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1 Abstract

Statistical analysis of financial time series is studied. We use wavelet analysis
to study signal to noise ratios along with auto-correlation function to study
correlation length for time series data of daily stock prices for specific sectors
of the market. We study the ”high beta” stocks versus the ”low beta” stocks.
We sample ten companies from both of these sectors. We find that the signal
to noise ratio is not uniformly high for the ”high beta” classified stocks nor is
the correlation length large for the ”high beta” classified stocks. We explain
reasons for this and possible further applications.
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4 Introduction

Statistical analysis of time series has been a problem of considerable recent
interest. With the surge of data outpouring from various fields such as biol-
ogy, geophysics, finance (Human Genome Project, digitization of fingerprint
data, seismic data etc.) , it is becoming imperative to develop and use proper
mathematical tools for classification and understanding these systems. For
example, in the field of DNA sequence analysis, there exists immense math-
ematical literature [1-5] . More recently (as of late 1995 and beyond), Wall
Street analysts have started using calculus based methods for their own anal-
ysis. These advances have motivated certain groups of physicists and applied
mathematicians to try to apply some of their own classical methodologies to
understanding dynamics of stock market fluctuations. Besides the classical
Black-Scholes formulation [6], a tremendous amount work using wavelet ap-
plications [7-9], Lévy distributions and spectral analysis [10,11], multifractal
models [12-14] (to name a few) have been used as ”tools” to understand the
mathematical signature in these financial time series. The basic goal of all
these methodologies is to understand the mathematical properties of ”long-
term” memory versus ”short term” memory (long range versus short range
correlations)of the market.

In general, most of this research work [7-14], has been applied to mea-
suring the fluctuations of market indices. For example, a lot of work has
been done in efforts to detect trends in the S&P 500 (for various different
time periods). There has also been some work done on currency exchange
dynamics [15]. In most of these cases, the correlation content has been mea-
sured for long-term periods (lengths of at least five years). There seems to
be a dearth of comprehensive work on looking at differences in actual stock
prices (that of various companies). This paper will deal with stock prices
fluctuation analysis for certain companies. We have picked these companies
from different sectors of the market. Our goal is to see if one can detect sim-
ilarities or differences (mathematically speaking) between different sectors of
the market in the a time frame of one year.

This paper will be organized in the following manner: motivation is nar-
rated next, then we will talk about the data sets we have chosen, next the
mathematical methodologies will be described, afterwards the results will be
presented, then we will have discussions on the results and conclusions and
finally we will end with talking about future plans for this research.
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5 Motivation

The distribution of price fluctuations are important from a theoretical point
of view, are helpful in understanding market dynamics, and in pricing deriva-
tive products [17]. The observed complex dynamics in the fluctuations shows
an indication of the agent interactions and overall organization of the market.
Similarities or differences in the trends for different sectors can give insight as
to the relative ”stability” of that sector. For example, it is well understood
in finance that there are stable sectors in the market such as food processing.
Regardless of the status of the economy, companies such as Heinz should
have relatively little volatility. However, regarding some newly developing
sectors (such as bioinformatics) it is difficult define a relative numerical mea-
sure of its ”stability”. Thus, it could be very useful to develop a quantitative
relative measure of the ”stability” of certain sectors. We will investigate into
these property from a price and a return point of view.

6 Data sets

We obtained data for twenty different companies. We obtained ten different
companies from the ”dogs of the dow” sector. This classification is used
by MSNBC (moneycentral.msn.com). This term generally refers to stocks
which have shown a high rate of return and low volatility for a particular
time period. Similarly, there is a classification for the stocks which have in
general a high volatility. Throughout this paper, they will be referred to as ”
high beta stocks”. Like before, ten different companies from this sector has
been studied. The companies studied from the ”dogs of the dow” sector are
the following:

• Merck Corp.

• American Express

• Coca-Cola Corp.

• Dell Corp.

• Eastman Kodak Corp.

• General Electric Corp.
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• Home Depot Corp.

• Intel Corp.

• McDonald’s Corp.

• Exxon Corp.

The companies studied from the ”high beta stocks stocks” sector are the
following:

• Analog Devices Inc.

• Electricidade de Portugal, S.A.

• E-Trade Inc.

• Goldman Sachs

• Jabil Circuit Inc.

• Lehman Brothers Holdings Inc.

• McMoran Exploration Corp.

• Sprint - PCS Corp.

• T D Waterhouse Group Inc.

• Crown Castle International Corp.

All of these data sets were downloaded fromWharton Business School[16].
The daily closing prices were extracted from here for the time period between
January of 2000 till the end of December 2000. This generates a total of 251
data points for each company. Since some of the companies could theoreti-
cally have stock splits within a year’s time frame, we computed a factor to
adjust prices, facpr, for all the stocks selected. This factor is used to ad-
just stock prices after a distribution so that a comparison can be made on
a equivalent basis between prices before and after the distribution[16]. Here
there are three types of distributions.

• In the case of cash dividends, we set the facpr to 0.
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• In the case that there are mergers, liquidations, or cases where the total
security disappears, the convention argues to set facpr to -1.

• For stock splits, facpr is defined as the number of additional shares per
old share issued:

facpr = (
s(t)− s(t′)

s(t′)
) (1)

where s(t) represents the number of shares outstanding, t is a date on or
after the exact date of the split, and t’ is a date before the split [wrds.whaton].

This gives us the actual data set. However, for our analysis, we will have
to manipulate this data slightly from the present state. We wish to analyze
two separate events: distribution of daily returns and the distribution of
prices. The classical definition of the stock price distribution is the following:

S(t) = S0e
µt+σWt (2)

where S0 is the initial price of the stock, µ is drift or average growth rate,
t is the time, σ is the volatility, and Wt represents the brownian motion drift
term which is normally distributed with mean 0 and standard deviation of√
t.
So, defining the daily return r as S(t+∆t)

S(t)
(where ∆t = 1 day) it is evident

that after taking logarithms in equation 2 one obtains the following:

log
S(t+∆t)

S(t)
∝ µ∆t (3)

Thus, for computational simplicity, we define the return r as the following:

r = log
S(t+∆t)

S(t)
(4)

Now we will address the issue for stock prices. We obtained all the daily
closing stock prices for each of the aforementioned companies. This was done
for a period of one year. These prices are all normalized using equation (1).
Let us call these prices S(t) ( 1 ≤ t ≤ 251). Since certain companies have
stocks that are valued very high (such as yahoo.com was valued greater than
$400 per share during a period) while other companies are very low (less
than a dollar per share), we wanted to have a uniform range for all the stock
prices. So we did the following to provide a uniform range:
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• For all values of t for a particular company, we determine α = maxS(t)

• Next, for all values of t, we define Ŝ(t) = 100∗S(t)
α

The above steps ensure that all stock prices are distributed between
(0, 100]. We perform one more scaling on Ŝ(t). For simplicities in the some
future calculations (elaborated in Sec. 7.1), we will require the following final
condition on the stock prices:

n∑

t=1

Ŝ(t) = 0 (5)

Thus we subtract the average value of all the prices from each price to
ensure that equation (5) holds. Let’s call these final prices as S̃(t). In fig.
1, we show the distribution of prices for Dell company. In this figure we are
plotting the S(t) versus t. In fig. 2 we show the distribution of normalized

and scaled prices of Dell company. Here we are plotting S̃(t) versus t. Notice

that there are negative values for S̃(t). However, the trend for the fluctuation
is preserved.

7 Mathematical Methods

We use two mathematical methods, namely, wavelet approximation and auto-
correlation function analysis on the stock data sets. Using the wavelet ap-
proximation, we compute the signal to noise ratio (snr). We use the auto-
correlation function to compute the correlation length. We will describe each
of these methodologies in upcoming subsections.

7.1 Wavelet Approximation (Analytical case)

We will begin by defining a wavelet. Let f be a function with the following
property: ∫ ∞

−∞

|f(x)|2dx <∞

The above is the same as saying the following:

f ∈ L2(R)
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Suppose ψ is a real valued function which is supported on [0,1]. Let us define
the following:

ψk,n(x) = 2k/2ψ(2kx− n) n, k ∈ Z (6)

Then there is a wavelet basis which is (ψk,n). From the theoretical view-
point [18], the function ψ is called a wavelet if it meets the following three
conditions:

• One can use (f, ψk,n) to determine the original function f (here (f, ψk,n)
is the usual L2 inner product).

• The (f, ψk,n) forms an orthonormal basis.

The simplest case for ψ is called the Daubechies 1 wavelet [18]. This is
also called the Haar wavelet (the term which we will use throughout this
paper). The Haar wavelet is defined as the following:

ψ(x) =





1 for 0 ≤ x ≤ 0.5
−1 for 0.5 ≤ x ≤ 1
0 otherwise

(7)

Along with satisfying equation (7) there is one final condition for the
Haar wavelet:

∫ 1

0

|ψ(x)|2dx = 1 (8)

Note that the above equation follows from the definition. Now that we
have defined what a wavelet is and a specific basis (i.e. the Haar basis),
we will discuss how we can use wavelets to compute the signal to noise ra-
tio. First, we will perform a wavelet expansion of f(x). Let F (x) be the
approximation (using wavelets) for f(x). F (x) is defined as the following:

F (x) =
∞∑

k,n=0

ak,nψk,n(x) (9)

where ψk,n(x) is defined as in equation (6) and ak,n is defined as the
following:

ak,n =

∫ 1

0

f(x)ψ(2kx− n)dx (10)
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A question that arises immediately is the following: Why are we taking
sum in equation (9) from [0,∞) instead of (−∞,∞)?

Recall that we had specified that f should vanish off [0,1] and that
∫ 1
0
f =

0. Since the aforementioned two conditions are true, all ak,n = 0 for negative
values of k and n. Hence, we are not required to evaluate the sum in equation
(9) for negative values of n and k. Thus (as mentioned in the data sets
section) we have changed the data so that the average value of the stock
prices is zero.

7.2 Wavelet Approximation (Discrete case)

In the previous section, a framework for the theory for wavelet approxima-
tions is presented. However in this paper, we will be dealing with discrete
data sets (stock prices or returns). So, a framework must be developed to
discretize the entire theory presented in the last section. To start, we first
change the term f to S̃(l) (1 ≤ l ≤ N) where N is the number of data points.
We will begin by defining ak,n as the following:

ak,n =
N∑

l=0

ψ(2k−1 ∗ l/N − n)S̃(l)/N (11)

Notice that the definitions of ψ(x), S̃(l) and N are the same as defined
previously. We choose a specific value for k and n. In our particular com-
putations, we chose 1 ≤ k ≤ 5 and 1 ≤ n ≤ 16. Now, F (x) (the wavelet

approximation function to S̃(l)) is defined as the following:

F (x) =
5∑

k=1

2k−1(
2k−1∑

n=1

ak,nψ(2
k−1x− n)) (12)

Notice now that F (x) is a function on 0 ≤ x ≤ 1, while our stock prices
are discrete. We sample F (x) at N points. Therefore, we compute the values
for F (1/N) to F (1) with a step of 1/N . Thus the function F (x), is now quite
discrete.

The array of F (1/N) ... F (1) is called the ”pure” part of the original

signal. Here, part of the noise that was initially in S̃(l) has been removed.
Now we wish to compute the average value of the magnitude of the ”pure”
signal. We define this in the following manner:
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P = 1/N
N∑

l=1

F (l/N) (13)

So the value of P is the magnitude of the ”pure” component of the signal.
The definition of the average value of the magnitude of the noise is as follows:

I = 1/N
N∑

l=1

|S̃(l)− F (l/N)| (14)

So the value of I is the magnitude of the noise component of the signal.
Therefore the signal to noise ratio, snr is defined as:

snr =
P

I
(15)

Now we would like to briefly discuss the selection of k and n. There is
no exact way to determine where a fluctuation has its ”pure” component of
the signal and where there is the ”noise” component. For this reason, we
have been placing quotation marks on both pure and noise since one can
not be exactly sure where this is. Since the goal of our work is to make
relative comparisons of the signal to noise ratio, we select a uniform value
for the largest value of k, in otherwords k ≤ 5 and n = 2k−1 which we
use throughout our analysis. Since we chose the largest value of k to be 5,
this implies that n = 16. We could have chosen a higher value for the upper
bound of k say k = 7, and if we used it uniformly it would have been perfectly
fine. However, here we chose the upper bound to be k = 5.

7.3 Autocorrelation function

The autocorrelation function is a statistical measure used to determine the
correlation content in any function [19]. The autocorrelation function, C(τ)
is defined as the following for a function x(t):

C(τ) = E(x(t)x(t+ τ)) (16)

Here E(x(t)x(t+τ)) is the expectation of x(t)x(t+τ). So if we write this
in integral form it as the following:
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C(τ) = lim
T→∞

1

T

∫ T/2

−T/2

x(t)x(t+ τ)dt (17)

Here T represents the total time and τ represents a shift in time. Since in
most physical situations, negative time doesn’t make much sense, the physical
approach to the autocorrelation function is defined as the following:

C(τ) = lim
T→∞

1

T

∫ T/2

0

x(t)x(t+ τ)dt (18)

Analogous to the case in the wavelet approximation section, we need
to write down a formula for the discrete case (since our data sets are time
series not continuous functions). So we approximate equation 17 using a
summation. We define it as the following:

C(τ) = lim
N→∞

1

N

N/2∑

t=0

S̃(t)S̃(t+ τ) (19)

where N, τ ∈ Z+. Here N represents the total number of data points.
From the autocorrelation function, we wish to determine the correlation

length. There are several well-known criterion for determining correlation
length. The purpose of the autocorrelation function is to determine how fast
the correlation falls as time shifts. In the case of a function which does not
have any correlation (like white noise), the autocorrelation function for this
signal behaves like that of a dirac delta function. In other words, at τ = 0,
there is a maximal value of 1 and immediately afterwards, the autocorrelation
function falls to zero. One measure of correlation length is to compute the
first value of τ for which C(τ) = 0. We use the term ”first” because certain
signals show periodic types of behavior in the autocorrelation function thus
C(τ) strikes zero several times. We use this measure of correlation length
uniformly for all the stocks that we have studied. However, we calculate
the correlation length for the ”pure” signal component of each stock price
fluctuation.
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8 Results and Discussions

8.1 Returns results and discussion

First we will show the results for the daily returns. In fig. 3, we have plotted
the returns as defined in equation (4) for Dell corp. As it is clear from the
figure itself, the daily returns are random. Thus when computing the signal
to noise ratio or the correlation content for the return data set, it will be clear
that we will be getting random values all the time. We test this hypothesis
out on all the companies in our data set and observe the same result. In
fig. 4, we show the distribution of returns for Microsoft Corp. Again, one
observes similar behavior to that of fig. 3. Thus we conclude that daily
returns are too volatile of a quantity to look in general for trends.

We have performed a 10 day and 50 day moving average on the return
data sets. An n day moving average on a data set of size N means the
following:

For all 1 ≤ i ≤ (N − n) compute Sm(i) =
1

n

n+i∑

l=i

S(l)

Here Sm(i) is the new data set of returns which have smoothed with an n
day moving average. The intention for performing this analysis is to attempt
to ”smooth” out the returns data. The larger the window size of averaging
(10 and 50 in our case) the ”smoother” the data set should become. We
show these results in fig. 5 and in fig. 6. One can clearly observe a trend
in the data sets now. However, since we have ”manipulated” the data by
computing essentially an average, we did not perform snr and correlation
length analysis on these cases. We will mention more about studying returns
in the Future work section.

8.2 Price distribution results and discussions

8.2.1 Signal to noise ratio results

As we had discussed in section 7.2, we will be using the wavelet approximation
to determine the signal to noise ratio for various companies in our two sectors
of comparisons. In fig. 7, we show a bar graph of the different snr for the
”dogs of the dow” sector. Notice that Dell Corp. has the highest value which
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indicates that there are less random fluctuations in their daily closing prices
than that of say American Express which showed a lower signal to noise ratio.

Next in fig. 8, we show the distribution of snr for the ”high beta stocks”
sector. There are some clearly observable trends in fig. 8. McMoran Ex-
ploration is an oil and gas company which is engaged in exploration and is
thus less volatile than that of Electricidade de Portugal, an electric company
of Portugal which is in bankruptcy now. This is shown in the figure by the
fact that the snr for the Electricidade de Portugal is roughly 1/8 that of the
McMoran Exploration Corp.

8.2.2 Autocorrelation function results

As we had discussed in section 7.3, the autocorrelation function will be used
to determine the correlation length. In fig. 9, we show a sample plot for
the autocorrelation function of stock from the ”dogs of the dow” sector. The
correlation length (as defined in section 7.3) is observed at 77. So the physical
interpretation of this is that after 77 days, the correlation for the Dell stock
falls to zero.

Next in fig. 10, we show a sample autocorrelation plot for a sample
company in the ”high beta stocks” sector. Here we plot the autocorrelation
function plot for Lehman Brothers Holding Inc. We observe a correlation
length of 70. So, after 70 days the correlation of the daily stock prices for
this company falls to zero.

As in the case of the snr comparisons, we would like to plot the distribu-
tions of the correlation lengths for the ”dogs of the dow” and the ”high beta
stocks” sectors. We plot these in figs. 11 and 12 respectively. In the case of
the ”dogs of the dow” we notice several large correlation length values, as in
the case of the Dell, McDonald’s and Home Depot. The plot in fig. 11 seems
to be more or less uniformly distributed. However this is not true for fig. 12.
There are some high correlation values in the case in the case of McMoran
Exploration, E-Trade and Lehman Brothers Holdings while the rest are quite
low.

9 Discussions and Conclusions

We wish to first point out that the snr and correlation length do not measure
the same quantity. The snr tells how much noise there is in the signal.
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The correlation length was calculated after the ”noise” element of the signal
was removed. This is clear by the fact that the correlation length for the
”random” signal that we generated had a correlation length of 7 (shown in
fig. 12). When we computed the correlation length for simply the random
signal (without subtracting the noise threshold), the correlation length was
1. This is expected since all correlation should fall to zero when the time
shifts.

Overall, there were some surprising results. We believed that since the
”dogs of the dow” were more stable companies than the ”high beta stocks” we
selected, the snr distribution and the correlation length distribution should
have been uniformly higher than in the case for the ”dogs of the dow” rather
than the ”high beta stocks”. The fact that only some companies in the ”high
beta stocks” were lower than the ”dogs of the dow” indicates that there
are other factors which one needs to take into consideration when trying to
observe trends.

Likewise in the case of the correlation length, we did not observe any
uniform trends. It was expected that highly volatile stocks should have lower
correlation lengths (since they have more random elements in them) than that
of more stable stocks such as ”dogs of the dow”. We did not observe this
uniformly (as shown in figs. 11 and 12). However, the correlation lengths for
the ”dogs of the dow” were close to being uniformly distributed. Of course
some stocks did have lower correlation lengths than the other, but this was
not as prevalent as in the case of the ”high beta stocks”.

When looking at both the snr and correlation length, some interesting
similarities and differences appear. Regarding the similarities, both measures
did not show high values for General Electric company. We expected this
company to not undergo any drastic changes in stock prices since it has one
of the lowest volatility indexes. Another similarity is that we observed that
Dell Corp. had consistent high values in the signal to noise ratios and the
correlation length. With regards to the ”high beta stocks”, we observed
very low values for the Electricidade de Portugal company. This was as
expected since this stock was highly volatile and the current condition of
this company is rather dismal. With the exception of the performance of
E-Trade, the distributions for the snr and the correlation lengths are very
similar in nature.

Regarding the differences, we observe differences in the high snr values
and the high correlation length values for the ”dogs of the dow”. For exam-
ple, we observed the highest snr in this sector were for the Dell, Intel and
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Eastman Kodak respectively. For correlation lengths, the top three values
were for McDonald’s, Home Depot and Dell respectively. While it is true
that snr and correlation length do not measure exactly the same thing, they
do measure similar quantities. So one would expect a similar trend in both of
these results. Now for the ”high beta stocks” there is a significant difference
in the correlation length of E-Trade versus it’s snr. The snr is quite low
(comparitively speaking) for E-Trade while the correlation length is second
highest in the whole sector. A possible explanation for this might be that one
should change the measure of the correlation length to be the value in which
C(τ) = 1/e instead of C(τ) = 0. The reason for this is that some stocks
tend to fall very slowly after the autocorrelation function crosses 1/2 and in
many cases the C(τ) decays very slowly towards zero. We will mention this
aspect in the Future Work section.

The results show that both the snr and the correlation length are prob-
ably dependent on factors other than the historical volatility index. The
trading volume of a stock for example might have an influence on both of
the aforementioned measures. We hypothesize this because stocks that are
highly traded during the day may have more noisy elements in their price
distribution due to the fact that there are many trades. This factor will add
more noise to the data. This could very well be the case for General Electric
(a steady low volatile company) whose snr and correlation lengths were ob-
served to be lower than that of companies such as Dell Corp. We will discuss
using trading volume as a factor in the Future Work section of the paper.

To conclude, we do observe both low correlation length and snr for the
stocks which seem to have the highest volatility (such as Analog Devices
Inc. and Electricidade de Portugal). In the ”high beta stocks” sector, the
snr and correlation length distributions were quite similar in nature with
the exception of E-Trade company. In the case of the ”dogs of the dow”
we did not observe a uniform trend of highest snr or correlation lengths
than that of the ”high beta stocks”. This could perhaps be explained due
to the fact that we used only one year as the time frame for the entire
analysis. It could very well be that companies such as McMoran Exploration
which traditionally have a high volatility index had a solid performance in
the year 2000. Likewise a company as stable as General Electric could have
some high financial perturbations which affected the randomness in the price
distribution for the year 2000. One way to test this hypothesis is to perform
the same analysis for longer time periods (say 5 years for example) and then
see if one can observe any clear trends between the two sectors.
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10 Future work

During this summer the foundation for analysis of a large sample size of
stocks has been built. The tools of wavelet analysis and autocorrelation
function have been used to measure the information based content in the
distribution of the stock prices. The goal of the future work is to expand on
this knowledge and study all the major sectors in the financial market. In
this paper we looked at two ”extreme” ends of the spectrum of sectors: low
volatile and historically stable stocks (dogs of the dow) versus historically
high volatile stocks. We plan to include all the companies from all the major
sectors including the following (to name a few):

• pharmaceutical

• computer - software

• computer - hardware

• biotechnology

• food - processing

• financial

• steel

• oil

• gold

• international companies in the U.S Markets

Next, we plan to break down each sector based on trading volume and
volatility index. We plan on computing not only the snr and the correlation
length, but we also plan on computing the spectral index (via power spectrum
analysis). We plan on choosing a uniform low frequency region in which we
will fit the 1/fα power law (α is the spectral index). Then we plan on
computing the correlation coefficent between the trading volume and the
following measures: the snr, correlation length and the spectral index for
all the stocks in the particular sector. This will help us determine how
much of an influence the trading volume has on the above three measures
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in the particular sector. Theoretically speaking, the influence of the trading
volume could vary from sector to sector and this is why we will carry it out
on all the sectors studied. Overall, we hope that we will be able to use the
aforementioned three methodologies to find the similarities and or differences
between the sectors.

Second, we plan on observing how the snr varies over time. Throughout
this paper, we used a uniform time frame (1 year exactly). We plan on using
several short time intervals (such as 3 months) and compute the snr for each
interval and then plot how the snr varies as a function of time. We plan on
determining this for select number of companies from each sector. We hope
to see if we can observe any trends of the snr varying over time.

Third, we plan on computing the snr, correlation length and the spec-
tral index for two different time periods. In this paper we computed the
mathematical measures for a one year time period. We plan on computing
the above measures for a one year time period and for a longer time period
(say 5 years). We believe that we should be able to observe some distinct
differences between the two extreme sectors (dogs of the dow and high beta
stocks) at least. Perhaps, interesting trends will be observed between other
sectors (not just the extreme ends).

Finally, we plan on looking at the distribution of daily returns after 50
day averaging for the stocks among the two sectors studied in this paper.
Since performing a 50 day average inherently changes our data set, we will
carefully examine particular cases of snr, correlation length and spectral
index for the daily returns. If one can observe clear distinct trends among
the two extreme sectors, we will plan on pursuing this area as we did with
the stock price fluctuations.
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Figure 3: Distribution of daily returns for Dell Corp. from Jan. 00-Dec.00

20



-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 50 100 150 200 250

time (in days)

re
tu

rn
 (

%
)

Series1

Figure 4: Distribution of daily returns for Microsoft Corp. from Jan. 00 -
Dec. 00
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Figure 5: Distribution of daily returns for Dell Corp. (after applying 10 day
moving average)
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Figure 6: Distribution of daily returns for Dell Corp. (after applying 50 day
moving average)
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Figure 7: Distribution of signal/noise for ”Dogs” of the Dow
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Figure 8: Distribution of signal/noise for high volatile stocks
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Figure 9: Autocorrelation function plot for Dell Corp.)
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Figure 10: Autocorrelation function plot for Lehman Brothers Corp.)
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Figure 11: Distribution of correlation lengths for ”dogs” of the dow

28



0

10

20

30

40

50

60

70

80

90

100

Ana
log

 D
ev

ice
s

Elec
tri

cid
ad

e

E-T
ra

de
 

Gold
m

an
 S

ac
hs

Ja
bil

 C
irc

uit
 

Le
hm

an
 B

ro
th

er
s 

M
cM

or
an

 E
xp

lor
at

ion

Spr
int

TD W
at

er
ho

us
e 

Gro
up

Cro
wn 

Cas
tle

 In
te

rn
at

ion
al 

Cor
p.

Ran
do

m
 se

qu
en

ce

company

C
o

rr
el

at
io

n
 le

n
g

th

Series1

Figure 12: Distribution of correlation lengths for highly volatile stocks
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