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Abstract—

The behavior of a certain class of automatic intru-
sion detection systems (IDS) may be characterized
as sensing patterns of network activity which are in-
dicative of hostile intent. An obvious technique to
test such a system is to engage the IDS of interest,
and then use human actors to introduce the activities
of a would-be intruder. While having the advantage
of realism, such an approach is difficult to scale to
large numbers of intrusive behaviors. Instead it would
be preferable to generate traffic which includes these
manifestations of intrusive activity automatically.

While such traffic would be difficult to produce in a
totally general way, there are some aspects of network
utilization which may be reproducible without exces-
sive investment of resources. In particular, real net-
work loading often exhibits patterns of self-similarity,
which may be seen at various levels of time scaling.
These patterns should be replicated in simulated net-
work traffic as closely as is feasible, given the computa-
tional ability of the simulator. This motivates interest
in an efficient way to detect multi-scale phenomena in
network traffic, as well as a means to create simulated
traffic that exhibits the desired characteristics.

We propose the use of multiresolution wavelet anal-
ysis as a technique which may be used to accomplish
the desired detection, and subsequent construction
of self-similarity in the simulated traffic. Following
a multiresolution decomposition of the traffic using
an orthogonal filter bank, the resulting wavelet coef-
ficients may be filtered according to their magnitude.
Some of the coefficients may be discarded, yielding
an efficient representation. We investigate the effect
of compression upon the reconstructed signal’s self-
similarity, as measured by its estimated Hurst param-
eter.

I. Introduction

On a local area network (LAN), computers commu-
nicate with one another by exchanging messages in
a particular format. Every such message is referred
to as a packet. The semantics of a particular ex-
change of packets are determined by various message
exchange protocols. The structure of these protocols
and the physical attributes of the communications

†Contact author: david-nash@usma.edu.

medium over which the packets are transmitted give
rise to a set of characteristics which are common to
all network traffic which uses the same apparatus,
essentially independent of the traffic content.

We wish to address the problem of generating traf-
fic for the purpose of simulating the performance of
a local area network. Generally, this equates to the
problem of describing a distribution of message ar-
rivals which matches the distributions observed in
actual computer networks. For purposes of analytic
tractability, an often-used approach is to assume that
the arrivals of individual messages are independent of
one another, and consequently the use of an exponen-
tial distribution to model this phenomenon is used. It
has become clear however, that this assumption may
not be warranted in the case of computer network
traffic [1]. In fact, it turns out that the very charac-
teristic which the exponential distribution precludes
(non-zero autocorrelation of a time series of observa-
tions) is one which is desirable to preserve. This is
because one often observes a tendency of traffic pat-
terns to be “bursty,” as opposed to varying evenly
about the mean.

There are two factors which may account for this
phenomenon:
1. The initiation of a packet sequence is often di-
rectly related to human-generated input. These in-
puts are rarely continuous, as the modern paradigm
of computing is to employ computers in an interac-
tive mode, as opposed to a batch-processed mode.
Consequently, patterns of activity and quiescence are
observed, which correspond roughly to periods of re-
quests for computer processing of some sort, followed
by an interval during which the operator observes and
digests the results.
2. The characteristics of the message protocols
themselves tend to produce highly correlated
transmissions, as they often follow a request-
acknowledgement-acknowledgement format [2], [3].
Therefore, among the parameters that we consider



2to be important when producing simulated network
traffic, we include autocorrelation and self-similarity
[4]. The need to reproduce the characteristic of self-
similarity in simulated network traffic has been ad-
dressed before [5], [6], [7]. In particular we are in-
terested in the possibility of using a wavelet trans-
form for the purpose of efficiently representing net-
work traffic. By describing the data in terms of a lim-
ited number of wavelet coefficients, we may hopefully
reconstruct the behavior of the traffic of interest.

II. Motivation

The simulation of computer networks is of consid-
erable interest to the academic, military, and com-
mercial communities. The realization that comput-
ers can be employed as high-speed communications
devices, as well as increased abilities to employ net-
works of computers to expand the problem sizes
manageable by present algorithms has produced a
dramatic growth in the number and complexity of
LANs. Whereas network design and maintenance
was formerly something of an experimental process,
the magnitude of these tasks currently calls for a
more sophisticated approach. Consequently simula-
tion has evolved as a method of testing the effects
of changes to the network, without requiring actual
adjustment of the in-place topology.

The generation of traffic is central to a network
simulation. It can be troublesome, however, to cre-
ate simulated traffic in a way that is computationally
efficient, and at the same time exhibits characteris-
tics which one would expect to observe in an actual
network. An approach which may prove effective in-
volves the discrete wavelet transform. Decomposition
of a traffic data set using the transform yields a set
of coefficients whose magnitudes reflect the contri-
bution of basis functions across varying scales. It is
well known that this technique may be used to com-
press the data signal by removing coefficients which
are smaller than some established threshold. This
approach underlies a class of compression techniques
called transform coding. Theoretically, one should
be able to recapture the majority of the energy of
the signal with some smaller percentage of the to-
tal number of coefficients which would be required to
reconstruct the signal exactly.

It is clear that there is a direct relationship be-
tween the computational complexity of signal gener-
ation, the number of coefficients used, and the error
induced in the reconstruction. It is not obvious, how-
ever, what the effect of this method of compression
would be upon the self-similarity attributes of the
reconstruction. It is this effect which we propose to
investigate.

III. Data set

The data set used for this study was a collection
of observations made of a network in place at the
Lawrence Berkeley Laboratory in January, 1994. The
observations were made over the course of one hour,
and recorded all packets arriving at or originating
from the host site. This dataset has been used in a
previous study of wide-area traffic [1], titled therein
as lbl-pkt-5. We synthesized this data so that each
observation in the data set represents a measurement
of the number of packets which were transmitted dur-
ing the interval since the preceding observation. The
sampling rate was 1 sample per second. A portion
of the total of 3, 600 observations in the data set is
shown in Figure 1.
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Fig. 1. A portion of the Ethernet traffic data set.

Our investigation is preliminary in the sense that
we analyzed a single data set. We hypothesize that
the intrinsic characteristics of the Ethernet protocol
dominate the signal so far as self-similarity is con-
cerned, and that usage patterns play a secondary
role. Whether or not this is the case will determine
the utility of our proposal to use the decomposition
technique to generate traffic in a general setting. Our
intention for the future is to apply this method to
traffic from different environments to quantify the
importance of this effect, and to use those observa-
tions to further refine the model. Since our analy-
sis is essentially in the frequency domain, we do not
anticipate that the observed relationship will show a
strongly correlated effect in the time domain. In par-
ticular, we are purusing data sets from the 1998 and
1999 DARPA offline intrusion detection evaluations,
as well as data captured during a Department of De-
fense Advanced Warfighter Experiment conducted in
October, 2000.
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IV. The discrete wavelet transform

In general, the transformation of a discrete sig-
nal S[n] is accomplished by finding the coefficients
ck which satisfy:

S[n] =
∞∑

k=0

ckϕk[n], (1)

where the functions ϕk are functions whose union
over the integers represents a basis for the vector
space containing the signal of interest.

The efficient representation of signals in terms of
basis functions has its roots in Fourier analysis. In
classical Fourier analysis, a signal is represented in
terms of a sum of sinusoidal basis functions, each of
which is orthogonal to the other. The orthogonal-
ity of the basis functions results in a representation
which is highly efficient, and which has practical im-
plications with regard to the use of the magnitude of
the coefficients to characterize the “strength” of the
contribution made by each basis element.

In 1910, Haar showed that it was possible to repre-
sent a signal using compact basis functions [8]. Since
that time, a rich theory has grown up around the
use of compact basis functions (known as wavelets).
The fact that Haar’s basis functions did not extend
to infinity in the time/space domain (as opposed to
sinusoids, for example) promised the potential of rep-
resentation techniques analagous to Fourier’s, which
would provide resolution in both the time and fre-
quency domains. Daubechies [9] generalized this the-
ory to include orthonormal bases, and in so doing laid
the foundations for the application of wavelet anal-
ysis to essentially any finite-energy signal (i.e., any
signal f(x) :

∫∞
∞ |f(x)|2 dx < ∞).

V. Measurement of self-similarity

Self-similarity is an assessment of a process’ ten-
dency to exhibit related behaviors or characteristics
over different scales of time and/or space [10]. With
regard to network traffic, it has been shown that the
frequency of certain categories of packets exhibit the
property of self-similarity across different partition-
ings of time. Leland et al provided an extensive ex-
amination of the self-similar nature of Ethernet traffic
[4]. Their analysis employed several statistical met-
rics of self-similarity. One measure which is especially
straightforward to apply is the rescaled range statis-
tic, abbreviated R/S. Mandelbrot gave a detailed
description of the calculation of the R/S statistic in
[11]. Letting X∗(t) =

∑t
k=1 Xk, the R/S statistic

R/S(s, t) for some lag s and start time t is given by:

R/S(s, t) =
R(s, t)
S(s, t)

, (2)

where

γ(s, t, u) =

X∗(t + u)−X∗(t)−
(u

s

)
[X∗(t + s)−X∗(t)] , (3)

R(s, t) = max
0≤u≤s

{γ(s, t, u)} − min
0≤u≤s

{γ(s, t, u)}, (4)

and

S(s, t) =

√√√√(1/s)
t+s∑

k=t+1

X2
k −

[
(1/s)

t+s∑
k=t+1

Xk

]2

(5)

Mandelbrot’s method is a graphical technique,
whereby successive calculations of R/S are plotted
on a log-log scale for various values of lag s and start
time t. The slope of a straight-line fit for these val-
ues of R/S forms an estimate of the Hurst parame-
ter, which is itself a measurement of tendency in the
data to be self-similar [12]. An extensive discussion
of techniques for the estimation of H may be found
in [13].

VI. Procedure

The data was obtained in an ASCII file which in-
cluded a number of extraneous data elements, such
as IP addresses of source and destination hosts, TCP
ports and number of bytes in the packet. These were
removed using a Unix shell script. The data in its
original format was at the scale of 1µsec. We ag-
gregated this data to resolve at the 1 sec level for
computational convenience. The self-similarity of the
data set was measured according to the procedure de-
scribed in section V using a lag increment and a start
time increment of 100. A plot of the result is shown
in Figure 2. Software which accomplishes the calcu-
lation of R/S was written in the C++ programming
language, and the estimation of the Hurst parame-
ter was done in Excel. Code for the program is in-
cluded in the appendix. WaveLib, a public-domain
library of subroutines [14], was called from this code
to accomplish the wavelet decomposition, compres-
sion, and decompression.

We next decomposed the data by discrete wavelet
transform, using a Daubechies D8 wavelet. From
this decomposition, we obtained reconstructions of
the original data set using successively smaller sub-
sets of the sorted list of all coefficients, such that the
largest wavelet coefficient was always included. This
was accomplished by setting a variable threshold T ,
and excluding from a particular reconstruction those
coefficients which were smaller than T% of the largest
one. In this fashion we obtained 25 reconstructed
signals which were of progressively inferior quality in
terms of their RMSE, but correspondingly superior
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Fig. 2. Estimation of Ĥ for the original data set.

in terms of the efficiency (i.e., smaller numbers of
coefficients) of their representation. Some samples of
these reconstructed signals for various values of T are
shown in Figures 3 through 6. The Hurst parameter
for these reconstructed signals was then estimated in
the same fashion as was the original data. It is ap-
parent that even with substantial compression, the
reconstructions capture a substantial amount of the
original signal’s character, and thus should be useful
for the purpose of simulation.
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Fig. 3. Threshold = 6%,
compression = 50.8%,
1007 coefficients.
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Fig. 4. Threshold = 10%,
compression = 70.3%,
609 coefficients.
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Fig. 5. Threshold = 20%,
compression = 91.7%,
170 coefficients.
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Fig. 6. Threshold = 30%,
compression = 96.8%,
65 coefficients.

VII. Results

The results of the analysis are summarized in Ta-
ble I. It would appear that there is a roughly linear
relationship between the tolerance and the estimate
of Ĥ. A plot of a linear regression for this relationship

is shown in Figure 7. As might be expected however,
there is some question as to the independence of the
residuals of this model. Figure 8 reveals the possi-
ble presence of a sinusoidal pattern in the residuals,
which suggests that an autoregressive model may be
more appropriate.

TABLE I

Estimates of the Hurst parameter Ĥ.

Tolerance Output:
(%) Input RMSE Ĥ
30 1:31.5 39.37 0.718
29 1:30.1 39.08 0.722
...

...
...

...
8 1:2.6 13.54 0.684
7 1:2.3 11.54 0.687
6 1:2.0 9.58 0.686
...

...
...

...
Original 1:1 0 0.686
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Fig. 7. Relationship of Ĥ with degree of compression.

VIII. Conclusions

It would appear that the estimated Hurst param-
eter is affected by reduction of the wavelet coeffi-
cients used to reconstruct the signal, to the extent
that there is a general trend of increase in Ĥ with
increasing compression. Further investigation to de-
termine usable models seems reasonable, given that
the residuals from a strictly linear model have zero
mean.
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