
5.2 Stochastic Process

• Let the random variable Xt denote the value of an economic factor (e.g. stock price,
interest rate etc.) at time t.

• If {x1, x2, . . . , xn} is an observed data from time 1 up to time n, then {x1, x2, . . . , xn}
is a time series for the relevant economic factor. Furthermore, such empirical data can
be thought of a particular realization of a stochastic process.

• In general, such stochastic process can be described by an n-dimensional probability
distribution p(x1, x2, . . . , xn).

• Assuming joint normality, such a distribution is described by nmeans E(x1), E(x2), . . . ,E(xn);
n variances Var(x1),Var(x2), . . . ,Var(xn); and n(n− 1)/2 covariances Cov(xi, xj), i <
j.

• The special case n = 3 is plotted in Figure 5.1; the distribution is described by nine
parameters (three means, three variances, three covariances).

Figure 5.1: Probability Distributions for a General Stochastic Process (n = 3)

• To infer such a general probability structure from just one realization of the stochastic
process will be impossible, since there are n observations but n+n+n(n−1)/2 unknown
parameters.

• Hence some simplifying assumptions have to be made ⇒ stationarity.

5.2.1 Stationary

Definition 5.2.1 The process X = {xt : t ≥ 0}, taking values in <, is called strongly

stationary if the joint probability distribution of a set of m observations at times t1, t2, . . . , tm
is identical to the joint probability distribution of the observations at times t1 + k, t2 +
k, . . . , tm + k, for any k.
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• For instance, if m = 1, this implies that the marginal distribution at time t is the
same as the marginal distribution at any other point in time; p(xt) = p(xt+k); i.e. the
marginal distribution does not depend on time, which in turn implies that the mean
E(xt) = µ, and the variance Var(xt) = γ0 are constant. (see Figure 5.2)

Figure 5.2: Probability Distributions for a Stationary Stochastic Process (n = 3)

• If m = 2, stationary implies that all bivariate distributions p(xt, xt−k) do not depend
on t; thus the covariances Cov(xt, xt−k) are only functions of the lag k, but not of time
t (i.e. Cov(x1, x1+k) = Cov(x2, x2+k) = · · · = Cov(xn−k, xn), for all k).

• The stationarity condition implies that the mean and variance of the process are con-
stant and that the autocovariances

γk = Cov(xt, xt−k) = E[(xt − µ)(xt−k − µ)] (5.2.1)

and the autocorrelations

ρk =
Cov(xt, xt−k)

[Var(xt) · Var(xt−k)]1/2
=
γk

γ0

(5.2.2)

depend only on the lag (or time difference) k.

• Since these conditions apply only to the first- and second-order moments of the process,
it is also called second-order or weak stationarity.

• If a series a weakly stationary and normally distributed, then it must be stationary in
the strong sense.

• Note that γk = γ−k and ρk = ρ−k.

• Sample Autocorrelation Function:

ρ̂k =

∑

t=k+1(xt − x̄)(xt−k − x̄)
∑n

t=1(xt − x̄)2
, k = 0, 1, 2, . . .
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• For every weakly stationary nondeterministic stochastic process, (xt − µ), it can be
written as a linear combination (or linear filter) of a sequence of uncorrelated random
variables. The linear representation is given by

xt − µ = εt + ψ1εt−1 + ψ2εt−2 + · · · =
∞
∑

j=0

ψjεt−j (5.2.3)

with ψ0 = 1.

– The random variables {εt; t = 0,±1,±2, . . .} are a sequence of uncorrelated r.v.
from a fixed distribution with

E(εt) = 0 (5.2.4)

Var(εt) = E(ε2
t ) = σ2 (5.2.5)

E(εsεt) = 0, s 6= t. (5.2.6)

Such a sequence is usually referred to as a white noise process.

– These r.v. define the shocks to the system.

– If in addition to Conditions (5.2.4)-(5.2.6), εs and εt, s 6= t, are independent and
that

εt ∼ N(0, σ2),

we have the Gaussian white noise process.

– The ψj weights in (5.2.3) are the coefficients in this linear combination; their
number can be either finite or infinite.

E(xt) = µ

Var(xt) = γ0 = E[(xt − µ)2]

=

=

= σ2
∞
∑

j=0

ψ2
j

Cov(xt, xt+k) = γk = E[(xt − µ)(xt+k − µ)]

= E[(εt + ψ1εt−1 + ψ2εt−2 + · · ·)

×(εt+k + ψ1εt+k−1 + · · ·+ ψkεt + ψk+1εt−1 + · · ·)]

= σ2(ψk + ψ1ψk+1 + ψ2ψk+2 + · · ·)

= σ2
∞
∑

j=0

ψjψj+k

since E(εt−iεt−j) = 0 for i 6= j.

ρk =

∑

∞

j=0 ψjψj+k
∑

∞

j=0 ψ
2
j

.
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– If the coefficient ψj is infinite, then some assumptions concerning the convergence
of these coefficients are needed. In fact, we have to assume that the weights
converge absolutely (

∑

∞

j=0 |ψj| < ∞). This condition, which is equivalent to the
stationarity assumption, guarantees that all moment exist and are independent
of time t.

5.2.2 Moving Average Process

First-order Moving Average Process: MA(1)

Letting ψ1 = −θ and ψj = 0, j > 1, the model (5.2.3) leads to

xt − µ = εt − θεt−1.

This time-series is called a first-order moving average process, denoted by MA(1).

E[xt] = µ

γ0 = Var[xt] = E(εt − θεt−1)
2

= E(ε2
t − 2θεtεt−1 + θ2ε2

t−1)

= σ2 + 0 + θ2σ2

= (1 + θ2)σ2

The first autocovariance:

γ1 = E[(xt − µ)(xt−1 − µ)]

= E[(εt − θεt−1)(εt−1 − θεt−2)]

=

=

= −θσ2

Higher autocovariance: γk = 0, k > 1, so that the autocorrelation function:

ρ1 =
−θ

1 + θ2
, ρk = 0, for k > 1.

This implies that observation one step apart are correlated. However, observations more
than one step apart are uncorrelated. (see Figure 5.3)

Moving Average Process of Order q: MA(q)

Defined by
xt − µ = εt − θ1εt−1 − · · · − θqεt−q; (5.2.7)

i.e. MA(q) is obtained by setting

ψ0 = 1, ψj = −θj, for j = 1, . . . q, ψj = 0, for j > q
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Figure 5.3: Realizations of MA(1) process for θ = 0.5,−0.5
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γ0 = (1 + θ2
1 + · · ·+ θ2

q)σ
2

γk = (−θk + θ1θk+1 + · · ·+ θq−kθq)σ
2, k = 1, . . . , q

γk = 0, k > q

5.2.3 Autoregressive Process

First-order Autoregressive Process [AR(1)]

• The choice of ψj = φj in (5.2.3) leads to the process of the form

xt − µ = εt + φεt−1 + φ2εt−2 + · · ·

= εt + φ(εt−1 + φεt−2 + φ2εt−3 + · · ·)

= φ(xt−1 − µ) + εt

The above process is known as first-order autoregressive process, AR(1).

• In this AR(1) process, we must ensure |φ| < 1; otherwise
∑

∞

j=0 |ψj| would not converge.
Furthermore, we have

γ0 = σ2
∞
∑

j=0

ψ2
j = σ2

∞
∑

j=0

φ2j =
σ2

1− φ2

γk = σ2
∞
∑

j=0

ψjψj+k

= σ2
∞
∑

j=0

φjφj+k

=
σ2φk

1− φ2
= φkγ0, k = 0, 1, 2, . . .

ρk = φk

Note that the autocorrelations decay geometrically to zero, and for φ < 0 the autocor-
relations decay in an oscillatory pattern. (see Figure 5.4)

Autoregressive Process of Order p [AR(p)]

xt − µ = εt + φ1(xt−1 − µ) + · · ·+ φp(xt−p − µ)

5.2.4 Autoregressive Moving Average Process [ARMA(p,q)]

It is possible to have a process which combines both AR(p) and MA(q). This results in
so-called ARMA(p, q):

xt − µ = φ1(xt−1 − µ) + · · ·+ φp(xt−p − µ) + εt − θ1εt−1 − · · · − θqεt−q (5.2.8)
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Figure 5.4: Realizations of AR(1) process for various values of φ
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