5.2 Stochastic Process

e Let the random variable X; denote the value of an economic factor (e.g. stock price,
interest rate etc.) at time ¢.

o If {zy,x9, ..., x,} is an observed data from time 1 up to time n, then {z1,xs, ..., x,}
is a time series for the relevant economic factor. Furthermore, such empirical data can
be thought of a particular realization of a stochastic process.

e In general, such stochastic process can be described by an n-dimensional probability

distribution p(z1, e, ..., xy,).

e Assuming joint normality, such a distribution is described by n means E(z1), E(x2), ..., E(x,);
n variances Var(zy), Var(zs), ..., Var(z,); and n(n —1)/2 covariances Cov(xz;, x;), i <
7.

e The special case n = 3 is plotted in Figure 5.1; the distribution is described by nine
parameters (three means, three variances, three covariances).

Figure 5.1: Probability Distributions for a General Stochastic Process (n = 3)

e To infer such a general probability structure from just one realization of the stochastic
process will be impossible, since there are n observations but n+n+n(n—1)/2 unknown
parameters.

e Hence some simplifying assumptions have to be made = stationarity.

5.2.1 Stationary

Definition 5.2.1 The process X = {x; : t > 0}, taking values in R, is called strongly
stationary if the joint probability distribution of a set of m observations at timesty, to, ... ty,
1s identical to the joint probability distribution of the observations at times t1 + k,ty +
k,....tm+k, for any k.



e For instance, if m = 1, this implies that the marginal distribution at time ¢ is the
same as the marginal distribution at any other point in time; p(z;) = p(x44); i.e. the
marginal distribution does not depend on time, which in turn implies that the mean
E(z:) = p, and the variance Var(x;) = vy are constant. (see Figure 5.2)

Figure 5.2: Probability Distributions for a Stationary Stochastic Process (n = 3)

e If m = 2, stationary implies that all bivariate distributions p(z, x;—x) do not depend
on t; thus the covariances Cov(x, z;_x) are only functions of the lag &, but not of time
t (i.e. Cov(zy,x14%) = Cov(za, xory) = -+ = Cov(zp_, T,), for all k).

e The stationarity condition implies that the mean and variance of the process are con-
stant and that the autocovariances

W = Cov(wy, 1r-k) = E[(z — p) (e — p1)] (5.2.1)
and the autocorrelations

Cov(wy, x4—) %

Pk = [Var(z;) - Var(z,_)]"/2 7 (5:2.2)

depend only on the lag (or time difference) k.

Since these conditions apply only to the first- and second-order moments of the process,
it is also called second-order or weak stationarity.

If a series a weakly stationary and normally distributed, then it must be stationary in
the strong sense.

Note that v, = v_x and px = p_k.

e Sample Autocorrelation Function:
ﬁk _ Zt:kJrl(xt B j)(‘rt—k — ‘f) k= O7 17 2’ o

iy (v — 7)? ’
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e For every weakly stationary nondeterministic stochastic process, (z; — p), it can be
written as a linear combination (or linear filter) of a sequence of uncorrelated random
variables. The linear representation is given by

Ty — U =& + wlgt—l + 1/}2515—2 + o= Z wjgt—j (523)
7=0

with g = 1.

— The random variables {e;;t = 0,£1,42, ...} are a sequence of uncorrelated r.v.
from a fixed distribution with

E(e) = 0 (5.2.4)
Var(g;) = E(&?) = o? (5.2.5)
E(eser) = 0, s #t. (5.2.6)

Such a sequence is usually referred to as a white noise process.
— These r.v. define the shocks to the system.

— If in addition to Conditions (5.2.4)-(5.2.6), €5 and &4, s # t, are independent and
that
&t ~~ N(O, 0'2),
we have the Gaussian white noise process.

— The v, weights in (5.2.3) are the coefficients in this linear combination; their
number can be either finite or infinite.

E(l’t) = W
Var(z;) = 70 = E[(z; — p)’]

- oS
=0
Cov(zy, xeen) = e = El(ze — p)(@ern — 1]
= El(e; +1ei—1 + ¢ogpo + )
Xtk + V11 + -+ Urer + Vpree 1 + -+ -)]
= (Y + V11 + Vopso + -+ )
= * ) Ui
J=0
since E(e;_;e¢—;) = 0 for i # j.
>0 Uitjrk
Yo
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— If the coefficient 1), is infinite, then some assumptions concerning the convergence
of these coefficients are needed. In fact, we have to assume that the weights
converge absolutely (3272, [¢;| < oo). This condition, which is equivalent to the
stationarity assumption, guarantees that all moment exist and are independent
of time ¢.

5.2.2 Moving Average Process
First-order Moving Average Process: MA(1)
Letting 1 = —60 and ¢; = 0, > 1, the model (5.2.3) leads to

Ty — o =¢y —Ogy_q.

This time-series is called a first-order moving average process, denoted by M A(1).

Elz] = p
70 = Var[z;] = E(e —0e;1)?
= E(e] — 20eie, 1 + 0%} )
= 0>+ 0+ 6%"
= (1+6%)0?

The first autocovariance:

7= El(z: — p)(zi-1 — p)]
E[(€t — 9675_1)(8,5_1 — 95t—2>]

= —fo?
Higher autocovariance: v, = 0,k > 1, so that the autocorrelation function:

—0

:m, pr =0, fOT k> 1.

P1

This implies that observation one step apart are correlated. However, observations more
than one step apart are uncorrelated. (see Figure 5.3)
Moving Average Process of Order ¢: MA(q)

Defined by
Ty — U =& — 91€t_1 — s = gqgt—q; (527)

i.e. MA(q) is obtained by setting
%Uo:la ¢j:_0j7 fO’f‘]':l,...q, %‘:07 fOT‘j>q
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Yo = (1+6i+--+6))0°
Ye = (_0k+916k+1+"'+‘9q—k9q)027 k=1,....q

5.2.3 Autoregressive Process
First-order Autoregressive Process [AR(1)]
e The choice of 1; = ¢’ in (5.2.3) leads to the process of the form
= = et e+ e ot
= e+ dle1 + dera+ ez + )
= (w1 — p) + &
The above process is known as first-order autoregressive process, AR(1).

e In this AR(1) process, we must ensure |¢| < 1; otherwise 372 [¢;| would not converge.
Furthermore, we have

2

) — 2 9 = 2 O
J= J=

Ve = 02 ik
=0

— 02i¢j¢j+k
j=0
0.2 k
= 1_¢¢2:¢’f%, k=012, ...
pp = o

Note that the autocorrelations decay geometrically to zero, and for ¢ < 0 the autocor-
relations decay in an oscillatory pattern. (see Figure 5.4)

Autoregressive Process of Order p [AR(p)]

Ty — =&+ Or(T—1 — p) + -+ dp(w—p — 1)

5.2.4 Autoregressive Moving Average Process [ARMA (p,q)]

It is possible to have a process which combines both AR(p) and MA(q). This results in
so-called ARM A(p, q):

T — = Q1@ — )+ + Op(wrp — p) F e —bheey — - — gerg (5.2.8)
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