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ABSTRACT

Self-similar (s-s) arrival processes are realistic models
for many types of network traffic.  Unfortunately,
generating synthetic s-s arrivals and interarrival times for
simulations is rather involved.  This paper discusses six
issues related to s-s traffic generation for discrete-event
simulations:  (i) what s-s processes are, and why they are
important to network modelers; (ii)  where to find a fast
s-s generator; (iii)  how to install the generator and
synthesize s-s arrivals; (iv) how to convert s-s arrival
counts to interarrival times; (v) how to build a simple
OPNET� process model for generating interarrivals;
and (vi) how traffic from simulated s-s arrival processes
compares with traffic from simulated bursty and Poisson
arrival processes.

1. SELF-SIMILAR PROCESSES

Network modelers used to routinely assume that arrival
events were independent, or nearly so.  The Poisson
arrival process was convenient, was easy to model and
analyze, and fit many types of network traffic reasonably
well.  More sophisticated models (e.g., based on
Markov-modulated Poisson or Bernoulli processes) were
used to convey the autocorrelation or short-range
dependence (SRD) found in bursty empirical traffic
traces.  In the early 1990s, researchers found evidence of
long-range dependence (LRD) in empirical traffic traces.
This raised serious doubts about modeling network
arrivals using Poisson and Markov-modulated processes,
as these (if stationary) cannot convey LRD [1, 2].

There is convincing evidence that LRD is present in
many types of network traffic, including:  Ethernet LAN
traffic, WAN traffic, coded video traffic, frame relay
traffic, connectionless DQDB traffic, common channel
signaling traffic in LEC networks, ATM WAN traffic,
narrowband ISDN traffic, telnet packet arrivals, the sizes
of FTP bursts, and some types of WWW traffic [4, 5, 6,
7].  LRD greatly lengthens the tail of queue waiting time
distributions, so ignoring LRD can lead to overly
optimistic estimates of performance in buffer
dimensioning.  This can result in more frequent buffer
overflow in finite queues, in delays an order of
magnitude longer than  expected in some queues,  and/or

other manifestations of poor performance [1, 3].  This
phenomenon is illustrated in Section 6.

LRD is a characteristic of self-similar (s-s) processes,
and so s-s processes are often used to generate synthetic
arrivals in simulations when LRD is an important trait.
Many s-s generators have been proposed.  Most are
based on fractional stochastic processes, fractals, chaotic
maps, on/off models with heavy tails, superposed on/off
sources, or wavelet transforms of s-s processes.  We use
Paxson’s generator fft_fgn  [3, 8] to synthesize a s-s
fractional Gaussian noise (FGN) process.  The generator
uses a fast Fourier transform to estimate the power
spectrum of an FGN process.  The generator is scalable,
fast, efficient, comparatively simple to implement, and
provides reproducible traces that are statistically
indistinguishable from FGN.  The fft_fgn  generator has
switches for specifying the trace size, Hurst number (the
degree of LRD in the trace), and scaling factors for
linearly transforming the trace to any mean and variance.

SRD and LRD are both important in network
simulations.  E.g., in finite buffers, SRD and LRD
influence the delay distribution of packet arrivals, and
LRD influences packet drops [3].  Carriers have begun
using LRD models to engineer data networks, and are
finding them to be more robust than their SRD
counterparts [4].  ATM researchers have found that the
s-s trait is robust and cannot be removed by shaping; at
short time scales, SRD is reduced by shaping but LRD is
not [5].  Finally, there is conflicting evidence about the
impact of LRD at very short time scales.  Some believe
that SRD dominates, and that LRD has little influence on
queue lengths at these time scales [6].  The simulation
results summarized in Section 6 generate packet arrivals
on the order of 0.01 seconds.  The LRD phenomenon is
clearly influential at this time scale.  Peak queue lengths
for s-s traffic are 4.5 times larger than for bursty traffic,
and 35 times larger than for Poisson traffic.

2. APPROACH

Generating s-s traffic consists of five steps:
(a) Obtain and install the s-s traffic generator fft_fgn.

(b) Use fft_fgn  to create a file of arrival counts, one
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count per time slot (or “bin”).  The bin width is
constant (e.g., 0.1 seconds).  E.g., fft_fgn  can be
configured to write a file containing 4,096 arrival
counts.  The first entry represents the number of
arrivals between t = 0.0 and t = 0.1 seconds, the ith

entry between t = (i-1)�0.1 and t = i�0.1 seconds, and
the 4096th between t = 409.5 and t = 409.6 seconds.

(c) Convert each bin’s arrival count to a set of event
arrival times for that bin.  The OPNET� s-s module
contains a simple five-state process model.  The Init
state reads the file of arrival counts and generates a
file of event interarrival times.  E.g., if the average bin
arrival count is 200 and there are 4,096 counts, then
approximately 819,000 events can be scheduled.

(d) Schedule arrivals.  The Wait state reads one record
from the file of event interarrival times and schedules
the next arrival.

(e) Process arrival events.  The Send state creates and
sends one packet and returns to Wait.  The Boundary
and Endsim states are stubs, and are accessed on bin
boundaries and at the end of the simulation,
respectively.  No operations are performed in these
states, but more sophisticated traffic models will
undoubtedly use them.

3. OBTAINING AND INSTALLING THE SELF-
SIMILAR TRAFFIC GENERATOR

Steps (a) and (b) of Section 2 rely on Schuler’s
implementation [8] of Paxson’s s-s generator [3].  This
section describes how to obtain and install the generator.
(a) Point to the Internet Traffic Archive at

http://ita.ee.lbl.gov/html/contrib/fft_fgn_c.html

and retrieve the .tar file (49K, compressed tar format).
The file name is fft_fgn_c-1_2_tar.Z .  (Contact
this paper’s author for a copy if the ITA is offline.)

(b) The .tar file contains programs and documentation
written by Christian Schuler [8] (and based on [3]) for
synthesizing a s-s process.  It requires an ANSI C
compiler.

(c) Follow the directions in the documentation.  You
must uncompress and untar the file, run a “make”
script, and verify the generator’s operation.  (Detailed
instructions are available from this paper’s author.)

(d) The fft_fgn  generator has twelve switches.  Five
are particularly important:  Hurst number, mean,
variance, sample size, and output file name.

(e) The fft_fgn  generates about one million sample
points per minute (Figure 1) on a Sun SPARC Ultra
1 workstation (170 MHz CPU, 512 MB RAM).
Each sample point represents the number of arrival
events in one time slot (bin), so the number of
interarrival times one can generate is approximately
the product of the mean and the sample size.
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Figure 1.  fft_fgn  run time vs. points generated.

4. CONVERTING ARRIVAL COUNTS TO
OPNET�� ARRIVAL TIMES

Simulations are driven by arrival times rather than by the
number of arrivals per time slot (bin).  A Poisson arrival
process has exponentially distributed interarrival times, so
it is simple to map Poisson arrivals to interarrival times.
Unfortunately, there is no convenient way to map an s-s
arrival process to interarrivals.  The fft_fgn  generates s-s
arrival counts, but the counts must be filtered for non-
positive values, converted to integers, mapped to bins, and
scattered in some way over each bin.  Arrivals can be
equally spaced within the bin, or randomly scattered
through the bin, or distributed through the bin in some
way that introduces SRD (e.g., via an ARMA process).
More complicated methods of distributing arrivals within
bins have also been proposed (e.g., based on wavelets).

For example, suppose fft_fgn  generates a file containing
arrival counts 211.053, 81.867, 4.211, -38.210,

...  .  If the arbitrary bin width is 0.1 second, we can
assign 211 arrivals to bin 0, 82 to bin 1, 4 to bin 2, 0 to bin
3, etc.  The 211 arrivals in bin 0 can be scattered equally
(with the first arrival at t = 0.0004739 (=1/211�0.1), the
second at t = 0.0009479, ... ), or randomly via calls to a
uniform variate generator scaled to [0, 0.1), or by
selecting 211 consecutive points from a stationary ARMA
process and mapping their distribution to [0, 0.1), etc.

5. OPNET�� NODE AND PROCESS MODELS

Steps (c) through (e) of Section 2 are performed by the
OPNET� model.  This section describes a simple model
for generating and scheduling arrivals with LRD.  In
practice, one might use this model as a template to
construct a more sophisticated scheduler for LRD arrivals.

The OPNET� network model consists of the single
node traffic_generators .  The node model (Figure 2)
consists of six traffic generator modules feeding six
FIFO queue modules feeding a common sink module.  It
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is loosely based on the contributed model Bursty

Generator  distributed with OPNET� v3.0b
(/…/models/contrib/bursty_gen ).  That model
compared ideal and simple bursty generators feeding
FIFO queues feeding a common sink.  The
traffic_generators  model contains process models
for two Poisson, one bursty, and three s-s arrivals
generators.  The FIFO queues all use OPNET�’s
acp_fifo  process model, and the sink is OPNET�’s
sink  process model.  The three s-s generators differ in
the way they distribute arrival counts over bins (equally,
randomly, and via a first-order autoregressive process).

Figure 2.  Node model.  The ideal and bursty modules
are from the contributed model Bursty Generator.

The model is used to compare the buffer requirements for
the six traffic generators.  Sources generate roughly the
same number of packet arrivals, and FIFO queues are
serviced at roughly the same rates.  All six generators
send packets to identical, separate FIFO queues at 100
packets per second on average.  Each queue can service
150 packets per second on average.  The ideal and
Poisson-arrivals generators have exponentially distributed
packet interarrival times.  The bursty generator has an
exponentially distributed burst interarrival time.  When
activated, it sends a burst of ten packets back-to-back.
The three s-s-arrivals generators have interarrival times
derived from the same s-s arrival process, but distributed
within bins in different ways.  Bin widths are 1 second.
Each s-s process model has five states (Figure 3).

The first s-s model (equal distribution) is described below.
The Init state reads the s-s input data file ss1.dat  (created
by fft_fgn ),  extracts  the  arrival count  from  each  line,

Figure 3.  Process model for the three s-s generators.

rounds it to an integer, handles negative and zero counts,
and generates interarrival times that are equally spaced
across the 1-second bin.  Synchronization points (bin
boundaries) are inserted as negative integers.  The
interarrival times and bin boundaries are written to the
output file ss1.out  as follows:

Input file Output file
   ss1.dat    ss1.out

211.053
81.867

4.211
-38.210

...

�

0.0047393364      (=1/211 � 1.0)
   <210 more identical lines>
-1.0000000000     (bin boundary #1)
0.0121951219      (=1/82 � 1.0)
   < 81 more identical lines>
-2.0000000000     (bin boundary #2)
0.2500000000      (=1/4 � 1.0)
   <  3 more identical lines>
-3.0000000000     (bin boundary #3)
1.0000000000
-4.0000000000     (bin boundary #4)
...

Table 1.  Input file to output file translation.

The Wait state reads the output file ss1.out  (created by
Init) and schedules the next arrival interrupt based on the
interarrival time.  Negative values are used to
synchronize on bin boundaries.  Packet arrival events
and bin boundary events have self-interrupt codes of 0
and 1, respectively.  Figure 4 illustrates the interaction
among data files and programs/states.

The Send state creates and sends a packet of size 10 K
bits.  The Boundary state is accessed only at
synchronization points.  No operation is performed in
this example, but a more realistic implementation might
require them.  The Endsim state is for housekeeping.
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Figure 4.  fft_fgn, model, and data file interaction.

The OPNET� code for the first s-s model is:

/* ---header block--- */
#include <math.h>
FILE  *fp_in_1;
FILE  *fp_out_1;
/* ---state variables--- */
int       \sent_1;
double    \sim_time_1, \last_boundary;
/* ---temporary variables--- */
char     *c, line [128];
double   bin_count, interarrival_time;
int      read_1, write_1, i;
/* ---Init enter--- */
/* generate interarrival times from bin counts   */
/* equally spaced across the bin, and write the  */
/* IATs to a new file; insert synchronization    */
/* points (bin boundaries) via negative integers */
fp_in_1  = fopen(“ss1.dat”, “r”);
fp_out_1 = fopen(“ss1.out”, “w”);
read_1=0;
write_1=0;
sim_time_1 = 0.0;
do {
  c = fgets(line, 128, fp_in_1);
  if (c != NULL) {
    sscanf(line, “%lf”, &bin_count);
    bin_count = rint(bin_count);
    if (bin_count < 1.0) bin_count = 1.0;
    read_1++;
    for (i = 0; i < (int) bin_count; i++) {
      fprintf(fp_out_1, “%30.15f\n”,
        (double) (1.0/bin_count));
      write_1++;
    }
    sim_time_1 = sim_time_1 + 1.0;
    fprintf(fp_out_1, “%30.15f\n”,
      (double) (-sim_time_1));
    write_1++;
  }
} while (c != NULL);
fclose(fp_in_1);
fclose(fp_out_1);
fp_in_1  = fopen(“ss1.out”, “r”);
printf(“ss gen 1 read  %d\n”, read_1);
printf(“ss gen 1 wrote %d\n”, write_1);
sent_1 = 0;
sim_time_1 = 0.0;

/* ---Wait enter--- */
/* schedule next interrupt to send packet       */
/* read next, get interarrival time if not null */
/* negative values used to synchronize the bins */
c = fgets(line, 128, fp_in_1);
if (c != NULL) {
  sscanf(line, “%lf”, &interarrival_time);
  if (interarrival_time < 0.0) {
    sim_time_1 = -interarrival_time;
    op_intrpt_schedule_self (sim_time_1, 1);
    last_boundary = sim_time_1;
  }
  else {
    sim_time_1 = sim_time_1 + interarrival_time;
    if (sim_time_1 > last_boundary + 1.0)
     sim_time_1 = last_boundary + 1.0;
    op_intrpt_schedule_self (sim_time_1, 0);
  }
}
/* ---Send enter--- */
op_pk_send (op_pk_create (10000), 0);
sent_1++;
/* ---Boundary enter--- */
/* no-op */
/* ---Endsim enter--- */
fclose(fp_in_1);
printf(“ss gen 1 sent %d\n”, sent_1);

The second and third s-s process models also have five
states.  The second model’s Init state distributes packet
arrivals randomly across each bin.  The third model’s
Init state introduces SRD by using a first-order
autoregressive process (ARMA(1,0) = AR(1)) to
distribute packet arrivals across each bin.  The other four
states mimic their counterparts in the first s-s process.

6. RESULTS

Figures 5 through 11 compare the Poisson (“mm1”),
bursty, and three s-s generators.  The simulated run time
is 500 seconds, s-s bin widths are 1 second, packet
generation rates are approximately 100 packets/second,
and queue service rates are approximately 150
packets/second.  The Poisson, bursty, and s-s generators
have nearly the same number of arrivals (49,852, 49,990
and 52,230).  Figure 5 is an overlay plot of queue length
vs. run time for the five generators.  Poisson traffic is
buried in the noise floor, as the Poisson queue length
never exceeds 13.  Most of the very narrow, sharp spikes
just above the noise floor are due to the bursty traffic.
Half of the bursty traffic never exceeds a queue length of
11, and the remainder never exceeds 100.  Figure 6 is an
individual plot for the first s-s generator.  Note the low
level of activity between the large peaks.

The s-s traffic in Figures 5 and 6 is noteworthy in that
half of it never exceeds a queue length of 1 (like
Poisson), 70% never exceeds 20 (like bursty), and 90%
never exceeds 100 (the bursty peak).  The remainder of
the s-s traffic is distributed between 100 and 454.  Five
“incidents” peak well above 100, and the broad incident
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is actually a set of 4-5 incidents.  Their juxtaposition in
time contributes to the queue peak of 454.  In summary,
the s-s traffic in this example is generally
indistinguishable from a mix of Poisson and bursty
traffic 90% of the time.  It ultimately peaks at a queue
length that is 4.5 times larger than the bursty peak and
35 times larger than the Poisson peak.  Peaks are broad.

Figure 5.  Queue length vs. time from a 500 second
simulation with all generators.

Figure 6.  Queue length vs. time from a 500 second
simulation for the first s-s generator.

Figure 7 is an 80 second subset of Figure 5.  Most of the
sharp, very narrow spikes just above the noise floor are
due to the bursty traffic.  The much taller and wider
incidents are due to the three s-s traffic generators.
Figure 8 is a 9 second subset of Figure 4.  Here, the
bursty traffic is composed of sets of sharp spikes just
above the noise floor, corresponding to queue lengths
between 10 and 35.  Some burst sets consist of 5-9
contiguous spikes.  The much taller three-plot incident
rising from the noise at t = 123 and extending to about t
= 130 are the three s-s variants.  The heavy line between

Figure 7.  Queue length vs. time for an 80 second subset
of the 500 second simulation with all generators.

t = 124 and t = 125 in Figure 8 is the first s-s variant
(arrivals equally distributed across the 1-second bin); the
line slightly above the solid line in this bin is the second
s-s variant (arrivals randomly distributed across the bin);
the line slightly below the solid line in this bin is the
third s-s variant (arrivals distributed across the bin
according to an AR(1) process).  It is not clear in Figure
8, but the second and third variants alternate being
above/below the solid line in bins between t = 123 and t
= 129 in this example.  From these plots, it is obvious
that s-s traffic requires buffer sizes an order of
magnitude larger than Poisson traffic.  Figures 9 and 10
show the empirical cumulative distribution functions of
queue length for the Poisson and bursty generators.
Figure 11 shows the long-tailed empirical probability
mass function of queue length for the first s-s generator.

Figure 8.  Queue length vs. time for a 9 second subset of
the 500 second simulation with all generators.
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As noted, Figure 9 is the empirical cumulative
distribution function (cdf) of queue length for Poisson
traffic.  It has a short tail (13), 50% of its mass is 1 or
less, and 95% of its mass is 4 or less.

Figure 9.  Empirical cdf for the Poisson generator.

As noted, Figure 10 is the empirical cdf of queue length
for bursty traffic.  It has a longer tail (100), 50% of its
mass is 11 or less, and 95% of its mass is 43 or less.

Figure 10.  Empirical cdf for the bursty generator.

As noted, Figure 11 is the empirical probability mass
function (pmf) of queue length for the first s-s generator.
It has an extremely long tail (454), 50% of its mass is 1
or less (like Poisson), 95% of its mass is 152 or less, and
99% of its mass is 384 or less.  Less than 1% of the mass
falls between 385 and 454.

Simulation results (for this example) confirm that peak
queue lengths for s-s traffic are 4.5 times larger than for
bursty traffic, and 35 times larger than for Poisson
traffic.  S-s traffic has important implications for data
and telecommunications traffic engineering.

Figure 11.  Empirical pmf for the first s-s generator.

In this example, buffers engineered to levels two times
larger than predicted by a Poisson arrival process would
overflow about 20% of the time with s-s traffic.  Buffers
engineered to levels two times larger than predicted by
an aggressive bursty arrival process would overflow
about 5% of the time.  Buffers engineered to levels four
times larger than predicted by the bursty arrival process
would still overflow nearly 1% of the time.
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