies) are not affected. It also means that shapers would
have to incorporate very large buffers which cannot be used in many applications because
of the extreme introduced delay.



8. CONCLUSIONS

In this paper we presented ATM traffic measurements, analysis and modeling results
focusing on capturing the self-similarity phenomenon. Moreover, we investigated the
issue of shaping self-similar ATM traffic with queueing analysis. On the basis of the
considerations presented in our paper, the following conclusions can be drawn:

(1) the self-similarity properties are present in the investigated WAN ATM traffic;

(2) the degree of self-similarity of the investigated ATM traffic is about 0.7 measured
in Hurst parameter;

(3) the investigated three different models (fractional Brownian traffic, superposed
on/off sources and chaotic maps) are all capable to capture the self-similar properties
of ATM traffic but the fractional Brownian traffic was found to be the superior;

(4) strong robustness of self-similarity properties was identified which cannot be re-
moved from the traffic by shaping;

(5) the interpretation of the estimated Hurst parameter is problematic in practice.
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