
A REALISTIC MODEL FOR SELF-SIMILAR ETHERNET LAN TRAFFIC IN
SimATM – AN ATM NETWORK SIMULATOR: DESIGN AND PERFORMANCE

IMPLICATIONS ∗

Ernesto L. Andrade Neto, Antônio M. Alberti, Dalton S. Arantes, Leonardo S. Mendes
DECOM-FEEC/UNICAMP

P.O. Box 6101
13081-970 - Campinas - SP – BRAZIL

phone: +55-19-788-2053 fax: +55-19-289-1395
e-mail: ernestoa, alberti, dalton, lmendes@decom.fee.unicamp.br

                                                          
∗ Partially supported by FAPESP (under grants 96/12372-2 and 97/14449-5) and CPqD-Telebrás (contracts
7500/856/97 and 7800/825/97).

Abstract – This paper presents a realistic model for
Ethernet LAN Traffic that takes into account the
network constraints. The design of the model is
presented along with a brief description of SimATM,
an ATM network simulator developed at UNICAMP.
The resulting self-similar model is compared with
real network data from Bellcore Ethernet traffic
measurements. Results of simulations with synthetic
traffic traces are presented for a simple ATM
network. These results clearly indicate that simple
Poisson traffic models underestimate real network
losses by several orders of magnitude.

1. Introduction

 A number of recent empirical studies of traffic
measurements from a variety of working packet
networks [1] [2] have convincingly demonstrated that
actual network traffic is self-similar or long range
dependent in nature (i.e., bursty over a wide range of
time scales). This is in sharp contrast to commonly
made traffic modeling assumptions (i.e., Poisson
models). Since an accurate estimation of network
performance is critical for the success of broadband
networks, then network simulation with self-similar
models is required in order to capture the statistical
characteristics of the actual traffic [2].
 
 Several methods have been used for generating self-
similar synthetic traces: asymptotically self-similar
fractional Arima [3], exactly self-similar fractional
Brownian motion (fBm) [4], aggregation of several
heavy tailed ON/OFF sources [2], among others. A
description of traditional (short range dependent) and
non-traditional (long range dependent) traffic models
can be found in [5].
 
 The need to test and characterize actual network
traffic in ATM network models have lead us to the
development of a realistic self-similar Ethernet LAN
traffic generator. Simulations with this traffic model

will be particularly useful in the performance
evaluation of Virtual LANs (VLANs)
interconnection. As is well known, VLANs
interconnection will be one of the foreseen major uses
of B-ISDN. The generator is based on an interactive
search for self-similar sequences synthesized from
fractional Gaussian noise (fGn) power spectrum
inversion with the fast Fourier transform (FFT) [4]
that fits the following desired parameters: Hurst
parameter (self-similarity degree), mean packet size,
packet size variance and lower and upper packet size
limits. Sequences with useful sizes for network
simulation (order of 105-106 samples) can be
synthesized in a reasonable amount of time,
considerably smaller than sequence simulation time.
The synthetic Ethernet sequences generated by the
proposed model can be used in different ATM
congestion control schemes and Connection
Admission and Control (CAC) algorithms, as well as
in the characterization of network behavior inside the
SimATM simulation framework.

 The remaining parts of this paper are organized as
follows. The second section presents an overview of
SimATM. The third section discusses the Ethernet
traffic model and its implementation’s details. The
fourth section describes the model’s results analysis
and validation. The fifth section shows the results of
model’s application to a simple simulated ATM
network. The sixth section draws final conclusions,
comments and directions for future work.

2. SimATM Network Simulator

 The starting development point of SimATM was the
SimNT simulator developed in the Department of
Communications at FEEC-UNICAMP, which has a
general purpose simulation architecture but was
initially applied to optical systems simulation [6]. The
initial simulator design ideas were based on the NIST
ATM simulator [7]. However, present simulator



structure is now conforming with ITU-T and ATM
Forum specifications [8-16]. As a result, all simulator
source code is written in C++ and does extensive use
of object modeling in its architecture. The first
simulator design goal was to integrate ATM
simulation in SimNT, but some important differences
between the simulation approaches (one needs a data
driven kernel for optical systems in SimNT, while the
ATM simulator needs an event driven kernel)
prevented us from integrating both simulators in the
same kernel. Figure 1 shows the present structure of
the SimATM simulator. The simulation kernel has an
event manager, an event queue, a command
interpreter and supports several instances of ATM
networks running one at time. The simulator runs at
cell level of ATM networks. The simulator models
are divided into four categories: equipment models,
layer models, application models and queueing
system models. The ATM equipment models consist
of broadband terminal equipment (B-TE) and ATM
switch. The modeled layers consist of the AAL 5
[10], the ATM layer (one model for BTE and another
for ATM switch) and the physical cell based layer
common to all equipment. All BTEs run ITU-T AAL
5. The ATM application models consist of traffic
sources for CBR or VBR mode and general traffic
transmitter and traffic receiver for these sources. The
queueing system model during simulation gathers all
queueing system’s statistics in a chosen equipment
buffer. The main statistics provided by the simulator
are: cell loss, cell delay, link utilization, number of
cells transmitted and cell transit time from source to
sink. Therefore, the simulator statistics allows the
complete characterization of queueing systems’
behavior.
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Figure 1: SimATM simulation framework.

The simulation statistics can be logged to a file in
constant intervals of simulation time or each time that
an event being tracked occurs (like cell arrival or cell

drop), but notice that event sampling can generate
huge log files. The simulation architecture allows that
new equipment models be added to the simulation
framework or that existing models be modified in a
particular behavior to add a new feature.

3. Ethernet Traffic Model

3.1 Self-Similar Process

A sequence {X1, X2,..., Xn} of weakly stationary
random variables is said to be long range dependent
(LRD) if:

∑
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nXXCov [1]

that is, its autocovariance function },{ 1 nXXCov  is

nonsummable, otherwise it is called short range
dependent. If Var{X 1 + ... + Xn} of a long range
dependent sequence grows at rate n2H, where

]( 11/2,H ∈ , then the number H is called the Hurst

parameter of the sequence. The long range
dependence rigorously applies only to infinite time
series. The simplest models with long range
dependence are self-similar processes, which are
characterized by hyperbolically decaying
autocorrelation functions.

A function Xt is strictly self-similar if for some H and

0>∀α , t
H

t XX αα = . A process Xt is called

statistically self-similar with self-similarity parameter
(or Hurst Parameter) H if, for any 0>α , the

processes Xαt and t
H Xα  have the same finite

dimensional distributions. It is called asymptotically
self-similar if the process Xαt, suitably normalized,
converges weakly to a self-similar process when

∞→α .

A square integrable process Xt is called second order
self-similar with self-similarity parameter H if, for

any 0>α , the process Xαt and t
HXα  have the same

second order characteristics. It is called
asymptotically second order self-similar if the second
order characteristics of Xαt suitably normalized,
converge to those of a second order self-similar
process when ∞→α . Self-similar and
asymptotically self-similar processes are particularly
attractive models mainly because long range
dependence can be characterized by a single
parameter, the Hurst parameter H, which can be
estimated using many different methods, such as
Whittle’s procedure[4][17,18], aggregate variance
plots[17,18], R/S statistics[17,18], wavelets, fractal
dimension, etc.



3.2 Model Implementation

The analysis of Bellcore measured Ethernet traces
[1][2], confirming that actual Ethernet traffic traces
are self-similar over a wide range of time scales, and
results drawn from [4], about feasibility of fGn
generation with fGn power spectrum synthesis and
power spectrum inversion through FFT, have
motivated us for the construction of a realistic
Ethernet source model that represents actual Ethernet
link traffic data to test simulated ATM networks. The
fGn synthesis method is one of the fastest self-similar
sequence generation algorithms for sequential
machines [4] and is very appropriate for the present
application. The Ethernet protocol forces all packets
to have at least the minimum size of 64 bytes and at
most the maximum size of 1518 bytes. For practical
simulation purposes, the synthetic traffic source must
generate a traffic stream with a specific average
value, a variance value and a given Hurst parameter,
which characterizes the desired degree of self-
similarity. It is also very important that the synthetic
traces be kept constrained to the above packet size
limits.

The method that we have used for generating the
traces takes into account all the above constraints. It is
an heuristic that accomplishes an interactive process
in order to synthesize a traffic stream with a desired
self-similarity (Hurst parameter), mean packet size,
packet size variance, and minimum and maximum
packet size limits. A block diagram of the proposed
algorithm can be seen in Figure 2. The first step in
this process is to produce a pseudo-self-similar
sequence with zero mean and unitary variance using
an adaptation of the FFTFGN algorithm [4]. The
resulting sequence is then normalized with the

transformation iX
iY 2= , which preserves self-

similarity [4] and results in a positive valued
sequence. After this, the sequence is normalized to
desired mean and variance. In the normalized
sequence we applied the upper and lower limits and
evaluated the sequence’s Hurst parameter using the
variance method with equally spaced points on a
logarithmic scale. If the Hurst parameter is within the
desired tolerance range, the resulting sequence is
saved to a file and, if necessary, the search is
continued for more uncorrelated sequences using a
new random generator seed. If the Hurst parameter is
out of the specified range, the sequence search
continues until it finds the desired number of
sequences or the algorithm reaches the maximum
limit of tested sequences.

When this step is concluded, the resulting sequences

are uniformly distributed in time in order to achieve a
desired mean link utilization for simulation purposes.
The time to find a sequence with the desired
parameters varies with the initial guess for the random
generator’s seed, and usually greater values of Hurst
parameter take more iterations to produce a sequence.
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Figure 2: Self-similar model algorithm.



4. Model Validation

Throughout the modeling process, measurements
from Bellcores’s Ethernet LAN at Morrinston
Research facility (file BC-pAug89.TL available in the
Internet [19]) have been used in the construction and
parameterization of the model. These measurements
have verified the presence of self-similarity and
estimates of Hurst parameter, using the aggregated
variance method, have resulted in H=0.8. The mean
packet size for this trace is about 434 bytes and its
standard deviation is about 484 bytes.

The main methods used in the analysis of synthetic
sequences are the aggregated variance method (for the
Hurst parameter estimation) and the autocorrelation
function plots. Figure 3 shows samples of generated
sequences with H=0.50, for an uncorrelated packet
sequence, and with H=0.90 for a packet sequence
with high degree of self-similarity. These samples
show significant visual differences in the burstiness of
the uncorrelated and the highly correlated synthetic
traces. Figures 4 and 5 show the autocorrelation
functions and aggregated variance, respectively, for
synthetic sequences and for Bellcore’s Ethernet LAN
data. In Figure 4 the trace with H=0.50, as expected,
has only short range dependence and no significant
degree of self-similarity. The synthetic trace that
approximates Bellcore’s data (H=0.80) has almost
exactly the same long range dependence and differs
only in a short range dependence that is not included
in the model.

0 2000 4000 6000 8000 10000
0

500

1000

1500

P
ac

ke
t S

iz
e 

(b
yt

es
) Time Slot

H = 0.5

H = 0.9

P
ac

ke
t S

iz
e 

(b
yt

es
)

Time Slot

0 2000 4000 6000 8000 10000
0

500

1000

1500

Figure 3: Sample of synthetic traces generated with
the model.

In Figure 5, the aggregated variance plot for
Bellcore’s and synthetic data are also almost identical,
differing in the aggregated variance amount mainly
due to differences in packet size distribution between
them. All the synthesized sequences have

approximately the same mean packet size and same
packet size variance as Bellcore’s Ethernet trace. The
trace mean packet size and packet standard deviation
data can be seen in Table 1.

The differences between the target mean and standard
deviation, that ought to be the same as Bellcore’s
trace, and the synthesized sequence mean and
standard deviation, are due to the sequence’s
truncation during the process that was used to
normalize the sequences between lower and upper
packet size limits.

The negligible differences between the
autocorrelation functions (Figure 4) and variance
plots (Figure 5) for the synthetic traffic traces and the
actual Ethernet data confirms that the presented
model is an excellent source of self-similar Ethernet
traces for ATM networks simulation. Thus the model
approximates the long range behavior of the real
Ethernet traffic, subject to practical network’s
constraints, with a high degree of fidelity.
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H Mean Std. Dev.
0.5 432.33 476.91
0.6 431.95 475.96
0.7 430.75 473.42
0.8 433.44 480.09
0.9 433.58 480.28

Table 1: Packet size mean and standard deviation of
synthesized sequences.

5. Performance Implications

Self-similar traffic implies that the process of
aggregating “bursty” traffic still results in “bursty”
traffic. Thus, cell loss in a network may be much
higher than expected if the network traffic is self-
similar. A simple experiment was conducted in order
to assess the performance implications of self-similar
traffic cell loss and buffer size requirement for a
simulated ATM network. The simulation framework
used for the experiment can be seen in figure 6. The
Ethernet source model is connected with ATM switch
using a Permanent Virtual Channel (PVC) of 155.52
Mbps. Its data passes across AAL 5, ATM and
physical layers reaching a low bandwidth ATM
switch output buffer (1.5 Mbps), where the simulation
statistics are collected. About 1.2 millions of cells
were transmitted from Ethernet source to sink for
each trace with different Hurst parameter during the
simulations. These cells were used to gather the
system’s statistics.
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Figure 6: Simulation framework for self-similar source model test.

Self-similar traffic has serious implications on cell
loss performance in the network. Figure 7 depicts
average cell loss ratio experienced by the Ethernet
traffic source, as a function of buffer size at the output
port. These experiments are conducted at a high link
utilization, the buffer traffic input rate being 90 % of
output link rate. Figure 7 shows that increasing buffer
size at the output always reduces cell loss ratio, as
expected. However, additional buffer sizes are much

less effective when traffic source has a high degree of
self-similarity. For example, for H=0.5 increasing the
size the of buffer from B=10 to B=100 reduces cell

loss ratio from about 110−  to below 310− . On the
other hand, for H=0.8 a buffer size of approximately
20000 is needed in order to bring cell loss ratio below

210− .

Table 2 shows that the higher the degree of self-
similarity present in the synthetic traces, the higher
will be the mean number of cells stored in the switch
output buffer and the mean cell delay in this buffer.
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Figure 7: Results of ATM switch cell loss ratio.

Mean Number of Buffer Cells and Mean Cell Delay
(Buffer Size B = 100)

H Mean N. of
Buffer Cells

Buffer Cells
Std. Dev.

Mean Cell
Delay (s)

Cell Delay
Std. Dev.

0.5 28.3182 24.9330 0.0086 0.0007
0.6 32.9631 29.5197 0.0099 0.0011
0.7 32.6862 32.2219 0.0098 0.0012
0.8 34.5327 35.5483 0.0103 0.0020
0.9 36.9848 39.5718 0.0110 0.0059

Table 2: Mean number of cells and cell delay in the
ATM output buffer as a function of Hurst parameter
(H).

6. Conclusions

This paper has presented a synthetic workload model
that is capable of modeling self-similar Ethernet
traffic. The model captures the autocorrelation and
long range dependence that has been observed in
recent Ethernet LAN measurements [1] and [2].
Notice that the generated self-similar process are
always constrained by the Ethernet Network
parameters.

The simulation results in this paper confirm that self-



similar traffic has potentially serious implications on
ATM networks. Cell delay, cell jitter and cell loss
may be significantly higher than predicted by simple
traffic models. Poisson traffic models, as opposed to
self-similar traffic models, may underestimate ATM
cell loss by two or three orders of magnitude. Self-
similar traffic models are thus a valuable tool as an
actual stress test to ATM networks.
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