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1 Joseph and Noah in Time Series

The time series plots that accompany this paper exhibit both the Joseph and Noah

effects, otherwise known as long range dependence and heavy tails, respectively. A

rough definition of long range dependency is the presence of a slowly decaying au-

tocorrelation/autocovariance function; indeed, the decay may be so slow (e.g. a poly-

nomial rate) that the covariances are not summable. We don’t strictly require the word

“auto” above, which is appropriate for stationary data - more general heteroskedastic

data may also be thought of as having long range dependence. It is common to mea-

sure dependence via strong mixing coefficients; roughly speaking, exponential decay

corresponds to short-range dependence (e.g. Markov dependence), while polynomial

decay corresponds to long-range dependence. This persistence over long gaps or lags

will also be seen in the sample correlation and covariance functions. This has been

called the Joseph Effect due to the persistency of phenomenon over time, viz. “Be-

hold, there shall come seven years of great plenty throughout all the land of Egypt:

And there shall arise after them seven years of famine...” (Genesis 41:29-30).

A non-rigorous definition of heavy tails is any random variable whose pdf has tails

of polynomial decay (Mandelbrot coined the term “hyperbolic” random variables —

viz. Mandelbrot (1983), p.204 — due to the asymptotic shape of the tail); in particular

they are not exponential, and hence lack certain moments. An example is the Cauchy
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distribution, which has no mean. Nearly all the heavy-tailed random variables lack a

second moment, and thus are used in models which exhibit “infinite variance.” There

are ways to estimate the tail exponent, e.g. the Hill estimator (viz. Resnick (1997)).

This has been called the Noah Effect due to the infinite variance, which shows high

variability, commonly encountered in catastrophic events, viz. “...all the fountains of

the great deep [were] broken up, and the windows of heaven were opened. And the

rain was upon the earth forty days and forty nights.” (Genesis 7:11-12).

1.1 Examples of Long Range Dependent Data

Many example of long range dependence can be found in Jan Beran’s book (Beran

1994), where in Chaper One we see that the sample autocorrelations have a persistency

over a large number of lags. This phenomena arises in the diverse fields of hydrology,

video conferencing , Ethernet networks, governmental standardization, and climatol-

ogy. It crops up in a number of other areas, e.g. economics (viz. Mandelbrot (1969)

and Taqqu and Levy (1985)), turbulence (viz. Mandelbrot (1974)), weather (viz. Love-

joy (1982)), and communications (viz. Mandelbrot (1965)). In finance, “The existence

of long term dependence in common stock price series is not surprising since stock

prices are related directly or indirectly to climatological variables, such as rainfall, in

which the existence of long term dependence is well established.” (Greene and Fielitz

(1979)) See Mandelbrot and Wallis (1968,1969) for examples in hydrology.

1.2 Examples of Heavy-Tailed Data

Some instances of heavy-tailed data can be found in Willinger et al. (1997), who

examine Ethernet traffic data, and in Embrechts et al. (1997). In the S and P data

there are values significantly larger than others, so that the marginal distribution is

not light-tailed. In the arena of finance, much debate is continuing over infinite versus

finite variance models. “It is a fact...that most financial data are heavy-tailed!” (viz.

Embrechts et al. (1997) p. 406) In some cases second moments may exist, but third

or fourth moments do not.
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2 A Long Memory Heavy-Tailed Process

Here are some mathematical definitions for the above concepts. For a stricly station-

ary discrete time stochastic process {Xt} with second moments, we can write down its

autocovariance function γ and autocorrelation function ρ, which depend only on the

time lags between variables:

γ(h) = E[Xt+hXt], ρ(h) = γ(h)/γ(0)

For simplicity, we have assumed that the process has mean zero.

Definition 1 A long memory process satisfies

ρ(h) ∼ Khβ−1 (1)

as h → ∞ and K 6= 0. Here β ∈ [0, 1); if β < 0, this would imply that the auto-

covariance function is absolutely summable – these are sometimes called intermediate

memory processes.

Remark 1 I have been vague about long range dependence, but quite specific about

long memory. The viewpoint here is that the latter is an instance of the former concept.

Remark 2 It is common to use 2d instead of β, and use d to parametrize memory –

see Brockwell and Davis (1991).

A random variable has heavy tails when the tail decreases at a slow polynomial

rate, which depends on a characteristic exponent α (which is the reciprocal of the

well-studied extreme value index).

Definition 2 A random variable X with distribution function F has heavy tails if

P[X > x] ∼ pCxα

P[X < −x] ∼ qCxα

as x → ∞. The constant C > 0 is the dispersion, and has to do with the scale of X,

whereas the numbers p and q describe the asymmetry of F ; they are both in [0, 1] and

sum to unity. The characteristic exponent α is positive, and less than two.
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Remark 3 All moments strictly less than α exist, and all moments greater than or

equal to α do not exist. For example, the Cauchy distribution is heavy-tailed with

α = 1. More generally, the class of stable variables and the Pareto family furnish two

groups of heavy-tailed variables.

2.1 Construction

With these definitions, let us now construct a process with both properties. Note

that long memory is defined for second moment processes, which is not the case for

leptokurtic ( = heavy-tailed) distributions. One solution is to stipulate that after a

certain number of lags, the autocovariance function γ is always defined, and it satisfies

(1).

It is a fact that a symmetric α-stable random variable X (write X is sαs) can be

represented by the product of a totally right skewed α
2 -stable r.v. and a centered

Gaussian (if the Gaussian is standard, so is X) :

X = A
1
2 · Z

where

X ∼ Sα(σ
1
α , 0, 0)

A ∼ Sα
2
(1, 1, 0)

Z ∼ N (0, σ2).

Here, the r.v.’s A and Z must be independent. Thus we construct the following series:

εt ∼ iid Sα
2
(1, 1, 0)

Zt ∼ idN (0, σ2)

and the two sequences are chosen independently of one another. Now the Gaussians are

not drawn iid, but have the following dependence stucture: they are weakly stationary

with autocovariance function

γZ(h) := hβ−1 ∀h > 1 γZ(0) = σ2,
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where β ∈ [0, 1) parametrizes the long range dependence. Then define

Xt :=
√

εtZt.

Lemma 1 If we let α ∈ (1, 2), then the series Xt is a sαs stationary time series with

autocovariance function

γX(0) = ∞ γX(h) = µ2γZ(h)∀h > 1

for some where µ = E
√

εt.

Proof First note that µ < ∞, since

E|√εt| = ‖εt‖
1
2
1
2

< ∞

since 1
2 < α

2 . However, the mean of ε is not finite; it is definitely infinite (due to its

heavy tails). Now X has mean zero due to independence of the centered Gaussian

element. Finally, if h > 1 (since h = 0 gives the variance, which we already know is

infinite) ,

γX(h) = Cov (Xt, Xt+h) = E (Xt · Xt+h)

= E
(√

εt
√

εt+hZtZt+h

)

= E (
√

εt) E
(√

εt+h

)
E (ZtZt+h)

= µ2γZ(h)

Thus X has the required long memory properties. And since the
√

εt sequence and

the Gaussians are independent, we see that X is sαs. †

Remark 4 We can easily construct other such series with infinite autocovariance for

all lags less than k by, running the following MA(k) filter: generate long memory

Gaussian sequences independently of one another, multiply them by one stream of
√

ε,

and then put the result through a standard MA(k) filter with these dependent sαs

random processes as the inputs. The following is actually a sum of independent sαs

r.v.’s:

Yt := ψ0X
0
t + ψ1X

1
t−1 + · · · + ψk−1X

k−1
t−k+1.

5



Hence Yt is sαs with scale

σ
1
α




k−1∑
j=0

|ψj |α



1
α

and autocovariance

γX(h) ∼ Chβ−1 ∀h > k

and infinity otherwise, where C > 0 is a constant. This is assuming that all the

Gaussian sequences asymptotically have the same decay behavior. As usual in time

series, the ψ’s are constant coefficients, real or complex.

Remark 5 The algorithm for generating n data from this series is fairly straightfor-

ward. Since the Splus function “rstab” doesn’t work for skewed stables, I use another

algorithm 1:

• (1) Generate the ε series by generating n uniforms U on (0, 1) and n unit expo-

nentials E, and calling

eps ←− rstable (U, E,
α

2
)

• (2) Generate n standard iid Gaussians and specify your Gaussian autocovariances

by writing them into a huge Toeplitz covariance matrix. Then do a singular value

decomposition of this matrix into

Σ = RΛRT

and come up with new Gaussians via

Z := RΛ
1
2 W.

You can use

gau ←− gauss (n, β).

• (3) Write

xdata ←− (sqrt eps) ∗ gau

1The Splus file is “depstabseries.s”, and this code can be found by following the link.
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Remark 6 This construction is reminiscent of an ARCH model. Indeed, one can view

the above decomposition of a sαs r.v. as

X ∼ N (0, σ2ε)

informally. Thus we generate dependent Gaussians which are then “fattened up” by

a positive heavy-tailed variable. In the literature, if one takes {εt = ε} for all times,

we get a sub-Gaussian process. Perhaps this could be a useful way of modelling long

memory heavy-tailed data.

3 Conclusion

This paper has discussed the Joseph and Noah effects in Time Series data, and

proposed a class of stationary models which exhibit both phenomena. The simulation of

such time series is quite easy, and the accompanying plots give an idea of the structure.

These plots have positive dependence, and are fairly short; also the characteristic

exponent was taken fairly large.

Below is a list of relevant references for long range dependence and heavy tails in

statistics and science; included are some papers that have not been referenced in the

above text.
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